Responsive image
博碩士論文 etd-0606102-095705 詳細資訊
Title page for etd-0606102-095705
論文名稱
Title
人類5S snoRNA基因之研究
Studies of Human 5S snoRNA Genes
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
76
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2001-05-28
繳交日期
Date of Submission
2002-06-06
關鍵字
Keywords
小核仁核醣核酸、核仁、共價修飾、組織性表現
Differential expression, Covalent modification, small nucleolar RNA, Nucleolus, snoRNA
統計
Statistics
本論文已被瀏覽 5652 次,被下載 4340
The thesis/dissertation has been browsed 5652 times, has been downloaded 4340 times.
中文摘要
在真核細胞的核仁內發現許多由Intron所產製snoRNA,其功能乃參與核醣體序列上核苷酸的修飾作用,在命名上,基於snoRNA互補於不同種類的核醣體 (28S, 18S, 5.8S及5S ),又稱為28S, 18S, 5.8S及5S snoRNA。 本論文著重在人類5S snoRNA的探討,藉由生物資訊的方式搜索人類基因中可能產製5S snoRNA基因,以RT-PCR和DNA sequencing證實其存在性,及單股多型性及高解析度瓊脂凝膠分析顯示出在不同個體間5S snoRNA並無基因變異性存在,然而5S snoRNA序列上所形成的二級結構維持保留性反映與其snoRNA的功能有關。 RT-PCR結果顯示5S snoRNA的表現具有組織差異性,其中N117 snoRNA在正常腦組織表現量明顯較其他組織高,相對在腦膜瘤組織表現量卻明顯降低,這似乎與其宿主基因Similar to synapsin III同步轉錄所造成不同的表現量有關。 本篇論文結果顯示5S snoRNA可能可做為宿主基因不同表現量的指標性基因標記。

Abstract
The nucleolus of eukaryotic cells contain a number of the intron-coding small nucleolar RNAs (snoRNAs), which functions are related to covalent modification of pre-rRNAs. The snoRNA that from long, phylogenetically conserved sequence complementarity to 28S, 18S, 5.8S and 5S rRNAs are designated as 28S, 18S, 5.8S and 5S snoRNAs, respectively. In the present study, studying on human 5S snoRNAs had been carried out. The human genome encoding candidate 5S snoRNAs were searched using database mining. The transcripts of 5S snoRNA genes were identified by RT-PCR analyses and DNA sequencing. No appreciable diversities of 5S snoRNA genes were observed as evidenced by single strand conformation polymorphism (SSCP) and high resolution agarose gel. Moreover, sequence conservation of 5S snoRNAs reflects a requirement for maintaining their secondary structure on exerting their function. The results of RT-PCR analyses revealed a tissue-specific transcription of 5S snoRNAs. A 5S snoRNA designated as N117 was identified to be highly expressed in normal brain. On the contrary, its expression markly decreased in brain tumor (meningioma). This seems to be associated with the expression of host gene, which encodes a protein similar to synapsin III protein. Consequently, this may implicate that the use of snoRNA as a potential index for the transcription of its host gene.
目次 Table of Contents
頁次
壹.中文摘要…………………………………I
貳.Abstract……………………………………II
參.英文縮寫表………………………………1
肆.序言………………………………………2
伍.材料與方法………………………………9
陸.結果………………………………………24
柒.討論………………………………………36
捌.參考文獻…………………………………42
玖.表…………………………………………47
壹拾.圖………………………………………48
壹拾壹.附錄…………………………………61








參考文獻 References
Arnold,G.J.,Kahnt,B.,Herrenknecht,K. and Gross, H.J. (1987) A variant gene and a pseudogene for human 5S RNA are transcriptionally active in vitro. Gene. 60, 137-44.

Azad,A.A. and Lane,B.G. (1973) A possible role for 5 S rRNA as a bridge between ribosomal subunits. Can J. Biochem. 51, 1669-1672.

Bachelleria,J.P. and Cavaille,J. (1998) Modification and Editing of RNA (Grojean,H. and Benne,R. Ed.), pp. 255-272, ASM Press, Washington.

Balakin,A.G.,Smith,L. and Fournier,M.J. (1996) The RNA world of the nucleolus: two major families of small RNAs defined by different box elements with related functions. Cell 86, 823-834.

Britten,R.J. (1996) DNA sequence insertion and evolutionary variation in gene regulation. Proc. Natl. Acad. Sci. 93, 9374-9377.

Bortolin,M.-L. and Kiss, T. (1998) Human U19 intron-encoded snoRNA is processed from a long primary transcript that possesses little potential for protein coding. RNA 4, 445–454.

Bruenger,E.,Kowalak,J.A.,Kuchino,Y.,McCloskey,J.A.,Mizushima,H.,Stetter,K.O. and Crain,P.F. (1993) 5S rRNA modification in the Hyperthermophilic archaea Sulfolobus solfataricus and Pyrodictium occultum. FASEB J. 7, 196-200.

Brule,F.,Gregoire,A.,Segault,V.,Mougin,A. and Branlant,C. (1995) Secondary structure conservation of the U3 small nucleolar RNA introns in Saccharomyces. C. R. Acad. Sci. III. 318, 1197-1206.

Cavaille,J.,Buiting,K.,Kiefmann,M.,Lalande,M.,Brannan,C.I.,Horsthemke,B.,Bachellerie,J.P.,Brosius,J. and Huttenhofer,A. (2000) Identification of brain-specific and imprinted small nucleolar RNA genes exhibiting an unusual genomic organization. Proc. Natl. Acad. Sci. 97, 14311-14306.

Cavaille,J.,Vitali,P.,Basyuk,E.,Huttenhofer,A. and Bachellerie,J.P. (2001) A novel brain-specific box C/D small nucleolar RNA processed from tandemly repeated introns of a noncoding RNA gene in rats. J. Biol. Chem. 276, 26374-26383.

Cavaille,J.,Nicoloso,M. and Bachellerie,J.P. (1996)Targeted ribose methylation of RNA in vivo directed by tailored antisense RNA guides. Nature 383, 732-735.

Charette,M. and Gray,M.W. (2000) Pseudouridine in RNA: what, where, how, and why. IUBMB Life. 49, 341-351.

Cecconi,F.,Mariottini, P. and Amaldi, F. (1995) The Xenopus intron-encoded U17 snoRNA is produced by exonucleolytic processing of its precursor in oocytes. Nucleic Acids Res. 23, 4670–4676.

Chang,L.S.,Lin,S.K. and Wu,P.F. (1998) Differentially expressed snoRNAs in Bungarus multicinctus (Taiwan banded krait). Biochem. Biophys. Res. Commun. 245, 397-402.

Chang,L.C. and Hong,E. (1997) Novel SnoRNAs from Naja naja atra (Taiwan cobra) and Bungarus multicinctus (Taiwan banded krait), form extended sequence complementarity to 5S rRNA. Biochem. Biophys. Res. Commun. 236, 782-784.

Darzacq,X. and Kiss,T. (2000) Processing of intron-encoded box C/D small nucleolar RNAs lacking a 5',3'-terminal stem structure. Mol. Cell Biol.20, 4522-4531.

Drouin G. (2000) Expressed retrotransposed 5S rRNA genes in the mouse and rat genomes. Genome 43, 213-5.

de los Santos,T.,Schweizer,J.,Rees,C.A., and Francke,U. (2000) Small evolutionarily conserved RNA, resembling C/D box small nucleolar RNA, is transcribed from PWCR1, a novel imprinted gene in the Prader-Willi deletion region, which Is highly expressed in brain. Am. J. Hum. Genet. 67, 1067-1082.

Eliceiri,G.L. (1999) Small nucleolar RNAs. Cell. Mol. Life Sci. 56, 22-23

Filipowicz,W. (2000) Imprinted expression of small nucleolar RNAs in brain: time for RNomics. Proc. Natl. Acad. Sci.. 97, 14035-14037.

Ganot,P.,Bortolin,M.L. and Kiss, T. (1997) Site-specific pseudouridine formation in preribosomal RNA is guided by small nucleolar RNAs. Cell 89, 799–809.

Gerbi,S.A. (1995) Small nucleolar RNA. Biochem. Cell Biol. 73, 845–858.

Goncalves,J.M. and Orfao,A. (2001) Gains of chromosome 22 by fluorescence in situ hybridization in the context of an hyperdiploid karyotype are associated with aggressive clinical features in meningioma patients. Cancer. 92, 377-385.

Highton R. (1993) The relationship between the number of loci and the statistical support for the topology of UPGMA trees obtained from genetic distance data. Mol. Phylogenet. Evol. 2; 337-343.

Hillis,D.M. and Dixon,M.T. (1991) Ribosomal DNA: molecular evolution and phylogenetic inference. The Quarterly Review of Biology 66, 411-453.

Hongyo,T.,Buzard,G.S.,Calvert,R.J. and Weghorst,C.M.(1993). 'Cold SSCP': a simple, rapid and non-radioactive method for optimized single-strand conformation polymorphism analyses. Nucleic Acids Res. 21; 3637-3642.

Jady,B.E. and Kiss,T. (2001) A small nucleolar guide RNA functions both in 2'-O-ribose methylation and pseudouridylation of the U5 spliceosomal RNA. EMBO J. 20, 541-551.
Kiss-L.Z.,Henry,Y. and Kiss, T. (1998) Sequence and structural elements of methylation guide snoRNAs essential for site-specific ribose methylation of pre-rRNA. EMBO J. 17, 797–807.

Kiss,T. and Filipowicz,W. (1995) Exonucleolytic processing of small nucleolar RNAs from pre-mRNA introns. Genes Dev. 9, 1411–1424.

Kiss,L.,Z., Henry,Y., Bachellerie, J. P., Caizergues,F.M. and Kiss, T. (1996) Site-specific ribose methylation of preribosomal RNA: a novel function for small nucleolar RNAs. Cell 85, 1077-1088.

Kirpekar,F.,Douthwaite,S. and Roepstorff,P. (2000) Mapping posttranscriptional modifications in 5S ribosomal RNA by MALDI mass spectrometry. RNA. 6, 296-306.

Kowalak,J.A.,Pomerantz,S.C.,Crain,P.F. and McCloskey,J.A. (1993) A novel method for the determination of post-transcriptional modification in RNA by mass spectrometry. Nucleic Acids Res. 25, 4577-4585.

Kumar,S.,Tamura,K.,Jakobsen,I.B. and Nei,M. (2001) MEGA2: molecular evolutionary genetics analysis software. Bioinformatics. 17; 1244-1245.

Lafontaine,D.L.,Bousquet-Antonelli,C,Henry,Y.,Caizergues-Ferrer,M. and Tollervey, D. (1998) the box H/ACA snoRNAs carry Cbf5p, the putative rRNA pseudouridine synthase. Genes Dev. 12, 527-537.

Lafontaine,D.L. and Tollervey, D. (1998) Birth of the snoRNPs: the evolution of the modification-guide snoRNAs. Trends Biochem. Sci. 23, 383-8.

Lange,T.S.,Borovjagin,A.,Maxwell,E.S.and Gerbi, S. A. (1998) Conserved boxes C and D are essential nucleolar localization elements of U14 and U8 snoRNAs. EMBO J. 17, 3176–3187.

Lander et al., (2001) Initial sequencing and analysis of the human genome. Nature. 409, 860-921.

Lowe,T.M. and Eddy,S.R. (1999) A computational screen for methylation guide snoRNAs in yeast. Science. 283, 1168-71.

Lubben,B.,Fabrizio,P.,Kastner,B. and Luhrmann, R. (1995) Isolation and characterization of the small nucleolar ribonucleoprotein particle snR30 from Saccharomyces cervisiae. J. Biol. Chem. 270, 11549–11554.

Maden,B.E.H. (1990) The numerous modified nucleotides in eukaryotic ribosomal RNA. Progr. Nucleic Acid Res. Mol. Biol. 39, 241–303.

Maillo,A.,Diaz,P.,Sayagues,J.M.,Blanco,A.,Tabernero,M.D.,Ciudad,J.,Lopez,A.,Matzura,O. and Wennborg,A. (1996) RNAdraw: an integrated program for RNA secondary structure calculation and analysis under 32-bit Microsoft Windows. Comput. Appl. Biosci. 12; 247-249.

Maxwell,E.S. and Fournier, M. J. (1995) The small nucleolar RNAs. Annu. Rev. Biochem. 64, 897-934.

Mitchell,J.R.,Cheng,J. and Collins,K. (1999) A box H/ACA small nucleolar RNA-like domain at the human telomerase RNA 3’ end. Mol. Cell Biol. 19, 567-576.

Narayanan,A.,Lukowiak,A.,Jady,B.E.,Dragon,F.,Kiss,T.,Terns,R.M. and Terns,M.P. (1999) Nucleolar localization signals of box H/ACA small nucleolar RNAs. EMBO J. 18, 5120-5130.

Nicoloso,M.,Qu,L.H.,Michot,B. and Bachellerie,J.P. (1996) Intron-encoded, antisense small nucleolar RNAs: the characterization of nine novel species points to their direct role as guides for the 2'-O-ribose methylation of rRNAs. J. Mol. Biol. 260, 178-195.

Niewmierzycka,A. and Clarke, S. (1998) S-adenosylmethionine-dependent methylation in Saccharmyces cerevisiae identification of a novel protein arginine methyltransferase. J.Biol. Chem. 274, 814-824.

Ni,J.,Tien,A.L. and Fournier,M.J. (1997) Small nucleolar RNAs direct site-specific synthesis of pseudouridine in ribosomal RNA. Cell 89, 565-573.

Ofengand,J. and Fournier,M.J. (1998) The pseudouridine residues of rRNA: number, location, biosynthesis and function. In: Modification and Editing of RNA (Grojean,H. and Benne,R. Ed.), pp. 229–253, ASM Press, Washington.

Omer,A.D.,Lowe,T.M.,Russell,A.G.,Ebhardt,H.,Eddy,S.R. and Dennis,P.P. (2000) Homologs of small nucleolar RNAs in Archaea. Science. 288, 517-522.

Peculis,B.A. and Steitz,J.A. (1994) Sequence and structural elements critical for U8 snRNP function in Xenopus oocytes are evolutionarily conserved. Genes Dev. 8, 2241–2255.

Pelczar,P. and Filipowicz,W. (1998) The host gene for intronic U17 small nucleolar RNAs in mammals has no protein-coding potential and is a member of the 5'-terminal oligopyrimidine gene family. Mol. Cell. Biol. 18, 4509-4518.

Quentin,Y. (1994) A master sequence related to a free left Alu monomer (FLAM) at the origin of the B1 family in rodent genomes. Nucleic Acids Res. 22, 2222-2227.

Riedel,N.,Wise,J.A.,Swerdlow,H.,Mak,A. and Guthrie,C. (1986) Small nuclear RNAs from Saccharomyces cerevisiae: unexpected diversity in abundance, size, and molecular complexity. Proc.Natl.Acad.Sci. 83, 8097-8101.

Rzhetsky,A. and Nei,M. (1993) Theoretical foundation of the minimum-evolution method of phylogenetic inference. Mol. Biol. Evol. 10; 1073-1095.

Saitou,N. and Nei,M. (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4; 406-425.

Samarsky,D.A. and Fournier, M.J. (1999) A comprehensive database for the small nucleolar RNAs from Saccharomyces cerevisiae. Nucleic Acids Res. 27, 161–164.

Samarsky,D.A.,Fournier,M.J.,Singer,R.H. and Bertrand, E. (1998) The snoRNA box C:D motif directs nucleolar targeting and also couples snoRNA synthesis and localization. EMBO J. 17, 3747–3757.

Schmitt,M.E. and Clay, D.A. (1993) Nuclear RNase MRP is required for correct processing of pre-5.8S rRNA in Saccharomyces cerevisiae. Mol. Cell. Biol. 13, 7935-7941.

Smith,C.M. and Steitz,J.A. (1997) Sno storm in the nucleolus: new roles for myriad small RNPs. Cell. 89, 669-672.

Smith,C.M. and Steitz,J.A. (1998) Nuclear RNase MRP is required for correct processing of pre-5.8S rRNA in Saccharomyces cerevisiae. Mol Cell. Biol. 18, 6897-6909.

Szmulewicz,M.N.,Novick,G.E. and Herrera,R.J. (1998) Effects of Alu insertions on gene function. Electrophoresis. 19, 1260-1264.

Tanaka,R.,Satoh,H.,Moriyama,M.,Satoh,K.,Morishita,Y.,Yoshida,S.,Watanabe,T.,Nakamura,Y. and Mor,i S. (2000) Intronic U50 small-nucleolar-RNA (snoRNA) host gene of no protein-coding potential is mapped at the chromosome breakpoint t(3;6)(q27;q15) of human B-cell lymphoma. Genes Cells. 5, 277-87.

Tomilin,N.V.,Iguchi-Ariga,S.M. and Ariga, H. (1990) Transcription and replication silencer element is present within conserved region of human Alu repeats interacting with nuclear protein. FEBS Lett. 263, 69-72.

Tollervey,D. (1987) A yeast small nuclear RNA is required for normal processing of pre-ribosomal RNA. EMBO J. 6, 4169-4175.

Tykowski,K.T.,Shu,M.-D. and Steitz, J. A. (1996) A mammalian gene with introns instead of exons generating stable RNA products. Nature 379, 464–466.

Weinstein,L.B. and Steitz,J.A. (1999) Guided tours: from precursor snoRNA to functional snoRNP. Curr. Opin. Cell Biol. 11, 378-384.

Yu,C.L.,Chang,K.L.,Chiu,C.C.,Chiang,B.N.,Han,S.H. and Wang,S.R. (1989) Alteration of mitogenic responses of mononuclear cells by anti-ds DNA antibodies resembling immune disorders in patients with systemic lupus erythematosus. Scand. J. Rheumatol. 18; 265-276.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內立即公開,校外一年後公開 off campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code