Responsive image
博碩士論文 etd-0606103-220737 詳細資訊
Title page for etd-0606103-220737
論文名稱
Title
橢圓型方程的有限元整體超收斂
Global Superconvergence of Finite Element Methods for Elliptic Equations
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
180
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2003-05-30
繳交日期
Date of Submission
2003-06-06
關鍵字
Keywords
后插值處理、橢圓型方程、奇異、平滑曲線、有限元、結合法、整體超收斂、Lagrange元、Adini元
global superconvergence, Lagrange elements, singularity, combined methods, posteriori interpolant, Adini’s element, finite element methods, blending curves., elliptic equations
統計
Statistics
本論文已被瀏覽 5764 次,被下載 2046
The thesis/dissertation has been browsed 5764 times, has been downloaded 2046 times.
中文摘要
黃宏財,博士論文,國立中山大學應用數學系,橢圓型方程的有限元整體超收斂,指導教授:李子才教授。

在這博士論文我們討論矩形元,Adini 元和 階Lagrange元,它們被建構在矩形有限空間。特殊矩形剖分能使有限元解 更易接近橢圓方程真解的插值 ,收斂率 比最優收斂高一階或二階。使用后處理我們構造高階有限元插值解 ,得到高階超收斂 。就我們所知,我們最早給Adini元及雙二次Lagrange元的后插值公式,且也是最早報告數值驗算對於Poisson方程在 模下超逼近四階至五階, ,整體超收斂五階, ,和對無窮模達到接近六階之高收斂率, 。

然而傳統有限元法對於奇異問題不有效,解精度很差。在這博士論文我們結合Ritz-Galerkin法與有限元法使用於奇異問題,如Motz問題。結合兩個方法僅在它們的共同邊界,我們採用簡易雜交,懲罰及懲罰加雜交技巧。在這博士論文理論分析得到幾乎最佳整體超收斂 , ,當使用 階矩形元在光滑的子區域,及最佳整體超收斂3.5階, ,當使用Adini元在光滑的子區域。對於Ritz-Galerkin法與Adini元的結合數值驗算與理論分析完全吻合。

Abstract
In the dissertation we discuss the rectangular elements, Adini's elements and $p-$order Lagrange elements, which were constructed in the rectangular finite spaces. The special rectangular partitions enable the finite element solutions $u_h$ more efficient in interpolation of the true solution for Elliptic equation $u_I$. The convergence rates of $|u_h-u_I|_1$ are one or two orders higher than the optimal convergence rates. For post-processings we construct higher order interpolation operation $Pi_p$ to reach superconvergence $|u-Pi_p u_h|_1$. To our best knowledge, we at the first time provided the a posteriori interpolant formulas of Adini's elements and biquadratic Lagrange elements to obtain the global superconvergence, and at the first time reported the numerical verification for supercloseness $O(h^4)-O(h^5) $, global superconvergence $O(h^5)$ in $H^1$-norm and the high rates $O(h^6|ln h|)$ in the infinity norm for Poisson's equation(i.e., $-Delta u = f$).

Since the finite element methods is fail to deal with the singularity problems, in the dissertation, the combinations of the Ritz-Galerkin method and the finite element methods are used for the singularity problem, i.e., Motz's problem. To couple two methods along their common boundary, we adopt the simplified hybrid, penalty, and penalty plus hybrid techniques. The analysis are made in the dissertation to derive the almost best global superconvergence $O(h^{p+2-delta})$ in $H^1$-norm, $0<delta << 1$, for the combination using $p(geq 2)$-rectangles in the smooth subdomain, and the best global superconvergence $O(h^{3.5})$ in $H^1$-norm for combinations of Adini's elements in the smooth subdomain. The numerical experiments have been carried out for the combinations of the Ritz-Galerkin method and Adini's elements, to verify the theoretical superconvergence derived.

目次 Table of Contents
0 Introduction
1 Adini’s Elements
1.1 Introduction
1.2 Adini’s Elements
1.3 Global Superconvergence
1.3.1 New error estimates
1.3.2 A posteriori interpolant formulas
1.3.3 Stability analysis
1.4 Proofs of Theorem 1.3.1
1.4.1 Preliminary Lemmas
1.4.2 Main proof
1.5 Numerical Experiments and Final Remarks
2 Biquadratic Lagrange Elements
2.1 Introduction
2.2 Biquadratic Lagrange Elements
2.3 Global Superconvergence
2.3.1 New error estimates
2.3.2 Proofs of Theorem 2.3.1
2.3.3 Proofs of Theorem 2.3.2
2.4 Numerical Experiments
2.4.1 Global superconvergence
2.4.2 Special case of h=k and f_xxyy=0
2.4.3 Comparisons
3 Simplified Hybrid Combinations of RGM and FEMs
4 Penalty plus Hybrid Combinations of RGM and FEMs
5 Applications to Landing Curves Problems
5.1 Introduction
5.2 Differential Equations and Variational Forms
5.3 Separation Techniques
5.3.1 Basic ideas
5.3.2 Linear boundary conditions
5.4 Nonlinear Blending Problems
5.4.1 Lagrange multiplier method for boundary nodal solutions
5.4.2 Hermite FEMs for linear ODEs
5.5 Fundamental Solutions
5.6 Error Analysis
5.7 Numerical Experiments
5.8 Concluding Remarks
參考文獻 References
[1]. Adini, A. and Clough, R.W., Analysis of plate bending by the finite element method, NSF Rept.G.7337.
[2]. Arnold, D., An interior penalty finite element method with discontinuous elements, SIAM J. Numer. Anal., Vol.19, pp.742-760, 1982.
[3]. Ascher, U.M., Mattheij, R.M.M. and Russell, R.D., Numerical Solution of Boundary Value Problems for Ordinary Differential Equations, Prentice Hall, 1988.
[4]. Atkinson, K.E., An Introduction to Numerical Analysis, John Wiley and Sons, New York, 1989.
[5]. Babuv{s}ka, I. and Strouboulis, T., The Finite Element Method and Its Reliability, Clarendon Press, Oxford, 2001.
[6]. Baker, G.A., Finite element methods for elliptic equations using nonconforming elements, Math. Comp., Vol.31, No. 137, pp.45-59, 1977.
[7]. Barrett, J.W. and Elliott, C.M., Finite element approximation of the Dirichlet problem using the boundary penalty method, Numerische Mathematik, Vol.49, No.4, pp.343-366, 1986.
[8]. Blum, H., Lin, Q. and Rannacher, R., Asymptotic error expansion and Richardson extrapolation for linear finite elements, Numer. Math., Vol.49, pp.11-37, 1986.
[9]. Bramble, J.H. and Hubbard, B.E., A finite difference analogue of the Neumann problem for Poisson's equation, SIAM J. Numer. Anal. Vol.2, pp.1-14, 1965.
[10]. Brebbia, C.A. and Dominquez, J., Boundary Elements, An Introductory Course, McGraw-Hill Book Company, New York 1989.
[11]. Ciarlet, P.G., The Finite Element Method for Elliptic Problems, North- Holland, Amsterdam, 1978.
[12]. Ciarlet, P.G., Basic Error Estimates for Elliptic Problems, Handbook of Numerical Analysis, Vol.II, in Finite Element Methods (Part 1) (Eds. P.G. Ciarlet and J.L. Lions), pp.17-351, North-Holland, Amsterdam, 1991.
[13]. Douglas, J. and Dupont, T., Some superconvergence results for Galerkin methods for the approximate solution of two-point boundary value problems, Topics in Numerical Analysis II (Proc. Royal Irish Acad. Conf., Dublin, 1972), Academic Press., pp.89-93, London, 1973.
[14]. Fairweather, G., Finite Element Galerkin Methods for Partial Differential Equations, Marcel Dekker, Inc., New York, 1978.
[15]. Girault, V. and Raviart, P.A., An Finite Element Methods for Navier-Stokes Equations, Theory and Algorithms, Springer-Verlag, 1986.
[16]. Gradshteyn, I.S. and Ryzhik, I.M., Tables of Integrals, Series, And Products, Corrected and Enlarged Edition, Academic Press, New York, 1980.
[17]. Kikuchi, F., Theory and examples of partial approximation in the finite element method, Inter. J. for Numer. Methods in Engrg., Vol.10, pp.115-122, 1976.
[18]. Krizek, M. and Neittaanmaki, P., On a global- superconvergence of the gradient of linear triangular elements, J. Comput. Appl. Math., Vol.18, pp.221-233, 1987.
[19]. Krizek, M. and Neittaanmaki, P., Superconvergence phenomenon in the finite element method arising from averaging gradients, Numerische Mathematik, Vol.45, pp.105-116, 1984.
[20]. Krizek, M. and Neittaanmaki, P., Bibliography on superconvergence, Finite Element Methods: Superconvergence, Post-processing and A Posteriori Estimates, Proc. Conf., Univ. of Jyvaskyla, 1996, M. Krizek, P. Neittaanmaki and R. Stenberg (eds), Marcel Dekker, New York, pp.315-348, 1997.
[21]. Lascaux, P. and Lesaint, P., Some nonconforming finite elements for the plate blending problem, Rev. Francaise Automat. Informat. Recherche Operationnelle Ser Rouge Anal. Numer., Vol.9, No. R-1, pp.9-53, 1975.
[22]. Li, Z.C., Combined Methods for Elliptic Equations with Singularities, Interfaces and Infinities, Kluwer Academic Publishers, Boston, London, 1998.
[23]. Li, Z.C., Global superconvergence of simplified hybrid combinations for elliptic problems with singularities, Part I. Basic theorem, Computing, Vol.65, pp.27-44, 2000.
[24]. Li, Z.C., Parallel penalty combination for singularity problems, Engineering Analysis with Boundary Elements, Vol.18, pp.119-130, 1996.
[25]. Li, Z.C., Blending surfaces for landing problems by numerical differential equations, I. Mathematical Modelling, Mathematical and Computer Modelling, Vol.31, pp.161-177, 2000.
[26]. Li, Z.C. and Bui, T.D., Coupling techniques in boundary-combined methods for solving elliptic problems with singularities, Engineering Analysis with Boundary Elements, Vol.10, pp.75-85, 1992.
[27]. Li, Z.C. and Bui, T.D., The simplified hybrid-combined methods for Laplace's equation with singularities, J. Comput. Appl. Math., Vol.27, pp.171-193, 1990.
[28]. Li, Z.C. and Liang, G.P., On the simplified hybrid-combined method, Math. Comp., Vol.41, pp.13-25, 1983.
[29]. Li, Z.C., Chang, C.S. and Bui, T.D., Exact numerical methods and their application to blending curves, in Recent Trends in Numerical Analysis, Ed. by D. Trigiane, pp.193-212, Nova Science Publishers, Inc., 2000.
[30]. Li, Z.C. and Yan, N., Global superconvergence for blending surfaces by boundary penalty plus hybrid FEMs, Applied Numerical Mathematics, Vol.39, pp.61-85, 2001.
[31]. Li, Z.C. and Hu, H.Y., Collocation methods for Poisson's equation, to submit, 2003.
[32]. Li, Z.C. and Huang, H.T., Blending surfaces for landing problems by numerical differential equations, II. Numerical Methods, Computers and Mathematics with Applications, Vol.39, pp.165-187, 2000.
[33]. Li, Z.C., Mathon, R. and Sermer, P., Boundary approximation solving elliptic problem with singularity and interfaces, SIAM J. Numerical Analysis, Vol.24, pp.487-498, 1987.
[34]. Liang, G.P. and Liang, P., Non-conforming domain decomposition with hybrid method, J. Comput. Math., Vol.8, pp.363-370, 1990.
[35]. Lin, Q., Superconvergence of FEM for singular solution, J. Comput. Math., Vol.9, pp.111-114, 1991.
[36]. Lin, Q., High performance FEMs, Inter. Symposium Computational and Applied PDEs, China, July 1-7, 2001.
[37]. Lin, Q. and Luo, P., Error expansions and extrapolations for Adini nonconforming finite method, Beijing Mathematics (Ed. by Boju Jiang), Vol.1, Part 2, pp.52-64, SCI-TECH Information Services, UK, 1995.
[38]. Lin, Q. and Yan, N., The Construction and Analysis of High Efficient FEM (in Chinese), Hebei University Publishing, 1996.
[39]. Lin, Q., Yan, N. and Zhou, A., Reasonable coupling for different elements on different domains, Beijing Mathematics, Vol.1, Part 2, (Ed. by J. Boju), pp.14-18, Sci-Tech. Information Services, 1995.
[40]. Lin, Q., Yan, N. and Zhou, A., A rectangle test for interpolated finite elements, Proc. Sys. Sci. and Sys. Engrg., Great Wall Culture Publ. Co., Hong Kong, pp.217-229, 1991.
[41]. Lin, Q., Yan, N. and Zhou, A., Integral-identity argument and natural superconvergence for cubic elements of Hermite type, Beijing Mathematics (Ed. by Boju Jiang), Vol.1, Part 2, pp.19-26, SCI-TECH Information Services, UK, 1995.
[42]. Luo, P. and Lin, Q., Superconvergence of the Adini's element for second order equation, J. Comput. Math., Vol.17, No.6, pp.569-574, 1999.
[43]. MacKinnon,R.J. and Carey, G.F., Nodal superconvergence and solution enhancement for a class of finite-element and finite difference methods, SIAM J. Sci. Stat. Comput., Vol.11, pp.343-353, 1990.
[44]. Melosh, R.J., Basis of derivation of matrices for direct stiffness method, AIAA J., Vol.1, pp.1631-1637, 1963.
[45]. Miyoshi, T., Convergence of finite elements solutions represented by a non-conforming basis, Kumamoto J. Sci.,(Math), Vol.9, pp.11-20, 1972.
[46]. Molchanov, I.N. and Galba, E.F., On finite element methods of the Neumann problem, Numerische Mathematik, Vol.46, No.4, pp.587-598, 1985.
[47]. Molchanov, I.N., Nikolenko, L.D. and Filonenko, J.B., Solution of the Neumann problem for the Poisson equation by the finite element method (in Russian), Vychisl. Prikl. Mat.(Kiev), Vyp.33, pp.137-147, 1977.
[48]. Nakao, M.T., Superconvergence of the gradient of Galerkin approximations for elliptic problems, J. Comput. Appl. Math., Vol.20, pp.341-348, 1987.
[49]. Nitsche, J.A., Uber ein Variationsprinzip zur losung von Dirichlet problemen bei Verwendung von teilraumen, die keinen randbekingungen unterworfen sind, Abh. Math. Sem. Univ. Hamburg, Vol.36, pp.9-15, 1971.
[50]. Oganesjan, L.A. and Ruchovec, L.A., An investigation of the rate of convergence of variational-difference schemes for second order elliptic equations in a two-dimensional region with smooth boundary, Z. Vycisl. Mat. i Mat. Fiz. 9, pp.1102-1120, 1969.
[51]. Pehlivanov, A.I., Lazarov, R.D., Carey, G.F. and Chow, S.S., Superconvergence analysis of approximate boundary-flux calculations, Numerische Mathematik, Vol.63, pp.483-501, 1992.
[52]. Quarteroni, A., Sacco, R. and Saleri, F., Numerical Mathematics, Springer, 2000.
[53]. Wahlbin, L.L., Superconvergence in Galerkin Finite Element Methods, Lecture Notes in Mathematics, Springer, Berlin, 1995.
[54]. Wahlbin, L.L., Local behaviour in finite element method, Chap. VII., Superconvergence, in Finite Element Methods Part I (eds. by P.G. Ciarlet and J.L. Lions), pp.501-522, North-Holland, 1991.
[55]. Wheeler, M.F. and Whiteman, J.R., Superconvergent recovery of gradients of on subdomains from piecewise linear finite-element approximation, Numer. Methods for PDE., Vol.3, pp.65-82 and pp.357-374, 1987.
[56]. Xu, J. and Zhou, A., Local and parallel finite element algorithms based on the two-grid discretizations, Math. Comput., Vol.69, No.231, pp.881-909, 2000.
[57]. Zhang, Z., Yan, N. and Sun, T., Superconvergence derivative recovery for the intermediate finite element family of the second type, IMA Journal of Numerical Analysis, Vol.21, pp.643-665, 2001.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code