Responsive image
博碩士論文 etd-0606105-231609 詳細資訊
Title page for etd-0606105-231609
論文名稱
Title
街谷中三維尺度空氣污染物擴散現象之研究
Measurements and Three-Dimensional Modeling of Air Pollutant Dispersion in an Urban Street Canyon
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
241
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2005-05-02
繳交日期
Date of Submission
2005-06-06
關鍵字
Keywords
移動污染源、三維街谷、車行效應、數值模式、空氣污染物
Street canyon, traffic produced turbulence, mobile source, air pollutant, Three-dimensional modeling
統計
Statistics
本論文已被瀏覽 5751 次,被下載 3327
The thesis/dissertation has been browsed 5751 times, has been downloaded 3327 times.
中文摘要
本研究主要在探討三維尺度街谷中,流場與污染物濃度場之分佈特性。街谷高度為16公尺、寬20公尺、長60公尺,因此視覺比例AR = 0.8、L/W = 3,利用有限體積法建構街谷之網格區域,當風向垂直街谷時,以污染物排放係數法,應用RNG k- 紊流模式模擬街谷中的流場與濃度場,以了解在不同浮力條件、不同車行效應影響下,街谷中風速與污染物濃度之變化情形。
模擬結果顯示,三維尺度街谷指向水平軸的旋流中心,隨著與街谷出口的接近,會由街谷垂直截面中心偏向背風牆面,同時也另外觀察到指向垂直軸之水平旋流中心,這是與二維街谷很大的不同。垂直街谷風向導致污染物累積在街背風牆側,高度愈低,污染物濃度愈高,背風牆與迎風牆CO濃度之比值與風速有關,風速小於 0.7 m/sec下,比值為1.23;而在風速大於1.2 m/sec下,則比值可達2.03。而NOx與車流量規則性較小,CO將可做為移動污染源在街谷中影響程度之指標污染物。

三維尺度街谷的流場受到街谷頂部外風場與街谷出口側邊外風場的雙重影響,,使三維尺度街谷中之空氣流通量較二維尺度街谷大約增加50%,CO、NOx與SO2等污染物濃度分別比二維尺度下降低51%、68%與70%。

具有浮力效應之三維尺度街谷,其璧面的溫度邊界層極薄,更多的空氣由側邊進入街谷中,當溫差 = 5 K時,背風面平均向上速度增加10%,迎風面向下速度減少28%,而街谷出口側邊平均速度增加1倍。污染物濃度以街谷中央最高,並向街谷出口遞減。比較非恆溫街谷與恆溫街谷,在溫差為5 K下,平均CO、NOx與SO2分別降低42%、12%與18%。

現場分析與模擬比對上,基本上互相呈現濃度相關性,在恆溫下,CO模擬值較實測值低11%~24%;NOx 22%~45%。當街谷內溫差為2 K時,僅計算街谷內車輛之排放量,模擬值約比量測值低29%~36%。而在溫差為5 K情況下,模擬值甚至比量測值低46%,這意謂更多的街谷外空氣進入街谷內稀釋污染物所造成的結果。另一方面,計入垂直街谷二端外道路車輛排放量時,模擬濃度值明顯較高。在恆溫街谷下,可提高污染物濃度約23%;如在街谷溫差2 K下,則可提高污染物濃度約19%。

車行效應造成較大的空氣擾動,在本研究中大約使污染物濃度下降5%,並沒有很大的影響,然而車流效應卻使街谷底部亂流動能增加,整體街谷的亂流動能均勻性提升,另外本研究與其他已發表論文比較所得結果,並分析本研究之特性。
Abstract
In this study, Three-dimensional (3D) airflow and dispersion of pollutants were modeled under various excess wall temperature and traffic rate using the RNG k-ε turbulence model and Boussinesq approximation, which was solved numerically using the finite volume method. The street canyon is 60 m long (=L) and 20 m wide (=W). The height of five-story buildings on both sides of the street are about 16 m (=H). Hence, the street canyon has an aspect ratio (AR=H/W) of 0.8 and a length to width ratio of 3 (=L/W). Vehicle emissions were estimated from the measured traffic flow rates and modeled as banded line sources.
3D simulations reveal that the vortex line, joining the centers of cross-sectional vortices of the street canyon, meanders between street buildings. Notably, there is also a horizontal vortex within street canyon. Pollutant concentrations decline as the height increases, and are higher on the leeward side than on the windward side. The ratio of CO pollutants between leeward side and windward side is related to wind velocity. As wind smaller than 0.7 m/sec , the ratio is 1.23;however, the ratio is 2.03 with more wind speed above 1.2 m/sec. The CO concentration reveals that the predicted values generally follow the hourly zigzag traffic rate, indicating that CO is closely related to the traffic emissions in a street canyon.
The 3D airflow in the street canyon is dominated by both wind fields on buildings top and street exit. The 3D simulations reveal that air flux is 50% higher than 2D. Entrainment of outside air reduces pollutant concentrations, thus reducing concentrations of CO、NOx、and SO2 by about 51%、68% and 70% ,respectively.
Thermal boundary layers are very thin. Entrainment of outside air increases and pollutant concentration decreases with increasing heating condition. For T = 5 K, the upward velocity on leeward side increases by about 10%, Also, the downward velocity on windward side decreases by about 28 %. Furthermore, simulation showed that the averaged inflow speed in the lateral direction increases by about 100% as compared with T = 0 K. Hence, the pollutant concentrations with T = 5 K is ony 50% of those without heating.
Simulations are followed measurements in street canyon. The averaged simulated concentrations with no heating conditions are about 11~24% and 22~36% lower than measured for CO and NOx , respectively. For heating conditions and without outside traffic source, the averaged simulated concentrations with T = 2 K are 29~36% lower than the measurements. Even at T = 5 K , the concentrations are only about 54% of those without heating, due to the fact that pollutant dilution is enhanced by buoyancy force as to having more outside air entrained into the canyon. However, when traffic emissions outside two ends of canyon were considered, the simulated CO concentrations are 23% and 19% higher than those without outside traffic sources at T = 0 K and T = 2 K, respectively.
Traffic-produced turbulence (TPT) enhances the turbulent kinetic energy and the mixing of temperature and admixtures in the canyon. Although the simulated means with the TPT effect are in better agreement with the measured means than those without the TPT effect, the average reduction of CO concentration by the TPT is only about 5% at a given height and heating conditions. Factors affecting the variations between this work and other studies are addressed and explained.
目次 Table of Contents
謝誌………………………………………………………………………Ⅰ

摘要 ……………………………………………………………………Ⅱ

英文摘要…………………………………………………………………Ⅳ

目錄 ……………………………………………………………………Ⅵ

表目錄……………………………………………………………………Ⅸ

圖目錄…………………………………………………………………ⅩⅠ

附表目錄..……………………………………………………………ⅩⅦ

第一章 前言
1.1研究緣起.....………………………………………………… 1-1
1.2研究範圍與目的 ..…………………………………………… 1-3
1.3 研究執行程序 …..……………………………………………1-3
第二章 文獻回顧
2.1機動車輛空氣污染物排放特性 …………………………….. 2-1
2.2街谷氣流擴散與傳輸特性 ………………………………...…2-6
2.3街谷交通特性 …..…………………………………………….2-9
2.4街谷中污染物分佈評估分析 …………….…….…………… 2-10
2.4.1 實場量測 ………………………….……………………. 2-10
2.4.2 風洞模型實驗 …..……………………………………….2-14
2.4.3 模式模擬 …..…………………………………………….2-17
第三章 三維街谷流場理論
3.1流場基本假設 ……… ………………………………………. 3-1
3.2制御方程式 ….………………………………………………. 3-2
3.3 紊流模式 ….………………………………………………… 3-4
3.4 車輛擾流模式 ….…………………………………………….3-7
3.5 車輛污染物排放率 ….……………………………………….3-9
3.6 車行擾流效應與壁函數 ….………………………………… 3-10
3.7 邊界條件 ………………………………………………..……3-13
第四章 數值計算方法
4.1 數值計算概述.....……………………………...…………..4-1
4.2 數值計算與程序 ..…………………………………………….4-2
4.3 數值方法解析 ..……………………………………………….4-6
4.3.1 離散化 ...……………………………………………….…4-6
4.3.2 數值計算方法 …..…………………………………….…4-11
4.3.3 壓力速度修正 ..……………………………………….…4-11
4.4 收斂基準 ..……………………………………………………4-13
4.5 後處理程序 ..…………………………………………………4-14
4.6網格安排 ..………………………………………………….…4-14
4.7 模式初始計算值輸入. …………………………………….…4-14
4.8 模式網格測試驗證 .……………………………………….…4-15
第五章 車流量調查與空氣污染物採樣分析
5.1街谷之幾何尺寸 ………………………………………….…...5-1
5.2 監測位置之設置與管線配置 ………………………….……..5-3
5.2.1監測位置……………………..……………………….……5-3
5.2.2採樣管線與檢測方法..……………………………….……5-3
5.2.3 採樣時段…………………………………….……….…. 5-6
5.3 車流量調查 .……………………………………………….….5-7
第六章 結果與討論
6.1車流量測量結果 ..…………………………..…………….….6-1
6.2 街谷中車輛排放之空氣污染物推估…………..……………..6-6
6.2.1 CO排放量推估……………………………...…………….6-7
6.2.2 NOx排放量推估……………………………...……………6-10
6.2.3 SO2排放量推估………………………...…….…………6-13
6.2.4 全天街谷中車輛排放之空氣污染物排放量推

6.3背景空氣污染物與氣象資料..………………….……………6-18
6.3.1 空氣品質背景濃度…………………..….…………...6-18
6.3.2 風速與風向……………………….………..………...6-19
6.4 三維街谷空氣污染物監測分析結果..………………………6-22
6.4.1 風向垂直街谷,街谷中空氣污染物水平分……………6-22
6.4.2 風向垂直街谷,街谷中空氣污染物垂直...………….6-28
6.4.3 風向平行街谷時,空氣污染物濃度分…………..……6-36

6.5 三維街谷中速度流場數值模擬
6.5.1 二維街谷…………..………………..….…………….6-37
6.5.2 等溫狀態之三維街谷..………………..….………….6-40
6.5.2 非等溫狀態之三維街谷………………..….………...6-49
6.6三維街谷空氣污染物分佈模擬
6.6.1 等溫狀態之三維街谷.………...………………..…..6-64
6.6.2 非等溫狀態之三維街谷.………………..….…………6-72
6.7空氣污染物實際量測值與模擬值之比較 .………………….6-79
6.7.1假設街谷等溫狀態……………...………………..…..6-79
6.7.2 假設街谷非等溫狀態..………………..….………...6-89
6.8車行效應造成流場與空氣污染物分佈之影響.............6-97
6.9 本研究與其他研究之比較..……………………………….6-105
第七章 結論與建議
7.1結論…………..……………………...………………..……7-1
7.2 建議………………...………………………………………7-4
參考文獻.……………………...……………………………...參-1
作者簡歷
附錄A
附錄 B
附錄 C
參考文獻 References
參考文獻

Addison, P. S. ; Currie, J. I. ;Low, D. J. ;Mccann, J. M., ”An Integrated Approach to Street canyon Pollution Modelling” Environmental Monitoring And Assessment 2000, 65, 333-342
Ahmad, K. ; Khare, M.; Chaudhry, K.K., ”Model Vehicle Movement System in wind Tunnels for Exhaust Dispersion Studies under Various Urban Street Configurations” J. Wind Engineering and Industrial Aerodynamics 2002, 90, 1051-1064.
Atkinson, K.E., “An Introduction to Numerical Analysis”, John Wiley& Sons,Inc.,1978.
Baik, J.-J. ; Park R. S. ; Chun H.Y. ;Kim J.-J.,”A Laboratory Model of Urban Street-Canyon Flows” J. of Applied Meteorology,2000,39,1592-1600.
Baik, J.-J.; Kim, J.-J. A Numerical Study of Flow and Pollutant Dispersion Characteristics in Urban Street Canyons, J. of Applied Meteorology. 1999, 38, 1576-1589.
Baker,J.; Hargreaves D. M., Wind tunnel evaluation of a vehicle pollution dispersion model “J. of Wind Engineering and Industrial Aerodynamics,2001, 89 187-200
Barrefors, G., “Air Pollutants in Road Tunnels”, The Science of the Total Environment. 1996, 321-336.
Benyaria, S. ; Asatoopour, H. ;Knowiton, T., “Simulation of Gas/Solid Flow Systems Using CFX,AEA Technology International Users Conference, 1997,296-301
Ca, V. T.; Asaeda T.; Ito, M.; Armfield, S. Characteristics of wind Field in a Street Canyon. J. Wind Engineering. and Industrial Aerodynamics 1995, 57, 63-80.
CFX Manual Solver (4.2) AEA Technology, Oxford shire, United Kingdom, 1997.
Chan, T. L.; Dong, G.; Leung, C. W.; Cheung, C. S.; Hung, W. T. Validation of a Two-Dimensional Pollutant Dispersion Model in an Isolated Street Canyon. Atmospheric Environment 2002, 36, 861-872.
Chan, L. L.; Kork, W. S. “Vertical Dispersion of Suspended Particulates in Urban area of Hongkong” Atmospheric Environment 2000, 34, 4403-4412
Chen,C.J. ; Jaw, S.Y., “Fundamentals of Turbulence Modeling” Taylor & Francis,1998.
Chen, K. S.; Chung, C. Y.; Wang, S. W. “Measurements and Three-Dimensional Modeling of Airflow and Pollutant Dispersion in an Undersea Traffic Tunnel”. J. Air and Waste Manage. Assoc. 2002, 52, 349-363.
Ciofalo, M. ; Collins M. W.,”k-ε Predictions of Heat Transfer in Turbulent Recirculating Flows Using an Improved Wall Treatment” Numerical Heat transfer,Part B,1989,15,21-47
Colls, J. J.;Micallef, A., ”Measured and Modelled Concentrations and Vertical Profiles of Airborne Particulate Matter within the Boundary Layer of a Street Canyon” The Science of the Total Environment 1999, 235,221-233.
Dabberdt W.F. ; Hoydsh W.G.”Kinematics and Dispersion Characteristics of Flows in Asymmetric Street Canyons” Atmospheric Environment. 1988, 22,2267-2689.
Depaul, F. T.; Sheih, C. M. Measurements of Wind Velocities in a Street Canyon. Atmospheric Environment 1986, 20, 455-459.
Gayev, Y. A. ; Savory E., “Influence of Street Obstructions on Flow Processes with Urban Canyons” J. of Wind Engineering and Industrial aerodynamics 1999, 82, 89-103
Hassan, A.A. ; Crowther, J. M., “Modelling of Fluid Flow and Pollutant Dispersion in a Street Canyon” Environmental Monitoring and Assessment 1998, 52, 281-297
Huang, H.; Akustsu, Y. ;Arai M. ; Tamura, M., “Influence of Cetane Improvers on the Air Quality in an Urban Street Canyon” Chemosphere 2000, 40 1365-1371
Huang, H.; Akutsu, Y.; Arai, M.; Tamura, M. A Two-Dimensional Air Quality Model in an Urban Street Canyon: Evaluation and Sensitivity Analysis. Atmospheric Environment 2000, 34, 689-698.
Hotchkiss, R. S. ; Harlow, F. H., ”Air pollution transport in street canyons”.EPA-R4-73-029,NTIS PB 233 252.Repared by Los Alamos National Laboratory For U.S. Environmental protection agency,1973,78
Hoydysh W.G.; Griffiths R.A.; Ogawa, Y., “A scale model study of the dispersion of pollution in street canyon.” APCA Paper No.74-157, Presented at the 67th APCA Annual Meeting,6-13 Jane, Denver, Co ,1974
Gerdes, F.; Olivari, D. “Analysis of Pollutant Dispersion in an Urban Street Canyon” J. Wind Engineering and Industrial Aerodynamics. 1999, 82, 105-124.
Jayatilleke, C. The Influence of Prandtl Number and Surface Roughness on Resistance of the Laminar Sublayer to Momentum and Heat Transfer. Prog. in Heat Mass. Transfer 1969, 1, 193-329.
Johnson, W. B. ; Ludwig, F. L. ; Dabberdt, W. F. ; Allen, R. J., “An Urban Diffusion Simulation Model for Carbon Monoxide” J. of the Air Pollution Control Association 1973, 23, 490-498.
Johnson, G. T.; Hunter, L.J.,”Some Insights into Typical Urban Canyon Airflows” Atmospheric Environment, 1999,33, 3991-3999.
Kastner-Klein, P.; Fedorovich, E.; Rotach, M.W., “A Wind Tunnel Study of Organised and Turbulent Air Motions in Urban Street Canyons.” J. Wind Engineering and Industrial Aerodynamics 2001, 89, 849-861.
Kastner-Klein, P.; Fedorovich, E.; Sini, J.-F. ; Mestayer, P. G., “Experimental and Numerical Verification of Similarity Concept for Dispersion of Car Exhaust Gases in Urban Street Canyons.” Environmental Monitoring and Assessment 2000, 65, 353-361.
Kastner-Klein, P.; Plate, E.J., “Wind-Tunnel Study of Concentration Fields in Street Canyon.” Atmospheric Environment 1999, 33, 3973-3979.
Kastner-Klein, P.; Fedorovich, E.; Ketzel, M.; Berkowicz, R.; Britter, R. The Modelling of Turbulence from Traffic in Urban Dispersion Models – Part II: Evaluation against Laboratory and Full-Scale Concentration Measurements in Street Canyons. Environment Fluid Mechanic 2003, 3, 145-172.
Ketzel,M.; Berkowicz, R.; Lohmeyer,A.,”Comparison of Numerical Street Dispersion Models with Results from Wind Tunnel and Field Measurements” Environmental Monitoring and Assessment,2000, 65 363-370
Ketzel, M.; Louka, P.; Sahm, P.; Guilloteau, E.; Sini, J.-F.; Moussiopoulos, N. Intercomparison of Numerical Urban Dispersion Models – Part II: Street Canyon in Hannover, Germany. Water, Air and Soil Pollution: Focus 2002, 2, 603-613.
Kourtidis, K.A. ; Ziomas, I. C. ; Rappenglueck, B. ; Proyou, A. ; Balis, D., “Evaporative Traffic Hydrocarbon Emissions Traffic CO and Speciated HC Traffic Tmissions from the City of Athens” Atmospheric Environment.,1999, 33 3831-3842
Kourtidis, K.A. ; Ziomas, I. C. ; Zerefos, C. ; Kosmidis, E. ; Symeonidis, P. ; Christophilopoulos, E. ; Karathanassis, S. ; Mploutsos, A., “Benzene, Toluene, Ozone, NO2 and SO2 Measurements in an Urban Street Canyon in Thessaloniki, Greece” Atmospheric Environment 2002, 36 5355-5364
Koushkiss, P.A. “Evaluation of street-canyon carbon monooxide dispersion simulation model.”, J. of transport ion engineer , 1991, 117, 444-456
Kukkonen, J.; Valkonen, E.; Walden, J.; Koskentalo, T.; Aarnio, P.; Karppinen, A.; Berkowicz, R.; Kartastenpaa, R. A Measurement Campaign in a Street Canyon in Helsinki and Comparison of Results with Predictions of the OSPM Model. Atmospheric Environment 2001, 35, 231-243.
Launder, B. E.; Spalding, D. B. Numerical Computation of Turbulent Flows. Comput. Mathematic Apply Mechanic Engineering 1974, 3, 269-289.
Launder, B. E.; SHarma, B.T., “Application of the Energy Dissipation Model of Turbulence to the Calculation of Flow near a Spinning Disc” Heat and mass Transfer 1974, 1 131-138
Lee, I.Y. ; Park, H.M.,”Parameterization of The Pollutant Transport and Dispersion in Urban Street Canyons.” Atmospheric Environment, 1993,28, 2343-2349.
Sabatino, S.D.; Kastner-Klein, P.; Berkowicz, R.; Britter, R.E.; Fedorovich, E. The Modelling of Turbulence from Traffic in Urban Dispersion Models – Part I: Theoretical Considerations. Environment Fluid Mechanic 2003, 3, 129-143.
Leitl, B. M.; Meroney, R. N. Car Exhaust Dispersion in a Street Canyon: Numerical Critique of a Wind Tunnel Experiment. J. Wind Engineering. and Industrial Aerodynamics 1997, 67&68, 293-304.
May, A. D., ”Traffic Flow Fundamentals”, Pretice Hall, Englewood Cliffs, New Jersey,1990.
Meroney, R. N.; Pavageau, M.; Rafailidis, S.; Schatzmann, M. Study of Line Source Characteristics for 2-D Physical Modeling of Pollutant Dispersion in Street Canyons. J. Wind Eng. and Industrial Aerodynamics 1996, 62, 37-56.
Micallef, A. ; Colls, J. J., ”Measuring and Modelling the Airborne Particulate Matter Mass Concentration Field in the Street Environment: Model Overview and Evaluation” The Science of the Total Environment 1999, 235,199-210.
Mukherjee, P. ; Viswanathan, S., “Contributions to CO Concentrations from Biomass Burning and Traffic Haze Episode in Singapore” Atmospheric Environment 2001, 35, 715-725
Mukherjee, P. ; Viswanathan, S. ;Choon L. C., “Modeling Mobil Source Emissions in Presence of Stationary Sources” J. of Hazardous Materials, 2000, A76, 23-37
Namedeo, A. K.; Colls, J. J.; Baker, C. J., ” Particulates Pollutionfrom Motor vehicles in an Urban Street Canyon in Nottingham, UK” Int. J. Vehicle Design 1998, 20,10-20.
Namedeo, A. K.; Colls, J. J.; Baker, C. J., ”Dispersion and Re-suspension of Fine and Coarse Particulates in an Urban Street Canyon” The Science of the Total Environment 1999, 235,3-13.
Okamoto, S. I.; Lin, F. C.; Yamada, H.; Shiozawa, K. Evaluation of a Two-Dimensional Numerical Model for Air Quality Simulation in a Street Canyon; Atmospheric Environment 1996, 3909-3915.
Patakar, S.V., ”Numerical Heat Transfer and Fluid Flow”, Hemisphere Public Co.: New York,1980.
Pavageau M.; Schatzmann M. Wind Tunnel Measurements of Concentration Fluctuations in an Urban Street Canyon. Atmospheric Environment 1999, 33, 3961-3971.
Rogak, S. N.; Green, S. I.; Pott, U., ”Use of Tracer Gas for Direct Calibration of Emission-Factor Measurements in a Traffic Tunnel” Air and Waste mange. Assoc. 1998, 48, 545-552.
Rotach, M. W., “Profiles of Turbulence Statistics in and above an Uarban Street Canyon” Atmospheric Environment, 1995, 29 1473-1486
Schwartz, J.,”Air Pollution and daily Mortality: a Review and meta Analysis” Environmental Research, 1994, 64, 36-52
Schwartz, J. ; Morris R., ”Air Pollution and Hospital admissions for Cardiovascular disease in Detroit, Michigan, Am.” J. Epidemiology, 1995, 142, 23-35
Shih, T.H. ; Zhu, J. ; Lumly J. H., ”A New Reynolds Stress Algebraic Equation Model” Computation Methods Application Mechanic Engineering, 1995, 125, 287-302
Sloan, D.G. ; Smith, P.J. ; Smoot, L. D., ”Modeling of Swirl in Turbulent Flow Systems” Prog. Energy Combustion Science, 1986, 12, 163-250
Stein, A. F. ;Toselli, B. M., “Street Level Air Pollution in Cordoba City, Argentina”, Atmospheric Environment, 1996, 30 3491-3495.
TANEEB:The Preliminary Study on the Ventilation of Long Highway Tunnels in Kaohsiung City., Taiwan Area National Expressway Engineering Bureau, Mimistry of Transportation and Communication,1991
Theodoridis, G.; Moussiopoulos, N. Influence of Building Intensity and Roof Shape on the Wind and Dispersion Characteristics in an Urban Area: A Numerical Study; Environmental Monitoring And Assessment, 2000, 65, 407-415.
Tsai, M.Y. ;Chen, K.S., “Measurements and Three-Dimensional Modeling of Air Pollutant Dispersion in an Urban Street Canyon” Atmospheric Environment. 2004, 38, 5911 – 5924.
Tsai, M.Y.; Chen, K.S. ; Wu, C. H., “Three-Dimensional Modeling of Air Flow and Pollutant Dispersion in an Urban Street Canyon with Thermal Effects.” J. Air and Waste Manage. Assoc.,2005. in press.
Tsai, M.Y.; Chen, K.S., “Three-Dimensional Simulation of Pollutant Dispersion in an Urban Street Canyon with Thermal Effects.” J. Chinese Institute of Environmental Engineering.,2005. in press.
Turner, D. B. Workbook of Atmospheric Dispersion Estimates: An Introduction to Dispersion Modeling, 2nd ed., Lewis Publishers, Boca Raton, FL, 1994.
Uehara,S.; Murakami,S.; Oikawa ; Wakamatsu, S.,Wind Tunnel Experiments on How Thermal Stratification Affects Flow in and above Urban Street Canyons” Atmospheric Environment, 2000, 34 1553-1562
Valerio,F.; Pala, M.; Lazzarotto, A.; Balducci, D., “Preliminary Evaluation, Using Passive Tubes, of Carbon Monoxide Concentration in Outdoor and Indoor Air at Street Level Shops in Genoa(Italy)”, Atmospheric Environment, 1997, 31 2871-2876.
Wedding, J. B. ; Lombardi, D. ; Cermak, J., “A Wind Tunnel Study of Gaseous Pollutants in City Street Canyons” J. Air Pollut. Control Ass., 1977, 27, 557-566
Xie, S.; Zhang, Y.; Qi, L.; Tang, X. Spatial Distribution of Traffic-Related Pollutant Concentrations in Street Canyons. Atmospheric Environment 2003, 37, 3213-3224
Zoumakis, N. M., “A Note on Average Vertical Profiles of Vehicular Pollutant Concentrations in Urban Canytons”, Atmospheric Environment, 1995, 29 3719-3725.
Chein, J.C.; Huang, J.M.,”Complex Geometry,Flow Separation and drag; An Integrated CFD Approach for Road Vehicles”中國航太太空學會第二屆計算流體力學研討會,1993,571-576
Ho, W.C.; Weng, J.M.,”Validation Studies of Turbulence Models for Predictions of Axisysmetric Combustor Flowfields”中華民國第五屆燃燒科技應用研討會,高雄市1995,215-222
蘇國澤, 「台北市機動車輛排氣對不同曝露型態居民之影響」, 國立台灣大學環境工程研究所碩士論文,1989。
彭雙能,蔡春進,林志鴻及郭照明,「 都會區地下道及交叉路口之空氣品質調查研究」,第11屆空氣污染控制技術研討會論文集。
劉志堅,「微尺度三維數值街道空氣品質模式之發展及其應用於都市地區人群暴露量之評估」,國立台灣大學環境工程學研究所博士學位論文,1994。
陳雨琮,「空調室內氣流分佈與舒適度之數值模擬分析」,國防大學中正理工學院兵器系統工程研究所碩士學位論文,2000。
王聖偉「高雄市中正地下道及過港隧道空氣污染物採樣與特性分析」,國立中山大學環境工程學研究所碩士學位論文,2000。
魏嘉言,「計算流力程式在無塵室空氣流場分析之研究」,國立清華大學工程與系統科學研究所碩士論文,2001。
仲崇毅「交通隧道三維風場及氣態污染物擴散現象之研究」,國立中山大學環境工程學研究所博士學位論文,2002。
王聖偉「高雄市中正地下道及過港隧道空氣污染物採樣與特性分析」,國立中山大學環境工程學研究所碩士學位論文,2000。
行政院環境保護署,「中華民國台灣地區空氣品質監測報告」,2003。
溫啟聖「街谷中移動性污染源對空氣品質影響分析:以高雄縣鳳山市量測結果為例」,國立中山大學環境工程學研究所碩士學位論文,2004。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內立即公開,校外一年後公開 off campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code