Responsive image
博碩士論文 etd-0606115-122853 詳細資訊
Title page for etd-0606115-122853
論文名稱
Title
近場電紡與電噴技術用於聚谷氨酸甲酯聚胜肽基質之 細胞擴散研究
Study of polypeptide poly (γ-methyl l-glutamate) by near-field electrospinning and electrospray technology for cell proliferation
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
104
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-06-26
繳交日期
Date of Submission
2015-07-06
關鍵字
Keywords
細胞擴散、聚谷氨酸甲酯、近場電紡、電噴、老鼠纖維母細胞
NFES, PMLG, cell proliferation, NIH3T3, ESP
統計
Statistics
本論文已被瀏覽 5679 次,被下載 0
The thesis/dissertation has been browsed 5679 times, has been downloaded 0 times.
中文摘要
本文主要在近場電紡(Near-field electrospinning, NFES)及電噴(Electrospray, ESP)技術中,研究控制纖維與薄膜的成形技術以及發展應用,其主要重點為利用聚谷氨酸甲酯 [Poly(γ-methyl l-glutamate), PMLG]的材料為基礎,藉由聚環氧乙烷 [Poly(ehylene oxide), PEO]與表面活性劑(Surfactant)的添加,形成濃度21.05 wt%之PMLG溶液,並利用近場電紡與電噴技術,透過高壓電場的作用與數值控制(Numerical control, NC)器之設定(移動速度:60 mm/sec、路徑間距:250、500、750 μm),使PMLG溶液突破表面張力形成泰勒錐(Taylor cone),製備有序之PMLG奈米纖維(線徑:4.15-6.25 μm)與薄膜沉積於基板。過程中發現當PMLG溶液在電場的作用下,可提升電偶極之取向,經測試可得最大電壓為0.056 V。最後,透過無毒,且具有優異壓電特性的PMLG生物材料,結合銦錫氧化物(Indium Tin Oxide, ITO)玻璃基板,應用於觀察細胞型態與擴散狀況,並由實驗結果發現,因PMLG所帶的負電性,而導致細胞增殖能力減弱,所以當電紡纖維間距越小(間距:250-750 μm),老鼠纖維母細胞(Mouse fibroblast cells, NIH3T3)之擴散量略為下降(不同纖維間距之四天的細胞覆蓋率:66.42-88.38 %);當電噴薄膜密度增加(薄膜覆蓋率:41.05-89.55 %)時,NIH3T3的擴散量則明顯降低甚至近乎無生長(不同薄膜密度之四天的細胞覆蓋率:3.07-42.03 %)以達成抑制效果。
Abstract
The formation and application of fibers and films based on the near-field electrospinning (NFES) and electrospray (ESP) technology are investigated in this research. The poly [ (γ-methyl l-glutamate) , PMLG] was used as based material and then the Poly [ (ethylene oxide), PEO] and surfactant were mixed with PMLG to fabricate PMLG solution with 21.05 wt% concentration. Next, with the NFES and ESP processes, the high voltage electric field and numerical control (NC) controller (movement speed: 60 mm/sec, path spacing: 250, 500, 750 μm) were controlled to make the PMLG droplet to induce the repulsive force and form Taylor cone. Then, the ordered PMLG nanofibers (diameter: 4.15-6.25 μm) and thin films which deposited on the substrate were fabricated. The orientation of dipole in the PMLG solution could be enhanced with the applying of electric field due to the fact that NFES and ESP processed positive impact on piezoelectric properties. Furthermore, the experimental results showed that the maximum peak voltage was 0.056 V when the PMLG piezoelectric fibers were attached to the flexible electrical measuring device and measured by vibrating test. Finally, PMLG fibers and films which was non-toxic biological material and possessed excellent piezoelectric characteristics
were stably fabricated on indium tin oxide (ITO) -coated glass substrate in order to observe the proliferation status of cell. According to the result of research, the PMLG with negative charge could weaken proliferation ability of cells. Therefore, the decrease of the distance between electrospun fibers (spacing: 250-750 μm) made the proliferation of mouse fibroblast cells (NIH3T3) slightly decrease (cell coverage with different spacing during 4 days: 66.42-88.38 %). Moreover, the diffusion of the NIH3T3 was significantly reduced or even halted (cell coverage with different films density during 4 days: 3.07-42.03 %) when density of ESP films increased (films coverage: 41.05-89.55%) which meant that it possessed inhibitory effect.
目次 Table of Contents
論文審定書 i
致謝 ii
摘要 iii
Abstract iv
圖目錄 vii
表目錄 xi
第一章 緒論 1
1.1 前言 1
1.2 研究背景與動機 1
1.3 研究目的 2
第二章 文獻回顧 4
2.1 組織工程學的發展與概念 4
2.2 電紡製程 4
2.3 電噴製程 6
2.4 壓電原理 6
2.5 壓電操作模式 8
2.6 生物醫學上常用之PEO 材料 9
2.7 PMLG 材料之相關研究 9
2.8 細胞培養的發展與纖維母細胞簡介 12
第三章 研究方法 13
3.1 材料製作與溶液調配流程 13
3.1.1 材料備置 14
3.1.2 PMLG 電紡與電噴溶液配製 17
3.2 NFES 與ESP 製程與設備 21
3.3 電性量測方式 23
3.4 細胞培養與應用 24
3.5 實驗儀器 25
第四章 實驗結果與討論 34
4.1 電紡與電噴的溶液特性分析 34
4.2 製程參數選定 55
4.3 電紡纖維之分布 60
4.4 電噴密度之覆蓋率 62
4.5 細胞培養 63
4.6 細胞貼附及擴散 64
第五章 結論與未來展望 84
5.1 結論 84
5.2 未來展望 84
參考文獻 85
參考文獻 References
[1] H. J. Jin, J. S. Chen, V. Karageorgiou, G. H. Altman and D. L. Kaplan, “Human Bone Marrow Stromal Cell Responses on Electrospun Silk Fibroin Mats,” Biomaterials, Vol. 25, pp. 1039-1047, 2004.
[2] X. M. Mo, C. Y. Xu, M. Kotaki and S. Ramakrishna, “Electrospun P (LLA-CL) Nanofiber: a Biomimetic Extracellular Matrix for Smooth Muscle Cell and Endothelial Cell Proliferation,” Biomaterials, Vol. 25, pp. 1883-1890, 2004.
[3] Z. M. Huang, Y. Z. Zhang, M. Kotaki and S. Ramakrishna, “A Review on Polymer Nanofibers by Electrospinning and their Applications in Nanocomposites,” Composites Science and Technology, Vol. 63, pp. 2223-2253, 2003.
[4] J. A. Matthews, G. E. Wnek, D. G. Simpson and G. L. Bowlin, “Electrospinning of Collagen Nanofibers,” Biomacromolecules, Vol. 3, pp. 232-238, 2002.
[5] M. Rinaldi, F. Ruggieri, L. Lozzi and S. Santucci, “Well-aligned TiO (2) Nanofibers Grown by Near-field-electrospinning,” Journal of Vacuum Science and Technology B, Vol. 27, pp. 1829-1833, 2009.
[6] L. S. Carnell, E. J. Siochi, R. A. Wincheski, N. M. Holloway and R. L. Clark, “Electric Field Effects on Fiber Alignment Using an Auxiliary Electrode During Electrospinning,” Scripta Materialia, Vol. 60, pp. 359-361, 2009.
[7] P. C. Caracciolo, V. Thomas, Y. K. Vohra, F. Buffa and G. A. Abraham, “Electrospinning of Novel Biodegradable Poly (ester urethane)s and Poly (ester urethane urea)s for Soft Tissue-engineering Applications,” Journal of Materials
Science Materials in Medicine, Vol. 20, pp. 2129-2137, 2009.
[8] D. H. Reneker and I. Chun, “Nanometre Diameter Fibres of Polymer, Produced by Electrospinning,” Nanotechnology Vol. 7, pp. 216-223, 1996.
[9] L. Rayleigh, “XX. On the Equilibrium of Liquid Conducting Masses Charged with Electricity,” The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, Vol. 14, pp. 184-186, 1882.
[10] F. Anton, “Process and Apparatus for Preparing Artificial Threads,” US Patent Specification No. 1975504, 1934.
[11] G. Taylor, “Disintegration of Water Drops in Electric Field,” Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, Vol. 280, pp. 383-397, 1964.
[12] G. I. Taylor and A. D. McEWAN, “Stability of a Horizontal Fluid Interface in a Vertical Electric Field,” Journal of Fluid Mechanics, Vol. 22, pp. 1-15, 1965.
[13] G. Taylor, “Studies in Electrohydrodynamics. I. The Circulation Produced in a Drop by Electrical Field,” Proceedings of the Royal Society of London Series A, Mathematical and Physical Sciences, Vol. 291, pp. 159-166, 1966.
[14] G. Taylor, “Electrically Driven Jets,” Proceedings of the Royal Society of London Series A, Mathematical and Physical Sciences, Vol. 313, pp. 453-475, 1969.
[15] 黃宣諭,以電氣紡絲法製備具生物可分解之管狀結構,國立交通大學機械工程學系碩士論文,2009。
[16] C. Chang, Y. K. Fuh and L. Lin, “A Direct-Write Piezoelectric PVDF Nanogenerator,” Solid-State Sensors, Actuators and Microsystems Conference, pp. 1485-1488, 2009.
[17] C. Chang, V. H. Tran, J. Wang, Y. K. Fuh and L. Lin, “Direct-Write Piezoelectric Polymeric Nanogenerator with High Energy Conversion Efficiency,” Nano Letters, Vol. 10, pp. 726-731, 2010.
[18] D. Sun, C. Chang, S. Li and L. Lin, “Near-Field Electrospinning,” Nano Letters, Vol. 6, pp. 839-842, 2006.
[19] J. Pu, X. Yan, Y. Jiang, C. Chang and L. Lin, “Piezoelectric Actuation of Direct-
Write Electrospun Fibers,” Sensors and Actuators A: Physical, Vol. 164, pp. 131-136, 2010.
[20] C. Chang, K. Limkrailassiri and L. Lin, “Continuous Near-Field Electrospinning for Large Area Deposition of Orderly Nanofiber Patterns,” Applied Physics Letters, Vol. 93, pp. 123111, 2008.
[21] J. Pu, X. Yan, Y. Jiang, C. Chang and L. Lin, “Piezoelectric Actuation of a Direct Write Electrospun PVDF Fiber,” IEEE International Conference on Micro Electro Mechanical Systems, pp. 1163-1166, 2010.
[22] K. I. Minato, K. Ohkawa and H. Yamamoto, “Chain Conformations of Poly(γ- benzyl-L-glutamate) Pre and Post an Electrospinning Process,” Macromolecular Bioscience, Vol. 6. No. 7, pp. 487-495, 2006.
[23] A. Jaworek, A. Krupa, A. Sobczyk, M. Lackowski, T. Czech, S. Ramakrishna, S. Sundarrajan, and D. Pliszka, "Electrospray nanocoating of microfibres," Solid State Phenomena, vol. 140, pp. 127-132, 2008.
[24] B. Vonnegut and R. L. Neubauer, "Production of monodisperse liquid particles by electrical atomization," Journal of Colloid Science, vol. 7, pp. 616-622, 1952.
[25] http://www.ceramtec.cn/, (Date : 2013/07/07).
[26] I. Patel, “Ceramic Based Intelligent Piezoelectric Energy Harvesting Device,” Advances in Ceramics - Electric and Magnetic Ceramics, Bioceramics, Ceramics and Environment, Edited by C. Sikalidis, pp. 133-154, 2011.
[27] J. Han, J. F. Zhang, R. X. Yin, G. P. Ma, D. Z. Yang and J. Nie, “Electrospinning of Methoxy Poly (ethylene glycol)-grafted Chitosan and Poly (ethylene oxide) Blend Aqueous Solution,” Carbohydrate Polymers, Vol. 83, pp. 270-276, 2011.
[28] X. W. Fan, L. J. Lin, and P. B. Messersmith, “Cell Fouling Resistance of Polymer Brushes Grafted from Ti Substrates by Surface-Initiated Polymerization: Effect of Ethylene Glycol Side Chain Length,” Biomacromolecules, Vol. 7, pp. 2443-2448, 2006.
[29] 陳啟仁,利用不同極性衍生物調控聚胜肽之二級結構,國立中山大學材料與光電科學系碩士論文,2011。
[30] L. Pauling and R. B. Corey, “Configurations of Polypeptide Chains with Favored Orientations Around Single Bonds,” Proc. Natl. Acad. Sci., Vol. 37, pp. 729-740, 1951.
[31] J. Kim, J. Park, S. Lee and D. Sohn, “Surface-Grafting of Polyglutamate on Si Wafer Using Micro Contact Printing,” Molecular Crystals and Liquid Crystals, Vol. 464, pp. 211-216, 2007.
[32] S. Lecommandoux, “Bulk Self-Assembly of Linear Hybrid Polypeptide-Based Diblock and Triblock Copolymers,” Complex Macromolecular Architectures: Synthesis, Characterization, and Self-Assembly, First Edition, pp. 623-645, 2011.
[33] H. Schlaad, “Solution Properties of Polypeptide-based Copolymers,” Peptide Hybrid Polymers, Vol. 202, pp. 53-73, 2006.
[34] H. Sakai, H. J. Cheong, T. Kodzasa, H. Tokuhisa, K. Tokoro, M. Yoshida, T. Ikoga, K. Nakamura, N. Kobayashi and S. Uemura, “Effect of Amide Bond in Gate Dielectric Polymers on Memory Performance of Organic Field-Effect Transistors,” Japanese Journal of Applied Physics, Vol. 53, pp. 05HB13, 2014.
[35] Y. Hwang, Y. Je, D. Farrar, J. E. West, S. M. Yu and W. Moon, “Piezoelectric Properties of Polypeptide-PMMA Molecular Composites Fabricated by Contact Charging,” Polymer, Vol. 52, pp. 2723-2728, 2011.
[36] R. Ravichandran, J. Venugopal, S. Sundarrajan, S. Mukherjee and S. Ramakrishna, “Precipitation of Nanohydroxyapatite on PLLA/PBLG/Collagen Nanofibrous Structures for the Differentiation of Adipose Derived Stem Cells to Osteogenic Lineage,” Biomaterials, Vol. 33, pp. 846-855, 2012.
[37] Y. Hakamada, N. Ohgushi, N. F. Kondo and T. Matsuda, “Electrospun Poly(γ-Benzyl-L-Glutamate) and Its Alkali-Treated Meshes: Their WaterWettability and Cell-Adhesion Potential,” Journal of Biomaterials Science, Vol. 23, pp. 1055-1067, 2012.
[38] T. J. Deming, “Polypeptide Materials: New Synthetic Methods and Applications,” Advanced Materials, Vol. 9, pp. 299-311, 1997.
[39] K. Iio, N. Minoura, S. Aiba, M. Nagura, and M. Kodama, “Cell Growth on Poly (Vinyl Alcohol) Hydrogel Membranes Containing Biguanido Groups,” Journal of Biomedical Materials Research, Vol. 28, pp. 459-462, 1994.
[40] 陳麗婷、華傑,動物細胞產業應用前景評估,2003。
[41] 王斐譯,醫學細胞分子生物學,合記圖書出版社,2001。
[42] P. Papadopoulos and G. Floudas, “Self-Assembly and Dynamics of Poly (γ-benzyl-L-glutamate) Peptides,” Biomacromolecules, Vol. 5, pp. 81-91, 2004.
[43] D. Li and Y. Xia, “ Direct Fabrication of Composite and Ceramic Hollow Nanofibers by Electrospinning,” Nano Letters, Vol. 4, pp. 933-938, 2004
[44] M. Bognitzki, H. Hou, M. Ishaque, T. Frese, M. Hellwig, C. Schwarte, A. Schaper, J. H. Wendorff and A. Greiner, “Polymer, Metal, and Hybrid Nano and Mesotubes by Coating Degradable Polymer Template Fibers (TUFT Process),” Advanced Materials, Vol. 12, pp. 637-640, 2000.
[45] M. Cloupeau and B. Prunet-Foch, “Electrostatic Spraying of Liquids: Main Functioning Modes,” Journal of Electrostatics, Vol. 25, pp. 165-184, 1990.
[46] 徐一峰,組織工程人工微血管之製作與細胞培養,國立中興大學機械工程學系碩士論文,2009。
[47] C. T. Pan, C. K. Yen, H. C. Wu, L. W. Lin, Y. S. Lu, J. C. C. Huang, S. W. Kuo, “Significant piezoelectric and energy harvesting enhancement of poly (vinylidene fluoride) /polypeptide fiber composites prepared through near-field electrospinning,” Journal of Materials Chemistry A, Vol. 3, pp. 6835-6843, 2015.
[48] H. Fong, I. Chun and D. H. Reneker, “Beaded Nanofibers Formed During Electrospinning,” Polymer, Vol. 40, pp. 4585-4592, 1999.
[49] F. Ko, Y. Gogotsi, A. Ali, N. Naguib, H. Ye, G.L. Yang, C. Li, and P. Willis, “Electrospinning of Continuous Carbon Nanotube-Filled Nanofiber Yarns,” Advanced Materials, Vol. 15, pp. 1161-1165, 2003.
[50] Y. Dzenis, and Y. Wen, “Continuous Carbon Nanofibers for Nanofiber Composites,” Materials Research Society Symposia Proceedings, Vol. 702, pp. 173-178, 2002.
[51] H. Ye, H. Lam, N. Titchenal, Y. Gogotsi, and F. Ko, “Reinforcement and Rupture Behavior of carbon Nanotubes–polymer Nanofibers,” Applied Physics Letters, Vol. 85, pp. 1775-1777, 2004.
[52] S. Vidhate, A. Shaito, J. Chung, and N. A. D’Souza, “Crystallization, Mechanical, and Rheological Behavior of Polyvinylidene Fluoride-carbon Nanofiber Composites,” Journal of Applied Polymer Science, Vol. 112, pp. 254-260, 2009.
[53] Z. Y. Jie, Z. Z. Di and Y. W. Xue, “Preparation and Characterizations of PVDF/MWCNT Nanocomposites,” Polymer Materials Science and Engineering, Vol. 26, pp. 140, 2010.
[54] W. A. Yee, M. Kotaki, Y. Liu, and X. Lu, “Morphology, Polymorphism Behavior and Molecular Orientation of Electrospun Poly (vinylidene fluoride) Fibers,” Polymer, Vol. 48, pp. 512-521, 2006.
[55] Z. Zhao, J. Li, X. Yuan, X. Li, Y. Zhang, and J. Sheng, “Preparation and Properties of Electrospun Poly (vinylidene fluoride) Membranes,” Journal of Applied Polymer Science, Vol. 97, pp. 466-474, 2004.
[56] J. A. Pu, X. J. Yan, Y. D. Jiang, C. E. Chang, L.W. Lin, “Piezoelectric Actuation of Direct-write Electrospun Fibers,” Sensors and Actuators A-Physical, Vol.164, pp.131-136, 2010.
[57] E. Fukada, “New piezoelectric polymers,” Japane Se of Applied Physics,” Vol. 37, pp. 2775-2780, 1998.
[58] T. Ochiai and E. Fukada, “Electromechanical Properties of Poly-L-lactic acid,” Japane Se of Applied Physics, Vol. 37, pp.3374-3376, 1998.
[59] K. S. Anderson, S. H. Lim and M. A. Hillmyer, “Toughening of Polylactide by Melt Blending with Linear Low-Density Polyethylene,” Journal of Applied Polymer Science, Vol. 89, pp. 3757-3768, 2003.
[60] M. HiljanenVainio, J. Kylma, K. Hiltunen and J. V. Seppala, Journal of Applied Polymer Science, Vol. 63, pp. 1335-1343, 1997.
[61] D. W. Grijpma, R. D. A. VanHofslot, H. Super, A. J. Nijenhuis and A. J. Pennings, “Rubber Toughening of Poly (Lactide) by Blending and Block Copolymerization,” Polymer Engineering and Science, Vol. 34, pp. 1674-1684, 1994.
[62] Y. Yuan and E. Ruckenstein, “Polyurethane toughened polylactide,” Polymer Bulletin, Vol. 40, pp.485-490, 1998.
[63] S. Jacobsen and H. G. Fritz, “Plasticizing Polylactide - The Effect of Different Plasticizers on the Mechanical Properties," Polymer Engineering and Science, Vol. 39, pp. 1303-1310, 1999.
[64] L. V. Labrecque, R. A. Kumar, V. Dave, R. A. Gross and S. P. McCarthy, “Citrate Esters as Plasticizers for Poly (lactic acid), Journal of Applied Polymer Science, Vol. 66, pp. 1507-1513, 1997.
[65] N. Bhardwaj and S. C. Kundu, “Electropinning a Fascinating Fiber Fabrication Technique,” Biotechnology Advances, Vol. 28, pp. 325-347, 2010.
[66] M. Arnold, E. A. C. Adam, R. Glass, J. Blummel, W. Eck, M. Kantlehner, et al. “Activation of Integrin Function by Nanopatterned Adhesive Interfaces,” ChemPhysChem, Vol. 5, pp. 383-388, 2004.
[67] G. Maheshwari, G. Brown, D. A. Lauffenburger, A. Wells and L. G. Griffith, “Cell Adhesion and Motility Depend on Nanoscale RGD Clustering,” Journal of Cell Science, Vol. 113, pp. 1677-1686, 2000.
[68] 鄂征,組織培養和分子細胞學技術(上、下冊),九州圖書文化有限公司,2002。
[69] M. Chen, P. K. Patra, S. B. Warner and S. Bhowmick, “Role of fiber diameter in adhesion and proliferation of NIH3T3 fibroblast on electrospun polycaprolactone scaffolds,” Tissue Engineering, Vol. 13, pp. 579-587, 2007.
[70] J. A. Cooper, L. O. Bailey, J. N. Carter, C. E. Castiglioni, M. D. Kofron, F. K. Ko, et al. “Evaluation of the anterior cruciate ligament, medial collateral ligament, Achilles tendon and patellar tendon as cell sources for tissue-engineered ligament,”
Biomaterials, Vol. 27, pp. 2747-2754, 2006.
[71] S. Sahoo, H. Ouyang, J. C. H. Goh, T. E. Tay and S. L. Toh, “Characterization of a novel polymeric scaffold for potential application in tendon/ligament tissue engineering,” Tissue Engineering, Vol. 12, pp. 91-99, 2006.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.118.200.197
論文開放下載的時間是 校外不公開

Your IP address is 18.118.200.197
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code