Responsive image
博碩士論文 etd-0606115-135407 詳細資訊
Title page for etd-0606115-135407
論文名稱
Title
以動力計探討在不同行車狀態下添加氫氣對汽油引擎之污染減量
Dynamometer studies of pollution reduction in a gasoline engine using hydrogen-gasoline mixed fuel under various driving conditions.
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
128
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-06-17
繳交日期
Date of Submission
2015-07-06
關鍵字
Keywords
動力計測試、汽油引擎、氫氣、行車型態、燃油消耗
Dynamometer Testing, Gasoline Engine, Hydrogen, Driving Cycle, Fuel Consumption
統計
Statistics
本論文已被瀏覽 5708 次,被下載 638
The thesis/dissertation has been browsed 5708 times, has been downloaded 638 times.
中文摘要
本研究以汽油引擎動力計分別以不同時速穩態循環(Idling、40 km/hr、70 km/hr、100 km/hr)與不同行車型態(FTP75、NEDC)條件下進行測試,並且添加不同流量氫氣於燃燒室內與汽油進行燃燒,以瞭解添加氫氣輔助汽油引擎燃燒之污染物減量與燃油消耗。

研究發現,怠速測試下,當添加氫氣流量2 lpm -8 lpm,傳統污染物(THC、CO、NOx)排放係數皆呈減量趨勢,其最佳排放減量分別為31.2%、47.4%、29.5%;市區低速行駛(40 km/hr),於添加氫氣流量4 lpm,傳統污染物(THC、CO)排放係數具較佳減量效果,其最佳削減率為66.8%、92.6%,而NOx呈增加趨勢;郊區高速(70 km/hr)、高速公路(100 km/hr)行駛測試,THC、CO排放係數隨添加氫氣流量增加而減少。

行車型態測試(FTP75、NEDC)方面,其THC、CO平均排放係數皆隨添加氫氣流量增加(0.6 lpm、1.2 lpm)而下降;而NOx平均排放係數則於添加氫氣流量為0.6 lpm,具較佳減量效果。

評估於不同時速穩態測試下添加氫氣之燃油消耗,其中以代怠速行駛狀態,其燃油減量效果最佳為42.2%,而當時速70 km/hr與100 km/hr行駛狀態下,其燃油減量效果不明顯。FTP75與NEDC車型態測試結果亦顯示,添加氫氣對於油耗減量效果不甚明顯。
Abstract
The emission tests in a dynamometer were conducted under the steady-state cycle condition with different vehicle speeds (Idling, 40 km/hr, 70 km/hr and 100 km/hr) and two driving cycles (FTP75 and NEDC) in a gasoline engine using different inflow rate of hydrogen for understanding the reduction of pollutants and fuel consumption.

Experimental results showed that the emission factors of traditional pollutants (THC, CO and NOx) decreased with the increasing of hydrogen flow rate (2 lpm-8 lpm) at the idling cycle test. For the low-speed urban driving (40 km/hr), results showed the reductions of pollutants were comparatively better at the 4 lpm of H2, and the best reduction percentages were 66.8%, 92.6%; but NOx emission increased. For the high-speed suburban (70 km/hr) and highway (100 km/hr) driving tests, the emission factors of THC and CO reduced while H2 increased.

For the driving cycle tests (FTP75 and NEDC), the average emission factors of THC and CO reduced with the increasing of H2 (0.6 lpm and 1.2 lpm), and emission factor of NOx reduced at the 0.6 lpm of H2.

The consumption of gasoline reduced by 42.2% at idling test when H2 was added. However, the reduction of fuel consumption was insignificant under the speed of 70 km/hr and 100 km/hr. Results of driving cycle tests under FTP75 and NEDC procedures also indicated that reduction of fuel consumption was insignificant with the addition of H2.
目次 Table of Contents
謝誌 i
摘要 ii
Abstract iii
目錄 vi
圖目錄 xi
表目錄 xv
第一章 前言 1
1.1 研究緣起 1
1.2 研究目標 2
第二章 文獻回顧 3
2.1能源概況 3
2.1.1現今能源概況 3
2.1.2氫氣之發展 6
2.1.3氫氣之基本特性 6
2.1.4氫氣之生成反應與種類 9
2.1.5氫氣於內燃機中之燃燒特性 14
2.1.6氫氣雙燃料車使用現況 16
2.2各國標準行車型態 18
2.2.1行車型態定義 18
2.2.2美國環保局聯邦測試程序行車型態(FTP75) 19
2.2.3新歐洲經濟聯盟行車型態(NEDC) 21
2.2.4日本行車型態 24
2.2.5台灣標準運轉型態 26
2.3汽油引擎及其排放特徵 28
2.3.1汽油引擎運轉方式 28
2.3.2引擎設定及操作條件控制對污染物排放之特徵 31
2.3.3污染物排放特徵及健康危害性 36
第三章 研究方法 41
3.1研究架構與流程 41
3.2實驗規劃採樣程序 42
3.2.1汽油油品 42
3.2.2實車動力計系統(Chassis dynamometer system) 44
3.2.3汽油實車測試系統 45
3.2.4穩態測試 46
3.2.5行車型態測試 48
3.3行車型態採樣程序與步驟 51
3.3.1汽油車輛之排放污染測試步驟 51
3.3.2行車型態測試步驟 52
3.4現場採樣 54
3.5採樣設備 55
3.5.1汽油引擎 55
3.5.2氫氣機 56
3.5.3傳統氣狀污染物量測 58
第四章 結果與討論 60
4.1汽油引擎於穩態測試條件下Φ值之量測 60
4.2以不同氫氣流量於不同時速穩態下測試,對傳統污染物之排放係數 62
4.1.1 怠速(Idling)實車測試 64
4.1.2市區低速(40 km/hr)行駛測試 67
4.1.3郊區高速(70 km/hr)行駛測試 70
4.1.4高速公路(100 km/hr)行駛測試 73
4.3穩態測試之引擎耗油量 75
4.4以不同氫氣流量於不同行車型態下測試,對傳統污染物之排放特徵趨勢 77
4.4.1 NEDC行車型態測試 77
4.4.2 FTP75行車型態測試 84
4.5以不同氫氣流量於不同行車型態下測試,對汽油引擎傳統污染物之平均排放係數 89
4.5.1 NEDC行車型態平均排放係數 90
4.5.2 FTP75 行車型態平均排放係數 93
4.6以添加不同氫氣流量於不同行車型態測試下之平均燃油消耗 96
4.6.1 NEDC平均燃油消耗率 97
4.6.2 FTP75平均燃油消耗率 99
第五章 結論與建議 101
5.1 結論 101
5.1.1 穩態測試 101
5.1.2行車型態測試 102
5.2 建議 104
參考文獻 105
參考文獻 References
Al-Janabi HAKS, Al-Baghdadi MARS. (1999). A prediction study of the effect of hydrogen blending on the performance and pollutants emission of a four stroke spark ignition engine. International Journal of Hydrogen Energy 24,363-375.
Backer WS. (2010). Contamination of drinking water by methyl tertiary-butyl ether (MTBE) and its effect on plasma enzymes. Scientific Research and Essays 5,1809-1812.
Chan CC, Nien CK, Tsai CY, Her GR. (1995). Comparison of Tail-Pipe Emissions from Motorcycles and Passenger Cars. Journal of the Air & Waste Management Association 45,116-124.
Company CHE. (2005). The Hydrogen Injection System.
Council NR. (1991). Rethinking the ozone problem in urban and regional air pollution. Washington, DC : National Academy Press.
Das LM, Gulati R, Gupta PK. (2000). A comparative evaluation of the performance characteristics of a spark ignition engine using hydrogen and compressed natural gas as alternative fuels. International Journal of Hydrogen Energy 25,783-793.
Desert Cot. (2001). ydrogen Use in Internal Combustion Engines.
Denver州政府環保局持續至2010年替代燃料計畫,http://www.denvergov.org/SustainableInitiatives/tabid/386886/Default.aspx.

Dieguez PM, Urroz JC, Marcelino-Sadaba S, Perez-Ezcurdia A, Benito-Amurrio M, Sainz D, Gandia LM. (2014). Experimental study of the performance and emission characteristics of an adapted commercial four-cylinder spark ignition engine running on hydrogen-methane mixtures. Applied Energy 113,1068-1076.
Dimopoulos P, Rechsteiner C, Soltic P, Laemmle C, Boulouchos K. (2007). Increase of passenger car engine efficiency with low engine-out emissions using hydrogen-natural gas mixtures: A thermodynamic analysis. International Journal of Hydrogen Energy 32,3073-3083.
Foute S. (1999). For More Information on Hythane. Tithe Denver Hythane Project – Update, Third NHA meeting,, 5-21-5-33.
Frigo S, Gentili R. (2013). Analysis of the behaviour of a 4-stroke Si engine fuelled with ammonia and hydrogen. International Journal of Hydrogen Energy 38,1607-1615.
Heracleous E. (2011). Well-to-Wheels analysis of hydrogen production from bio-oil reforming for use in internal combustion engines. International Journal of Hydrogen Energy 36,11501-11511.
Heywood JB. (1988). Internal Combustion Engine Fundamentals.
Heywood JB, Tabaczynski RJ. (1976). Current Developments in Spark-Ignition Engines. In a History of the Automotive International Combustion Engine.
Heywood, J.B. (1989). Internal Combustion Engine Fundamentals, Chapter11 : Pollutant Formation and Control.

Hoard J, Rehagen L. (1997). Relating subjective idle quality to engine combustion.
Hu EJ, Huang ZH, Liu B, Zheng JJ, Gu XL. (2009a). Experimental study on combustion characteristics of a spark-ignition engine fueled with natural gas-hydrogen blends combining with EGR. International Journal of Hydrogen Energy 34,1035-1044.
Hu EJ, Huang ZH, Liu B, Zheng JJ, Gu XL, Huang B. (2009b). Experimental investigation on performance and emissions of a spark-ignition engine fuelled with natural gas-hydrogen blends combined with EGR. International Journal of Hydrogen Energy 34,528-539.
Huang B, Hu EJ, Huang ZH, Zheng JJ, Liu B, Jiang DM. (2009). Cycle-by-cycle variations in a spark ignition engine fueled with natural gas-hydrogen blends combined with EGR. International Journal of Hydrogen Energy 34,8405-8414.
Ji CW, Wang SF. (2009). Effect of hydrogen addition on the idle performance of a spark ignited gasoline engine at stoichiometric condition. International Journal of Hydrogen Energy 34,3546-3556.
Ji CW, Wang SF. (2010). Experimental study on combustion and emissions performance of a hybrid hydrogen-gasoline engine at lean burn limits. International Journal of Hydrogen Energy 35,1453-1462.
Ji CW, Wang SF, Zhang B. (2010). Combustion and emissions characteristics of a hybrid hydrogen-gasoline engine under various loads and lean conditions. International Journal of Hydrogen Energy 35,5714-5722.

Ji CW, Wang SF, Zhang B. (2012). Performance of a hybrid hydrogen-gasoline engine under various operating conditions. Applied Energy 97,584-589.
Ji CW, Wang SF, Zhang B, Liu XL. (2013). Emissions performance of a hybrid hydrogen-gasoline engine-powered passenger car under the New European Driving Cycle. Fuel 106,873-875.
Korakianitis T, Namasivayam AM, Crookes RJ. (2011). Natural-gas fueled spark-ignition (SI) and compression-ignition (CI) engine performance and emissions. Progress in Energy and Combustion Science 37,89-112.
Li HL, Karim GA. (2004). Knock in spark ignition hydrogen engines. International Journal of Hydrogen Energy 29,859-865.
Liu YF, Liu B, Zeng K, Huang Z, Zhou L, Sun L. (2012). Performance and emission characteristics of a hydrogen-enriched compressed-natural-gas direct-injection spark ignition engine diluted with exhaust gas recirculation. Proceedings of the Institution of Mechanical Engineers Part D-Journal of Automobile Engineering 226,123-132.
Ma FH, Wang Y, Liu HQ, Li Y, Wang JJ, Ding SF. (2008). Effects of hydrogen addition on cycle-by-cycle variations in a lean burn natural gas spark-ignition engine. International Journal of Hydrogen Energy 33,823-831.
Osama MM, Matar MS, Koreish S. (1993). Effect of Methyl Tertiary Butyl Ether (MTBE) as a Gasoline Additive on Engine Performance and Exhaust Emission. Fuel Science and Technology International 11,1331-1343.


Possanzini M, Dipalo V. (1995). Determination of Olefinic Aldehydes and Other Volatile Carbonyls in Air Samples by Dnph-Coated Cartridges and Hplc. Chromatographia 40,134-138.
Ren JY, Qin W, Egolfopoulos FN, Tsotsis TT. (2001). Strain-rate effects on hydrogen-enhanced lean premixed combustion. Combustion and Flame 124,717-720.
Roy MM, Tomita E, Kawahara N, Harada Y, Sakane A. (2010). An experimental investigation on engine performance and emissions of a supercharged H-2-diesel dual-fuel engine. International Journal of Hydrogen Energy 35,844-853.
Saravanan N, Nagarajan G, Sanjay G, Dhanasekaran C, Kalaiselvan KM. (2008). Combustion analysis on a DI diesel engine with hydrogen in dual fuel mode. Fuel 87,3591-3599.
Schifter I, Diaz L, Vera M, Guzman E, Lopez-Salinas E. (2004). Fuel formulation and vehicle exhaust emissions in Mexico. Fuel 83,2065-2074.
Tomin J, Kent J. (1982). Proceedings of Fifth International Alcohol Fuel Technology Symposium.207-214.
USEPA. (2006). Technology Transfer Network National Air Toxics Assessment.
Vancoillie J, Demuynck J, Sileghem L, Van de Ginste M, Verhelst S. (2012). Comparison of the renewable transportation fuels, hydrogen and methanol formed from hydrogen, with gasoline - Engine efficiency study. International Journal of Hydrogen Energy 37,9914-9924.
Verhelst S. (2014). Recent progress in the use of hydrogen as a fuel for internal combustion engines. International Journal of Hydrogen Energy 39,1071-1085.
Verhelst S, Sierens R. (2001). Hydrogen engine-specific properties. International Journal of Hydrogen Energy 26,987-990.
Wang SF, Ji CW, Zhang B. (2011). Starting a spark-ignited engine with the gasoline-hydrogen mixture. International Journal of Hydrogen Energy 36,4461-4468.
Wang SF, Ji CW, Zhang B, Liu XL. (2014a). Lean burn performance of a hydrogen-blended gasoline engine at the wide open throttle condition. Applied Energy 136,43-50.
Wang SF, Ji CW, Zhang B, Liu XL. (2014b). Realizing the part load control of a hydrogen-blended gasoline engine at the wide open throttle condition. International Journal of Hydrogen Energy 39,7428-7436.
Wang SF, Ji CW, Zhang MY, Zhang B. (2010). Reducing the idle speed of a spark-ignited gasoline engine with hydrogen addition. International Journal of Hydrogen Energy 35,10580-10588.
Weilenmann M, Soltic P, Saxer C, Forss AM, Heeb N. (2005). Regulated and nonregulated diesel and gasoline cold start emissions at different temperatures. Atmospheric Environment 39,2433-2441.
Zhen XD, Wang Y, Xu SQ, Zhu YS, Tao CJ, Xu T, Song MZ. (2012). The engine knock analysis - An overview. Applied Energy 92,628-636.

經濟部能源局,2013
http://web3.moeaboe.gov.tw/ECW/populace/home/Home.aspx。
何文淵,1999,「汽油車引擎廢氣揮發性有機物成份及光化反應潛勢」,國立成功大學環境工程研究所,碩士論文。
劉育穎,2001,「機車排放醛酮化合物特徵與光化反應性研究」,國立成功大學環境工程研究所,碩士論文。
翁閎政,1999,「機車排氣之揮發性有機物特徵及光化反應性研究」,國立成功大學環境工程研究所,碩士論文。
黃靖雄,2002,「現代低公害省油汽車排氣污染控制技術及裝置」,全華科技圖書出版,台北縣。
張安伶,2006,「油品成分對機車引擎排放氣態污染物影響研究」,國立成功大學環境工程學系碩士論文。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code