Responsive image
博碩士論文 etd-0606116-102125 詳細資訊
Title page for etd-0606116-102125
論文名稱
Title
脈衝雷射於真空及四乙基正矽酸鹽剝熔蝕氮化矽合成顆粒的相變化與聚簇行為
Phase change and coalescence behavior of the particles during pulsed laser ablation of Si3N4 in vacuum and TEOS
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
63
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-06-21
繳交日期
Date of Submission
2016-07-06
關鍵字
Keywords
非化學劑量、氮化矽、形貌、脈衝雷射剝熔蝕參數、缺陷
pulsed laser ablation parameter, nonstoichiometry, silicon nitride, defect, shape
統計
Statistics
本論文已被瀏覽 5679 次,被下載 9
The thesis/dissertation has been browsed 5679 times, has been downloaded 9 times.
中文摘要
本文利用不同脈衝雷射參數,在真空與四乙基正矽酸鹽(TEOS)中剝熔蝕氮化
矽(α-Si3N4>>β-Si3N4)多晶靶材,製造具有特定結晶或非結晶相的凝固顆粒與奈米
凝聚物,並且用電子顯微鏡及光譜儀觀察其粒徑、形狀、聚簇現象、缺陷與吸收光
譜。在脈衝雷射Free run mode 下剝熔蝕氮化矽,並且以火棉膠承接的顆粒大多數
為碳氧摻雜,具有鑽石結構的奈米球狀矽結晶,其粒徑為30~200nm,含有~{111}
鄰近面疊差以及包裹著一層非晶質Si 或是SiO2 的殼核結構。而在脈衝雷射Qswitch
mode 下則形成球狀、柱狀而且碳氧摻雜的α-Si3N4-x 顆粒,其中凝固球狀顆
粒可以外層披覆非晶態SiO2,也可以相互聚簇而在(01-11)
、(0001)貼合面附近殘留差排或其它複雜缺陷;至於長約800nm 寬約60nm,藉著VLS 或VS 機制所生
成的鬚晶,其成長方向為<5-1-40>,側面有發達與c-軸平行的{10-10}、{12-30}柱面
以及(0001)底面,內部沒有明顯缺陷,邊緣則包覆著一層約1 nm 的非晶態SiO2。
至於在脈衝雷射Q-switch mode 下通入氮氣,則提高α-Si3N4-x 鬚晶的N/Si 原子含
量比(~1.2),使其沿<11-20>或<10-10>方向成長,擴張{10-10}、{11-20}、{12-30}、
{5-1-40}柱面、(0001)底面,而且出現錐邊,(0001)疊差以及碳氧摻雜造成的空缺集
團。至於在TEOS 中脈衝雷射Free run mode 情況下剝熔蝕氮化矽,生成的顆粒大
則為相互聚簇非晶Si-O-C 物質顆粒,可能有中程序化或者特定原子聚落。以
上物質皆有對應的吸收光譜以及Raman-PL-XPS 光譜,顯示成份與內應力造成的
影響。
Abstract
This research deals with phase change and coalescence behavior of the particles
produced by pulsed laser ablation (PLA) of Si3N4 (α>>β) polycrystal in vacuum and
tetraethyl orthosilicate (TEOS) for X-ray diffraction, electron microscopy and optical
spectroscopy characterizations. The sample produced by PLA of Si3N4 in vacuum under
free run mode and collected with a C-coated collodion film consists mainly of spherical
particulates of C-O doped Si with diamond-type structure having 30-200 nm diameter,
faulted by ~{111} vicinal planes and commonly encapsulated with an amorphous Si or
SiO2 film as a core-shell structure. As for the sample produced by PLA in vacuum under
Q-switch mode, it contains mainly C-O doped α-Si3N4-x particulates with spherical shape
when formed by a solidification route or elongated as whiskers via VLS or VS mechanism.
The spherical ones have well-developed (01-11) and (0001) faces for mutual coalescence
to leave misfit dislocations and other more complicated defects despite the surrounding
amorphous silica phase. The whiskers showed extending growth along <5-1-40> to form
{10-10} and {12-30} prism faces and (0001) basal face despite the thin (ca. 1 nm)
amorphous silica coverage and defect-free interior. N2 purging during PLA in vacuum
under Q-switch mode, effectively raised the N/Si atomic ratio up to ca. 1.2 for the
resultant α-Si3N4-x whiskers which showed extending growth along <11-20> or <10-10>
direction to develop the prism faces {10-10}, {11-20}, {12-30} and {5-1-40} as well as the
(0001) basal face, pyramidal edge, (0001) stacking fault and vacancy clusters due to CO
dopant. By contrast, PLA of Si3N4 in TEOS under free run mode always produced
amorphous Si-O-C phase in the form of coalesced particles possibly with medium
range order and/or atom clusters yet to be clarified. The above substances showed
characteristic UV-visible absorbance and Raman-PL-XPS bands more or less modified
by the dopant and internal stress effect.
目次 Table of Contents
誌謝……………………………………………………………………………..……………….…..……………........ii
中文摘要……………………………………………………………………………..…………….…..……..……….iv
英文摘要……………………………………………………………………………..…………….…..……..……….v
目錄……………………………………………………………………………..……………….…..……………........vi
圖目錄……………………………………………………………………………..………………..….………..….....vii
表目錄……………………………………………………………………………..………………..….………..….....ix
附錄目錄……………………………………………………………………………..……….……..….……………..x
壹、前言………………………………………………………………………..…….……….….…………...1
貳、實驗流程………………………………………………………………………....…...….…………...3
參、實驗步驟及方法……………………………………………………………...….……….………..4
肆、實驗結果………………………….…………………………………………..….…..………..………7
伍、討論………..……………………….………………………………………………..….……..…………12
陸、結論………..……………………….……………………………………………..……….…..…………18
柒、參考文獻…………………….…………………………………..……………..……….………………19
參考文獻 References
1. Ahn H., Wu C.L., Gwo S., Wei C.M., Chou Y.C., “Structure determination of the
Si3N4/Si(111)-(8x8) surface: a combined study of Kikuchi electron holography,
scanning tunneling microscopy, and ab initio calculations.,” Phys. Rev. Lett. 86
(2001) 2818-2821.
2. Bruker Corporation, “Contactless characterization of amorphous and
microcrystalline silicon using Raman micro spectroscopy,” Application Note AN #
520.
3. Brynjulfsen I., Arnberg L., “Nucleation of silicon on Si3N4 coated SiO2,” J. Crystal
Growth 331 (2011) 64-67.
4. Cai K J “Kinetic Phase Transformations by Pulsed Laser Ablation on Bulk TiC in
Vacuum” (2013).
5. Carlson O.N., “The Ni-Si (nitrogen-silicon) system” J. Phase Equilibria 11 (1990)
569-573.
6. Chaudhuri.M.G., Dey R., Mitra M.K., Das G.C., Mukherjee S., "A novel method for
synthesis of α-Si3N4 nanowires by sol-gel route". Science and Technology of
Advanced Materials 9 (2008) 015002-1-6.
7. Cui J., Li B., Zou C., Zhang C., Wang S., “Direct synthesis of α-silicon nitride
nanowires from silicon monoxide on alumina,” Nanomaterials and Nanotechnology
5:32 (2015) 1-6. DOI: 10.5772/61661
8. Hardie D., Jack K.H., “Crystal structures of silicon nitride,” Nature 180 (1957) 332-
333.
9. Huang Z., Chen F., Shen Q., Zhang L., “Linking photoluminescence of α-Si3N4 to
intrinsic point defects via band structure modelling,“ RSC Advances 6 (2016) 7568-
7574.
10. Jackson K.A., “Computer modeling of atomic scale crystal growth processes,” J.Crystal Growth 198/199 (1999) 1-9.
11. Kim J.W., Yeom H.W., “Surface and interface structures of epitaxial silicon nitride
on Si(111)” Phys. Rev. B 67 (2003) 035304.
12. Kröger F.A., Vink H.J., “Relations between the concentrations of imperfections in
crystalline solids,” Solid State Phys. 3 (1956) 307-435.
13. Lackner J.M., Waldhauser W., Ebner R., Beutl M., Jakopic G., Leising G., Hutter
H., Rosner M., “Pulsed laser deposition of non-stoichiometric silicon nitride (SiNx)
thin films, Applied Physics A: Materials Science & Processing, 79 (2004) 1525 pp.
1-12.
14. Lee H.M., Kuo C.T., Shiu H.W., Chen C.H., Gwo S., Valence band offset and
interface stoichiometry at epitaxial Si3N4/Si(111) heterojunctions formed by
plasmna nitridation,” Appl. Phys. Lett. 95 (2009) 222104.
15. Lin L.W., He Y.H., “Synthesis and optical property of ultra-long alpha-Si3N4
nanowires under superatmospheric pressure conditions,” CrystEngComm 14 (2012)
3250-3256.
16. Liu C.J., Lin S.S., Zheng Y., Chen S.Y., Shen P. “Pulsed laser synthesis of diamondtype
nanoparticles with enhanced Si-C solid solubility and special defects,”
CrystEngComm 17 (2015) 9142-9154.
17. Lu H.H., Huang J.L., “Microstructure in silicon nitride containing  -phase seeding:
III, grain growth and coalescence,” J. Am. Ceram. Soc. 84 (2001) 1891-1895.
18. Meléndez-Martínez J.J., Domínguez-Rodríguez A. “Creep of silicon nitride,”
Progress in Materials Science 49 (2004) 19-107.
19. Nihara K., and Hirai T., Growth, morphology and slip system of α-Si3N4 single
crystal, J. Mater. Sci. 14 (1979) 1952-1960
20. Nishi Y., Doering R., "Handbook of semiconductor manufacturing technology,"
CRC Press, 2000, pp. 324-325.
21. Nishimura, T.; Xu, X.; Kimoto, K.; Hirosaki, N.; Tanaka, H., "Fabrication of silicon
nitride nanoceramics- Powder preparation and sintering: A review". Science and
Technology of Advanced Materials 8 (2007) 635-643.
22. Nittler L.R., Hoppe P., Alexander C.M.O.D., Amari S., Eberhardt P., Gao X., Lewis
R.S., Strebel R., Walker R.M., Zinner E., “Silicon nitride from supernovae,” The
Astrophysical J., 453 (1995) L25-L28.
23. Okada K., Fukuyama K., Kameshima Y., “Characterization of surface-oxidized
phase in silicon-nitride and silicon oxynitride powders by X-ray photoelectron
spectroscopy,” J. Am. Ceram. Soc. 78 (1995) 2021-2026.
24. Peuckert M., Greil P., “Oxygen distribution in silicon nitride powders,” J. Mater. Sci .
22 (1987) 3717-3720.
25. Qin G.G., Liu X.S., Ma S.Y., Lin J., Yao G.Q., Lin X.Y., Lin K.X.,
“Photoluminescence mechanism for blue-light-emitting poros silicon,” Phys. Rev. B
55 (1997) 12876-12879.
26. Reimanis I.E., Suematsu H., Petrovic J.J., Mitchell T.E., “Mechanical properties of
single crystal Si3N4”, J. Am. Ceram. Soc. 79 (1996) 2065-2073.
27. Riedel R., Chen I.W., “Ceramic science and technology, synthesis and processing,”
John Wiley & Sons, 2011, pp. 554 and references therein.
28. Sekine T., “Shock synthesis of cubic silicon nitride,” J. Am. Ceram. Soc., 85 (2002)
113-116.
29. Szépvölgyi J., Riley F.J., Mohai-Toth I., Bertóti I., Gilbart E., “Composition and
microstructure of nanosized, amorphous and crystalline silicon nitride powders
before, during and after densification,” J. Mater. Chem. 6 (1996) 1175-1186.
30. Wada N., Solin S.A., Wong J., prochazka S., “Raman and IR absorption
spectroscopic studies on ,  and amorphous Si3N4,” J. Noncrystalline Solids 43
(1981) 7-15.
31. Wagner R.S., Ellis W.C., “Vapor-liquid-solid mechanism of single crystal growth,”
Appl. Phys. Lett. 4 (1964) 89-91.
32. Wang C.M., “Fine structural features in α-silicon nitride powder particles and their
implications,” J Am. Ceram. Soc.78 (1995) 3393-3396.
33. Wang C.M., Pan X.Q., Rühle M., “Origin of dislocation loops in α-silicon nitride,”
J. Mater. Res. 11 (1996a) 1725-1732.
34. Wang C.M., Pan X., Rühle M., Riley F.L., Mitomo M., “Review: Silicon nitride
crystal structure and observations of lattice defects,“ J. Mater. Sci. 11 (1996b) 5281-
5298.
35. Wang X.S., Zhai G., Yang J., Cui N., “Crystalline Si3N4 thin films on Si(111) and
the 4×4 reconstruction on Si3N4(0001),” Phys. Rev. B 60 (1999) R2146-R1249.
36. Wu C.L., Hsieh J.L., Hsueh H.D., Gwo S., “Thermal nitridation of the Si(111)-(7×7)
surface studied by scanning tunneling microscopy and spectroscopy,” Phys. Rev. B
65 (2002) 045309.
37. Wu C.L., Wang J.C., Chan M.H., Chen T.T., Gwo S., “Heteroepitaxy of GaN on
Si(111) realized with a coincident-interface AlN/β-Si3N4(0001) double-buffer
structure,” Appl. Phys. Lett. 83 (2003) 4530-4532.
38. Xu Y.N., Ching W. Y., “Electronic structure and optical properties of  and phases
of silicon nitride, silicon oxynitride, and with comparison to silicon dioxide,” Phys.
Rev. B 51 (1995) 17379-17389.
39. Zhu H.L., Han F.D., Bi J.Q., Bai Y.J., Qi Y.X., Pang L.L., Wang C.G., Li S.J., Lu
C.W., “Facile synthesis of Si3N4 nanocrystals via an organic-inorganic reaction
route,” J. Am. Ceram. Soc. 92 (2009) 535-538.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code