Responsive image
博碩士論文 etd-0606116-102736 詳細資訊
Title page for etd-0606116-102736
論文名稱
Title
耐火金屬鉭在碳-矽-氧-氫及真空環境受脈衝雷射剝熔蝕的相行為
Phase behavior of refractory metal Ta upon pulsed laser ablation in C-Si-O-H and vacuum- environment
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
75
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-06-28
繳交日期
Date of Submission
2016-07-06
關鍵字
Keywords
核殼結構、Ta2O5鬚晶、bct態α-Ta顆粒、磊晶關係、氧化鉭、γ-TaC1−x顆粒、岩鹽結構、脈衝雷射剝熔蝕
epitaxy development, core-shell structure, γ-TaC1-x particulates, rocksalt-type structure, PLA, Ta2O5 whiskers, tantalum oxides, bct-type α-Ta particle
統計
Statistics
本論文已被瀏覽 5693 次,被下載 33
The thesis/dissertation has been browsed 5693 times, has been downloaded 33 times.
中文摘要
本文為多晶鉭於含碳真空、四乙基正矽酸鹽(tetraethyl orthosilicate,TEOS)、空氣以及0.25M氨水環境中,進行脈衝雷射剝熔蝕(Pulse Laser Ablation, PLA),造成相變化與奈米顆粒聚簇行為的比較研究。
根據X光繞射及穿透式電子顯微鏡觀察,鉭於含碳真空(5×10 -5 torr)中,進行脈衝雷射剝熔蝕,無論轟擊時間為5或30秒,都可以在含碳火棉膠乘載膜上堆積具有體心立方結構,粒徑為奈米至次微米的球狀鉭顆粒。這些顆粒摻雜了碳氧氫元素,而且進一步被非晶質碳氧氫膜包裹反應,形成具有波狀週期約0.27 nm富鉭中間層的核殼結構。此外還有被非晶質碳氧氫膜包裹的岩鹽態γ-TaC1−x小顆粒。
鉭於還原性液體TEOS中經脈衝雷射剝熔蝕,產生的奈米凝固顆粒、奈米凝聚物,則主要為摻雜了Si-O-H具有岩鹽結構的非計量碳化鉭(γ-TaC1−x ),以及摻雜了C-Si-O-H,具有體心立方(bcc)的α-Ta和具有光學異向性呈現干涉色的體心正方(bct, c/a = 1.27)α-Ta,並且共同展現可見光吸收波段。其中γ-TaC1−x顆粒及奈米凝聚物具有發達的{111}表面,相互凝聚貼合,形成具有{111}雙晶面及疊差的多晶體。而bct態α-Ta 顆粒偶爾有間隙位置碳原子造成的(100)表面,並且與γ-TaC1−x顆粒相互聚簇,達成[013]軸向相互平行的準磊晶(partial epitaxy)關係。而矽化鉭石墨烯或石墨則難以從TEOS環境中雷射轟擊鉭靶的圍冪(plume)中形成。
至於鉭在氧化性環境的脈衝雷射剝熔蝕結果:在空氣中先形成Ta4O/TaOx/Ta2O5奈米核種再發展為Ta2O5鬚晶;在氨水環境,則形成非晶Ta-O凝聚物,由其電子散射對比推論,除了短或額外中程序化之外,應該具有不均勻分佈的Ta原子團聚。
Abstract
This research is about phase behavior of the particulates and condensatesproduced by a dynamic process of pulsed laser ablation (PLA) of tantalum polycrystalin C-bearing vacuum, air, tetraethyl orthosilicate (TEOS) and oxidizing environments, i.e., air, and 0.25 M aqueous ammonia for comparative X-ray diffraction and electron microscopic characterizations.
PLA of Ta in vacuum for deposition on a C-coated collodion film caused theformation of C-O- H dopedα-Ta with body-centered cubic (bcc) structure and O-H doped γ-TaC1-x with rocksalt-type structure. Such phase assemblage occurred asspherical particulates ranging from nm to submicron size and encapsulated with C-O-H amorphous film as core-shell structure. The α-Ta particulates tended to react with the C-coated collodion film to form an interdiffusion zone of lamellar Ta with ca. 0.27nm layer periodicity within the core-shell structure.
The sample produced by PLA of Ta plate in reducing TEOS are mainlyparticulates and nanocondensates of Si-C-O-H-doped α-Ta and even body-centered tetragonal (bct) α-Ta (c/a = 1.27) with optical anisotropy as manifested by the interference color, and γ-TaC1−x with varied extent of carbon deficiency for an overall characteristic UV-visible absorbance. The Si-O- H doped γ-TaC1−x particles have well-developed {111} surfaces for mutual coalescence as polycrystal with {111} twinning and faulting. Occasionally, the bct-type α-Ta particle with (100) facet due to interstitial C atoms was found to coalesce with spherical γ-TaC1−x particle in the common [013] zone axis for further epitaxy development. Graphene/graphite and Ta silicide however hardly occurred from the laser plume in the presence of Ta atom clusters in TEOS.

By contrast, PLA of Ta plate in various oxidizing environments (i.e. air and aqueous ammonia) caused the formation of different tantalum oxides. Air environment effectively activated the condensation and off-eutectic solidification processes in laser plume to f form Ta4O/TaOx/Ta2O5 nuclei for further growth as Ta2O5 whiskers. Aqueous ammonia (0.25 M) as a medium for PLA of Ta,however favored the formation of spherical amorphous Ta-O particles with negligible N content yet with significant Ta-based atom clusters as manifested by the electron scattering contrast.
目次 Table of Contents
論文審定書 i
論文公開授權書 ii
致謝 iii
摘要 iv
目錄 vii
圖目錄 viii
附錄目錄 xii

壹、前言 1
貳、實驗流程 4
參、實驗步驟及方法 6
肆、實驗結果 9
伍、討論 12
陸、結論 17
柒、參考文獻 18
圖目錄
圖1、鉭於TEOS脈衝雷射轟擊時間為30分鐘所得物質(α-Ta、TaC1-x)之XRD圖(紅線)、α-Ta多晶靶材的XRD圖(黑線)對照圖 24
圖2、鉭於TEOS脈衝雷射轟擊時間為30分鐘,低角度(6-50°)X-ray繞射結果 24
圖3、鉭靶於TEOS中經脈衝雷射剝蝕30分鐘所得物質之UV-Vis吸收光譜圖 25
圖4、偏光顯微鏡下觀察鉭於TEOS雷射剝蝕30分鐘,轟擊後溶液之奈米凝聚物 26
圖5、鉭靶於TEOS經脈衝雷射剝熔蝕30分鐘之穿透式電子顯微鏡影像:(a)明視野影像圖(b)由(c)圖中所圈選的繞射點所貢獻之暗視野影像圖(c)選區繞射圖,鑑定後確定此為軸向Z=[011]的γ-TaC1-x (d)EDX 27
圖6、鉭靶於TEOS經脈衝雷射剝熔蝕30分鐘之穿透式電子顯微鏡影像:(a)明視野影像圖(b)由(c)圖中所圈選的繞射點所貢獻之暗視野影像圖(c)選區繞射圖,鑑定後確定此為軸向Z=[001]的γ-TaC1-x (d)EDX 28
圖7、鉭靶於TEOS經脈衝雷射剝熔蝕30分鐘之穿透式電子顯微鏡影像:(a)明視野影像圖(b)選區繞射圖(c)、(d)暗視野影像圖(e)EDX,γ-TaC1-x顆粒與bct type α-Ta在軸向為[013]重疊 29
圖8、鉭靶於TEOS經脈衝雷射剝熔蝕30分鐘之穿透式電子顯微鏡影像:(a)明視野影像圖(b)由(c)圖中所圈選的繞射點所貢獻之暗視野影像圖(c)選區繞射圖,鑑定後確定此為軸向Z=[112]γ-TaC1-x (d)EDX 30
圖9、鉭靶於TEOS中脈衝雷射剝蝕(f1064nm-1000mJ)時間30分鐘所得標本之XPS全能譜圖以C1s為284.5eV做校正 31
圖10、鉭靶於TEOS中脈衝雷射剝熔蝕(f1064nm-1000mJ)時間為30分鐘所得標本之拉曼光譜圖 32
圖11、鉭於真空中脈衝雷射轟擊時間為10分鐘所得標本之XRD圖(紅線)、α-Ta多晶靶材的XRD圖(黑線)對照圖 33
圖12、鉭靶於真空中脈衝雷射剝蝕10分鐘所得標本之UV-Vis吸收光譜圖 33
圖13、偏光顯微鏡下觀察鉭於真空中雷射剝蝕,轟擊時間10分鐘之奈米凝聚物 34
圖14、鉭靶於真空經脈衝雷射剝熔蝕5秒之穿透式電子顯微鏡影像:(a)明視野影像圖(b)由(c)圖中所圈選的繞射點所貢獻之暗視野影像圖(c)選區繞射圖,鑑定後確定此為軸向Z=[013]岩鹽結構TaC (d)EDX 35
圖15、為圖14(a)之高解析晶格影像圖(b)、(c)為正方形區域正反傅立葉轉換所得繞射圖(b)鑑定為軸向為[013]的岩鹽結構TaC 36
圖16、鉭靶於真空經脈衝雷射剝熔蝕5秒之穿透式電子顯微鏡影像:(a)明視野影像圖(b)、(c)由(d)圖中所圈選的繞射點所貢獻之暗視野影像圖(d)選區繞射圖,鑑定後確定此為軸向Z=[215]四方晶C-O doped Ta (e)EDX 37
圖17、為圖16(a)之高解析晶格影像圖(b)、(c)圖為正方形區域正反傅立葉轉換所得繞射圖(b)鑑定為軸向為[215]的四方晶C-O doped Ta 38
圖18、鉭靶於真空經脈衝雷射剝熔蝕5秒之穿透式電子顯微鏡影像:(a)兩個球狀γ-TaC1-x顆粒被非晶質(A)顆粒包裹之明視野影像圖(b)軸向為[013]選區繞射圖(c)由(b)圖中所圈選的繞射點所貢獻之暗視野影像圖(d)非特定軸向,但包含顆粒I和II的選區繞射圖(e)、(f)由圖(d)標示繞射點所貢獻的暗視野影像圖(g)EDX分析 39
圖19、鉭靶於真空中經脈衝雷射剝熔蝕5秒之穿透式電子顯微鏡影像:(a)明視野影像圖(b)由(c)圖中所圈選的繞射點所貢獻之暗視野影像圖(c)選區繞射圖,鑑定後確定此為軸向Z=[113] bcc type α-Ta (a=3.305nm) (d)EDX 40
圖20、(a)圖為圖19(a)中顆粒靠近非晶殼層邊緣的高解析晶格影像圖 (b)、(c)為正方形區域正反傅立葉轉換所得繞射圖(b)鑑定為軸向為Z=[113] 體心立方掺碳氧的Ta有大量(110)差排面 (d110=0.233nm) 41
圖21、鉭靶於真空中經脈衝雷射剝熔蝕30秒之穿透式電子顯微鏡影像:(a)明視野影像圖(b)由(c)圖中所圈選的繞射點所貢獻之暗視野影像圖(c)選區繞射圖,鑑定後確定此為軸向Z=[012] bcc type α-Ta (d)EDX 42
圖22、鉭靶於真空中經脈衝雷射剝熔蝕30秒之穿透式電子顯微鏡影像:(a)明視野影像圖(b)由(c)圖中所圈選的繞射點所貢獻之暗視野影像圖(c)選區繞射圖,鑑定後確定此為軸向Z=[012] bcc type α-Ta (d)EDX 43
圖23、鉭靶於真空中脈衝雷射剝熔蝕(f1064nm-600mJ)時間為10分鐘所得標本之拉曼光譜圖 44
圖24、鉭於氨水中脈衝雷射轟擊時間為20分鐘所得標本之低角度(6-50°)X-ray繞射結果 45
圖25、鉭靶於氨水中脈衝雷射剝蝕30分鐘所得標本之UV-Vis吸收光譜圖 45
圖26、鉭靶於0.25M氨水中經脈衝雷射剝熔蝕20分鐘之穿透式電子顯微鏡影像:(a)明視野影像圖(b)EDX (c)選區繞射圖 46
圖27、鉭靶於0.25M氨水中經脈衝雷射剝熔蝕30分鐘之穿透式電子顯微鏡影像:(a)、(b)明視野影像圖(c)選區繞射圖(d)EDX 46
圖28、鉭靶於0.25M氨水中脈衝雷射剝蝕(f1064nm-1000mJ)時間20分鐘所得標本之XPS全能譜圖 47
圖29、鉭靶於氨水中脈衝雷射剝熔蝕(f1064nm-1000mJ)時間為20分鐘所得標本之拉曼光譜圖 47
圖30、鉭靶於大氣中脈衝雷射剝蝕10分鐘所得標本之UV-Vis吸收光譜圖 48
圖31、偏光顯微鏡下觀察鉭於大氣中脈衝雷射剝蝕5分鐘 49
圖32、偏光顯微鏡下觀察鉭於大氣中脈衝雷射剝蝕10分鐘 49
圖33、偏光顯微鏡下觀察鉭於大氣中脈衝雷射剝蝕5分鐘 50
圖34、(a)掃描式電子顯微鏡下觀察鉭於大氣中脈衝雷射剝蝕5分鐘標本之表面結構(b)EDX 51
圖35、鉭靶於大氣中經脈衝雷射剝熔蝕1分鐘之穿透式電子顯微鏡影像:(a) 選區繞射圖,繞射環主要由Ta4O所貢獻(b)明視野影像圖(c) EDX 52
圖36、鉭靶於大氣中經脈衝雷射剝熔蝕1分鐘之穿透式電子顯微鏡影像:(a) 選區繞射圖,繞射環主要由Ta2O5所貢獻(b)明視野影像圖(c) EDX 53
圖37、 (a)明視野影像圖(b)高解析晶格影像圖(c)正方形區域正反傅立葉轉換所得繞射圖 54


附錄目錄
附錄一 Ta-C二元相圖(Gusev et al. 1996) 55
附錄二 Ta-O二元相圖(Garg et al., 1996) 56
附錄三 Ta-Si 二元相圖(Schlesinger, 1994) 57
附錄四 JCPDS file No. 04-0788 (α-Ta) 58
附錄五 JCPDS file No.25-1280 (β-Ta) 58
附錄六 JCPDS file No.35-0801 (TaC) 59
附錄七 JCPDS file No. 89-4771 (Ta4O) 60
附錄八 JCPDS file No. 33-1390 (Ta2O5) 60
附錄九 於TEOS中脈衝雷射鉭靶材的實驗照 61
附錄十 鉭靶於真空中脈衝雷射實驗照 61
附錄十一 鉭靶於真空和大氣中PLA時間10分鐘所得標本和靶材之對照 62
附錄十二 純0.25M氨水之吸收光譜 62
參考文獻 References
Allred D.D., Wang Q., González-Hernández J., “ Characterization of metal/carbon multilayers by Raman spectroscopy,” in “Layered Structures- Heteroepitaxy, Superlattices, Strain and Metastability,” (eds. Dodson B.W., Schowalter L.J., Pollak F.H., Cunningham J.E.) Mat. Res. Soc. Symp. Proc. Series 160 (1990) 605-610.
Akihiro N., Tatsuro H., Shigeaki S., Hitoshi T., “Preparationand characterization of tantalum carbide (TaC) ceramics” Int. Journal of Refractory Metals and Hard Materials 52 (2015) 203-208.
Burbank R.D., “An X-ray study of b-tantalum,” J. Appl. Cryst. 6 (1973) 217-224.
Burbidge E.M., Burbidge G.R., Fowler W.A., Hoyle F., “Synthesis of the elements in stars,” Reviews of Modern Physics 29 (1957) 547-650.
Christou A., Day H.M., “Silicide formation and interdiffusion effects in Si-Ta, SiO2-Ta and Si-PtSi-Ta thin film structures,” J. Electronic Materials 5 (1976) 1-12.
Ding J., Ma E., Asta M., Ritchie R.O., “Second-nearest-neighbor correlations from connection of atomic packing motifs in metallic glasses and liquids,” Scientific Reports, 5 (2015) 17429-1-9.
Errandonea D., Somayazulu M., Häusermann D., Mao H.K., “Melting of tantalum at high pressure determined by angle dispersive x-ray diffraction in a double-sided laser-heated diamond-anvil cell,” J. Phys. Condens. Matter, 15 (2003) 7635-7649.
Errandonea D., “Improving the understanding of the melting behavior of Mo, Ta, and W at extreme pressures,” Physica B 357 (2005) 356-364
Fukumoto A., Miwa K., “Prediction of hexagonal Ta2O5 structure by fisrt-principles calculations,” Phys. Rev. B 55 (1997) 11155-11160.
Garg S.P., Krishnamurthy N., Awasthi A., Venkatraman M., The O-Ta (oxygen-tantalum) system,” J. Phase Equilibria 17 (1996) 63-64.
Gusev A.I., Rempel A.A., Lipatnikov V.N., Incommensurate ordered phase in nonstoichiometric tantalum carbide, J. Phys.: Condens. Matter, 8 (1996) 8277-8293.
Gusev A.I., Kurlov A.S., Lipatnikov V.N., “Atomic and vacancy ordering in carbide ζ-Ta4C3-x and phase equilibria in the Ta-C system,” J. Solid State Chem., 180 (2007) 3234-3246.
Hase K., Hoshino T., Amano K., “New extremely low carbon bainitic high-strength steel bar having excellent machinability and toughness produced by TPCP technology, Kawasaki Steel Tech. Rep. 47 (2002) 35-41.
Jehn H.J., Olzi E., J. “High temperature solid-solubility limit and phase studies in the system tantalum-oxygen,” Less Common Metals 27 (1972) 297-309.
Jin L., “Preparation and properties of tantalum silicide films on silicon substrates,” Ms. Thesis, New Jersey Institute of Technology, 2000.
Jooste B.R., Viljoen H.J., ”A study of piezoelectric orthorhombic Ta2O5,” J. Mater. Res. 13 (1998) 475-482.
Joseph C., Bourson P., Fontana M.D., “Amorphous to crystalline transformation in Ta2O5 studied by Raman spectroscopy,”J. Raman Spectroscopy 43 (2012) 1146-1150.
Lee S., Doxbeck M., Mueller J., Cipollo M., Cote P., “Texture, structure and phase transformation in sputter beta tantalum coating,” Surface and Coatings Technology 177-178 (2004) 44-51.
Lin S.S., Shen P., Chen S.Y., “Laser ablation synthesis of tantalum carbide particles with specific phase assemblage and special interface,” Appl. Phys. A. 120 (2015a) 75-88.
Lin S.S., Chen S.Y., Shen P., “Pulsed laser synthesis of carbon-overdoped tungsten with body-centered orthorhombic structure and planar defects,” CrystEngComm 17 (2015b) 4937-4949.
Liu X.Q., Han X.D., Zhang Z., Ji L.F., Jiang Y.J., “The crystal structure of high temperature phase Ta2O5,” Acta Materialia 55 (2007) 2385-2396.
Liu C.J., Lin S.S., Zheng Y., Chen S.Y., Shen P. “Pulsed laser synthesis of diamond-type nanoparticles with enhanced Si-C solid solubility and special defects,” CrystEngComm 17 (2015) 9142-9154.
Milanese C., Buscaglia V., Maglia F., Anselmi-Tamburini U., “Growth of tantalum silicides in Ta-Si diffusion couples,” J. Phys. Chem. B 106 (2002) 5859-5863.
Morris R.A., “Microstructural formations and phase Transformation Pathways In tantalum carbides” Tuscaloosa, Alabama (2010)
Nakagawa Y., Gomi Y., “New piezoelectric Ta2O5 thin films,” Appl. Phys. Lett. 46 (1985) 139-140.
Nickerson W., Altstetter C., “Thermodynamic properties of tantalum-oxygen solid solutions,” Scripta Metall. 7 (1973) 377-382.
Porter D.A., Easterling K.E., Sherif M.Y., “Phase Transformations in Metals and Alloys," 2009, Van Nostrand Reinhold Co, 3rd edition and reference herein.
Robertson J., O’Reilly E.P., “Electronic and atomic structure of amorphous carbon,” Phys. Rev. B 35 (1987) 2946.
Schlesinger M.E., “The Si-Ta (silicon-tantalum) system,” J. Phase Equilibria 15 (1994) 90-91.
Truran J.W., “A new interpretation of the heavy-element abundances in metal-deficient stars" Astronomy and Astrophysics 97 (1981) 391-393.
Yan Z., Xiong X., Xiao P., Li J., Huang B., “Conversion process of TaC by combination reaction of Ta with C,” Rare Metal Materials and Engineering Vol.35, Suppl.2 (2006)
Yao Y., Klug, D.D., “Stable structures of tantalum at high temperature and high pressure,” Phys. Rev. B 88 (2013) 054102.
林柏丞, "脈衝雷射於液態或真空剝熔蝕鋅、鋅銅、金銅靶材造成的複合凝聚物與相變化," 國立中山大學101學年度博士論文.(2012)
伍昭憲, "雷射脈衝於水或四乙基矽酸鹽中合成鋯鈦氧化物與碳化物及其微觀組織與光譜分析, " 國立中山大學102學年度博士論文.(2013)
徐上茹, "脈衝雷射於四乙基正矽酸鹽和氨水環境剝熔蝕鈷片合成沾碳矽氫Co1-xO與染氮氫Co3-δO4的結構與光性, " 國立中山大學103學年度碩士論文.(2015)
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code