Responsive image
博碩士論文 etd-0606116-103156 詳細資訊
Title page for etd-0606116-103156
論文名稱
Title
脈衝雷射於真空及四乙基正矽酸鹽環境中剝熔蝕氮化鋁多晶靶材造成的凝聚與結晶行為
Condensation and crystallization upon pulsed laser ablation of AlN polycrystal in vacuum and tetraethyl orthosilicate
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
78
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-06-28
繳交日期
Date of Submission
2016-07-06
關鍵字
Keywords
尖晶石結構、脈衝雷射剝熔蝕、氮化鋁、氧化鋁、四乙基正矽酸鹽
pulsed laser ablation, aluminum nitride, aluminum oxide, TEOS, spinel structure
統計
Statistics
本論文已被瀏覽 5694 次,被下載 26
The thesis/dissertation has been browsed 5694 times, has been downloaded 26 times.
中文摘要
本研究將六方晶系纖鋅礦結構氮化鋁多晶靶材置於真空及四乙基正矽酸鹽液體中,進行脈衝雷射剝熔蝕,並且利用X光繞射、電子顯微鏡以及光譜儀,鑑定所得凝固顆粒及奈米凝聚物的結晶相種類、聚簇行為與光譜特徵。
在真空轟擊纖鋅礦結構氮化鋁靶材並且以火棉膠承接所得顆粒的實驗,產生了C-N摻雜的γ-Al2O3-x與C-N-O摻雜的面心立方結構fcc-Al,或多或少含有順晶缺陷集團,共同造成特徵光澤、X光光電子能譜,以及UV-可見吸收光譜。其中具有尖晶石結構的γ-Al2O3-x凝固顆粒幾乎不出現平整的(hkl)面;而fcc-Al之奈米凝聚物,則有發達的{111}鄰近面,相互聚簇成為有殘留次晶界的多晶。在這種單純由氮化鋁靶材提供Al與N原子的雷射電漿圍冪下進行凝結與凝固,並未合成原本的纖鋅礦結構AlN,但是於真空環境中通入適當氮氣,藉以增加氮氣逸度,結果除了相互平行磊晶聚簇C-N-O摻雜的fcc-Al之外,居然產生新穎尖晶石態的C-O摻雜Al2N1-x也是相互平行磊晶聚簇。
另一方面,於四乙基正矽酸鹽溶液中轟擊纖鋅礦結構氮化鋁靶材,則形成大量C-Si-H摻雜的非晶態AlO1-x球狀顆粒,直徑約20 ~ 200 nm。於同樣四乙基正矽酸鹽溶液中轟擊金屬fcc-Al,則形成尖晶石態C-Si-H摻雜因此含順晶缺陷的γ-Al2O3-x奈米凝聚物,彼此依{111}與{100}表面平行磊晶聚簇成球狀顆粒,經電子束照射幾十分鐘之後,則出現聚片雙晶進而變成非晶質。在四乙基正矽酸鹽溶液轟擊氮化鋁和金屬鋁靶材,所合成的顆粒具有不同UV-可見吸收光譜。
Abstract
This research is about pulsed laser ablation (PLA) of hexagonal wurtzite-type AlN polycrystal in vacuum and tetraethyl orthosilicate (TEOS) to form solidified particulates and nanocondensates for X-ray diffraction, electron microscopy and optical spectroscopic characterizations.
The product produced in vacuum and accumulated on a C-coated collodion film (regardless of Q-switch or free run mode being adopted for PLA) turned out to be C-N doped γ-Al2O3-x and C-N-O doped fcc-type Al with characteristic optical luster, XPS spectrum and UV-visible absorbance. The spinel-type γ-Al2O3-x occurred as solidified particulate hardly with (hkl) facets. The fcc-type Al particulates and nanocondensates however have well-developed ~{111} vicinal surface for mutual coalescence as polycrystal with relic subgrain boundaries. A higher N fugacity by N2 gas purging under a specified flow rate during PLA of AlN in vacuum caused the formation of novel spinel-type C-O doped Al2N1-x besides the C-N-O doped fcc-Al. Such nonrefractory nanocondensates more or less with paracrystalline distribution of defect clusters tended to be parallel epitaxially coalesced into unity leaving abundant relic of the subgrains and dislocations.
By contrast, the sample produced by PLA of AlN in TEOS consists of C-Si-H doped AlO1-x amorphous phase in the form of spherical particles ranging from 20 to 200 nm in diameter. Whereas PLA of metal Al in TEOS, caused additional C-Si-H doped γ-Al2O3-x nanocondensates with paracrystalline distribution of defect clusters and well-developed {111} and {100} surfaces for parallel-epitaxial coalescence as a spherical particle which became polysynthetic twinned and then amorphized upon electron irradiation for tens of minutes. The particles produced by PLA of AlN and Al in TEOS showed different UV-visible absorbances.
目次 Table of Contents
誌謝 iii
摘要 v
目錄 vii
圖目錄 viii
表目錄 xiv
附錄目錄 xv

壹、前言 1
貳、實驗流程 5
參、實驗步驟及方法 7
肆、實驗結果 10
伍、討論 16
陸、結論 20
柒、參考文獻 21
參考文獻 References
Berger L.I., Semiconductor Materials. CRC Press. 1997, pp.123-124.
Brearley A.J., Jones R.H., “Chondritic meteorites,” Ch. 3 in “Planetary Materials (ed. Papike J.J.) Reviews in Mineralogy vol 36, Mineralogical Society of America, 1998, 3-1 to 3-398.
Chen C.H., Huang C.N., Chen S.Y., Shen P., “Crystallographic shear of polymorphic TiO2 nanocondensates with enhanced Cr2O3 dissolution via pulsed laser ablation,” J. Nanoparticle Res. 13 (2011) 3683-3692.
Johnson E.R., Low C.H., “Further spectral observations of grenade glow clouds in the lower thermosphere,” Australian Journal of Physics 20 (1967) 577-582.
Kröger F.A., Vink H.J., “Relations between the concentrations of imperfections in crystalline solids,” Solid State Phys. 3 (1956) 307-435.
Kuang, X.P., Zhang, H.Y., Wang, G.G., Cui, L., Zhu, C., Jin, L., Sun, R., Han, J.C., “Effect of deposition temperature on the microstructure and surface morphology of c-axis oriented AlN films deposited on sapphire substrate by RF reactive magnetron sputtering” Superlattices and Microstructures 52(2012) 931-940.
Lin C.H., Huang C.N., Chen S.Y., Zheng Y., Shen P., “On the enhanced solute content, shape, defect microstructures and optical properties of Ti-doped γ-Al2O3 nanocondensates,” J. Phys. Chem. C 113 (2009) 19112-19118.
Liu C.J., Lin S.S., Zheng Y., Chen S.Y., Shen P., “Pulsed laser synthesis of diamond-type nanoparticles with enhanced Si-C solid solubility and special defects,” CrystEngComm 17 (2015) 9142-9154.
Liu I.L., Shen P., “Onset coarsening/coalescence kinetics of γ-type related Al2O3 nanoparticles: implications to their assembly in a laser ablation process,” J. Eur. Ceram. Soc. 29 (2009) 2235-2248.
Liu I.L., Shen P., Chen S.Y., “Formation of ultrafine and dense -Al2O3 nanoparticles via kinetic phase change in a dynamic process,” J. Nanoparticle Research. 12 (2010a) 2929-2940.
Liu I.L., Shen P., Chen S.Y., “H+ and Al2+-codoped Al2O3 nanoparticles with spinel-type related structures by pulsed laser ablation in water,” J. Phys. Chem. C, 114 (2010b) 7751-7757.
Liu I.L., Chen S.Y., Shen P., “Formation of (H+,Al+,Al2+) co-doped bayerite and -Al2O3 plates from spinel-type related nanocondensates in water,” J. Nanosci. Nanotech. 11 (2011a) 174-181.
Liu I.L., Lin B.C., Chen S.Y., Shen P., “NaAlO2 and -Al2O3 nanoparticles by pulsed laser ablation in aqueous solution,” J. Phys. Chem. C 115 (2011b) 4994-5002
McGuire G.E., Schweitzer G.K.K., Carlson T.A., Inorg. Chem. 12 (1973) 2451
Merrill, P.W., Deutsch, A.J., Keenan, P.C. “Absorption spectra of M-type Mira variables,” Astrophysical Journal 136 (1962) 21-34.
Müller W.F., Weinbruch S., Walter R., Müller-Beneke G., “Transmission electron microscopy of chondrule minerals in the Allende meteorite: constraints on the thermal and deformational history of granular olivine-pyroxene chondrules,” Planet Space Sci. 43 (1995) 469-483.
Oparin A.I., Morgulis S., “The origin of life,” 2nd edition, Dover Publications, Inc. Mineola, New York, 2003, p.96.
Pan C., Chen S.Y., Shen P., “Laser ablation condensation, coalescence and phase change of dense γ-Al2O3 particles,” J. Phy. Chem. B 110 (2006). 24340-24345.
Pan C., Shen P., Chen S.Y., “Condensation, crystallization and coalescence of amorphous Al2O3 nanoparticles,” J. Cryst. Growth 299 (2007) 393-398.
Pan C., Chen S.Y., Shen P., “Photoluminescence and transformation of dense Al2O3:Cr3+ condensates synthesized by laser ablation route,” J. Cryst. Growth 310 (2008) 699-705.
Tyte D.C., “Red (B2Π–A2σ) band system of aluminium monoxide,” Nature 202 (1964):383-384.
Tyte D.C., “The dissociation energy of aluminium monoxide,” Proc. Phys. Soc. 92 (1967) 1134-1137.
Wagner C.D., Passoja D.E., Hillery H.F., Kinisky T.G., Six H.A., Jansen W.T., Taylor J.A., “Auger and photoelectron line energy relationships in aluminum-oxygen and silicon-oxygen compounds,” J. Vac. Sci. Technol. 21 (1982) 933-944
Wagner C.D., Six H.A., Jansen W.T., Taylor J.A., Appl. Surf. Sci. 9 (1981) 203
Wang, Z, Tait, K., Zhao, Y., Schiferl, D., Zha, C.S., Uchida, H., and Downs, R.T., “Size-induced reduction of transition pressure and enhancement of bulk modulus of AlN nanocrystals,” Journal of Physical Chemistry B 108 (2004) 11506-11508.
Wriedt H.A., “The Al-O (aluminum-oxygen) system,” Bulletin of Alloy Phase Diagrams 6 (1985) 548-549.
Wriedt H.A., “The Al-N (aluminum-nitrogen) system,” Bulletin of Alloy Phase Diagrams 7 (1986) 329-330.
Xu K., Tan H., “Shock wave chemistry and ultrafine diamond from explosives in China,” Ch. 6 in “High-pressure shock compression of solids V- shock chemistry with implications to meteorite impacts,” (eds. Davison L., Horie Y., Sekine T.) Springer-Verlag, New York, 139-162.
劉宜隴(2007),“Al2O3-SnO2二元系統的介穩析出與奈米Al2O3粉末之早期燒結”,國立中山大學碩士論文,2007。
劉家如(2015),“脈衝雷射於四乙基正矽酸鹽中合成碳氧氫摻雜矽奈米結晶和球狀石墨烯”,國立中山大學碩士論文,2015。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code