Responsive image
博碩士論文 etd-0606116-164717 詳細資訊
Title page for etd-0606116-164717
論文名稱
Title
應用電力潮流追蹤與增強型粒子群演算法解決電力壅塞問題
Using Power Tracing with Enhanced Particle Swarm Optimization to Solve Power Congestion Problem
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
120
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-06-16
繳交日期
Date of Submission
2016-07-14
關鍵字
Keywords
最佳化調度、增強型粒子群最佳化演算法、挑選機制、電力潮流追蹤法、壅塞管理
Enhance Particle Swarm Optimization, Congestion Management, Power Flow Tracing Method, Selective Mechanism, Optimization Power Flow
統計
Statistics
本論文已被瀏覽 5741 次,被下載 135
The thesis/dissertation has been browsed 5741 times, has been downloaded 135 times.
中文摘要
隨著許多先進國家電力事業市場大都已自由化的趨勢,我國的電力事業也正規劃朝著電力市場自由化發展,然而電力市場自由化也帶來了許多問題,例如:傳輸系統與電力網的壅塞問題、電力代輸的費用分攤(Wheeling Charge, WC)、或線路的損失分攤等等,本論文主要即探討電力系統的「壅塞管理」(Congestion Management, CM);假設電力系統未預期的發生了緊急事故,此時會導致某些輸電線路有壅塞的現象產生,因此該如何能有效且迅速的對電力系統進行最佳化的調度即為本論文的研究重點。

  本論文的研究將模擬事故發生時其電力系統的線路壅塞現象,並利用等效電流注入法(Equivalent Current Injection, ECI)來計算電力潮流解並進行潮流追蹤,所使用的方法為電力潮流追蹤法(Power Flow Tracing Method, PFTM),並以本研究設計的篩選機制挑選出系統中對該壅塞線路的潮流貢獻程度比較大的發電端或供電端,輔以增強型粒子群最佳化演算法(Enhance Particle Swarm Optimization, EPSO)對這些追蹤出來的發電端或供電端進行最佳化調度以解決系統線路壅塞。本研究最後以台電345KV電力系統的實際單線圖進行模擬測試,以作為本論文解決電力系統發生線路壅塞問題的案例研究。
Abstract
Many countries have advanced their power grid with deregulation. Electric power network in Taiwan is also under pressure to deregulate now. Power deregulation will need some considerations, e.g., congestion problem, wheeling charge, transmission loss allocations and so on. In this thesis, Congestion Management(CM) has been studied, assuming the outages in the power network resulting in some congestions. The power system needs to be re-dispatched efficiently and quickly.

In the thesis, congestion were simulated for power outages and the Power Flow Tracing Method(PFTM) was used, based on the equivalent current model. The generators with high contribution to the congested lines were chosen by a selective mechanism, and these generators were re-dispatched with Enhance Particle Swarm Optimization(EPSO) method to solve the congestion problem. In the thesis, test cases of Taipower 345KV system were built and simulated.
目次 Table of Contents
論文審定書 i
誌謝 ii
摘要 iii
Abstract iv
目錄 v
圖次 viii
表次 x
第一章 緒論 1
1.1 研究背景與動機 1
1.2 論文目的與方法 2
1.3 論文架構 3
第二章 等效電流注入法與電力潮流追蹤理論 5
2.1 前言 5
2.2 電流注入為基礎的輸電系統負載潮流推導 5
2.2.1 具常數亞可比矩陣之負載匯流排模型推導 6
2.2.2 電壓控制匯流排模型推導 8
2.2.3 具常數亞可比矩陣之假設法則 10
2.3 等效電流為基礎之電力潮流追蹤法 15
2.3.1 逆向潮流追蹤模型 15
2.3.2 順向潮流追蹤模型 21
第三章 增強型粒子群最佳化演算法之設計 26
3.1 粒子群最佳化演算法 26
3.2 改良式具時變加速度係數粒子群最佳化演算法(MPSO-TVAC) 30
3.2.1 粒子群最佳化演算法的變化型 30
3.2.2 改良式具時變加速度係數粒子群最佳化演算法 32
3.3 鄰近擾動粒子群最佳化演算法(NR-PSO) 33
3.4 增強型粒子群最佳化演算法之設計 35
3.4.1 整合與改善最佳化演算法 35
3.4.2 演算法整體流程 39
第四章 設計解決電力網壅塞問題的最佳化模型 41
4.1 壅塞問題描述 41
4.1.1 目標函數 42
4.1.2 等式限制式及不等式限制式 44
4.2 設計解決壅塞問題之模型 46
4.2.1 所有機組重新調度之缺點 46
4.2.2 指定機組重新調度 47
4.2.3 調度量之探討 48
4.3 以貢獻度篩選機組來考慮發電端升降載 49
4.3.1 挑選機制 50
4.3.2 模擬流程與步驟 53
4.4 以貢獻度篩選機組來考慮發電端升降載及負載端降載 55
4.4.1 補償機制 56
4.4.2 模擬流程與步驟 58
第五章 系統測試與案例分析 60
5.1 以IEEE30Bus為測試系統來進行解壅測試 64
5.1.1 增強型粒子群最佳化演算法之強韌性測試 64
5.1.2 解除壅塞測試 67
5.2 以台電345KV為測試系統且不考慮負載端調度的解壅測試 71
5.2.1 增強型粒子群最佳化演算法之強韌性測試 71
5.2.2 案例一 : 單一事故測試 74
5.2.3 案例二 : 雙重事故測試 80
5.3 以台電345KV為測試系統且考慮負載端調度的解壅測試 87
5.3.1 所有發電機組參與調度解決壅塞測試 87
5.3.2 負載端參與調度解決壅塞測試 91
5.4 最小變動量與最小成本的關係探討 95
第六章 結論與未來發展方向 96
6.1 結論 96
6.2 未來發展方向 97
參考文獻 98
附錄 A IEEE30Bus系統線路資料 103
附錄 B 台電345KV系統線路資料 105
參考文獻 References
[1] 王京明,「電業自由化後交易成本及相關費用分攤之研究」,財團法人中華經濟研究院,民國96年4月。
[2] 陳曦照,「電業自由化環境下競價為基礎之電力調度及發電業競標策略之研究」,博士論文,國立中山大學電機工程研究所,民國90年5月。
[3] K. Poongothai, S. Prabhakar Karthikeyan, Jacob Raglend, Sarat Kumar Sahoo and K. Sathish Kumar, “Optimal Multi Area Wheeling using Genetic Algorithm,” 2014 International Conference on Control, Instrumentation, Communication and Computational Technologies (ICCICCT), pp. 1441 – 1446, July 2014.
[4] Harleen Kaur, Puneet Kumar, Anuja Sharma and Nikhil Kamaiya, “Power System Restructuring & Competitive Wholesale Electricity Markets in Deregulated Environment,” 2014 Innovative Applications of Computational Intelligence on Power, Energy and Controls with their Impact on Humanity (CIPECH), pp. 233 – 237, November 2014.
[5] Vijayakumar, Krishnasamy and Jegatheesan, “Optimal Location of Multiple TCSCs for Congestion Management,” 2013 IEEE 7th International Power Engineering and Optimization Conference (PEOCO), pp. 103 – 108, June 2013.
[6] Alberto D. Del Rosso and Steven W. Eckroad, “Energy Storage for Relief of Transmission Congestion,” IEEE Transactions on Smart Grid, vol. 5, no 2, pp. 1138 - 1146, March 2014.
[7] Brecht Zwaenepoel, Tine L. Vandoorn, Greet Van Eetvelde and Lieven Vandevelde, “Virtual Power Plant to deliver congestion management and frequency restoration reserve,” 2014 IEEE 5th International Symposium on Power Electronics for Distributed Generation Systems (PEDG), pp. 1 – 4, June 2014.
[8] S. Sivakumar and D. Devaraj, ”Congestion Management in Deregulated Power system by Rescheduling of Generators Using Genetic Algorithm,” 2014 International Conference on Power Signals Control and Computation (EPSCICON), pp. 1 – 5, January 2014.
[9] Jasmy Paul, Tibin Joseph and Sasidharan Sreedharan, “PSO Based Generator Rescheduling For Relieving Transmission Overload,” 2013 International Multi-Conference on Automation, Computing, Communication, Control and Compressed Sensing (iMac4s), pp. 409 – 414, March 2013.
[10] S. Jalilzadeh and Y. Pirhayati, “An Improved Genetic Algorithm for Unit Commitment Problem with Lowest Cost,” IEEE International Conference on Intelligent Computing and Intelligent Systems, 2009. ICIS 2009, pp. 571 - 575, November 2009.
[11] Jong-Bae Park, Ki-Song Lee, Joong-Rin Shin and Kwang Y. Lee, “A Particle Swarm Optimization for Economic Dispatch with Nonsmooth Cost Functions,” IEEE Transactions on Power Systems, vol. 20, no. 1, pp. 34 – 42, February 2005.
[12] W. M. Lin, C. H. Huang and T. S. Zhan, “A Hybrid Current-Power Optimal Power Flow Technique,” IEEE Transactions on Power Systems, vol. 23, no. 1, pp. 177 - 185, February 2008.
[13] 詹東昇,「應用以電流為基礎的網路模型於輸電系統負載潮流之研究」,國立中山大學電機研究所碩士論文,民國88年6月。
[14] W. M. Lin and J. H. Teng, “Phase-Decoupled Load Flow Method for Radial and Weakly-Mesh Distribution Networks,” IEE Proc.-Generation, Transmission and Distribution, vol. 143, no. 1, pp. 39 - 42, January 1996.
[15] W. M. Lin, Yuh-Sheng Su, Hong-Chan Chin and J. H. Teng, “Three-Phase Unbalanced Distribution Power Flow Solutions With Minimum Data Preparation,” IEEE Transactions on Power Systems, vol. 14, no. 3, pp. 1178 - 1183, August 1999.
[16] 詹東昇,「多頻電力潮流模型與電力市場潮流追蹤之研究」,國立中山大學電機研究所博士論文,民國94年6月。
[17] Yan-Liang Li, Wei Shao, Long You and Bing-Zhong Wang, “An Improved PSO Algorithm and Its Application to UWB Antenna Design,” IEEE Antennas and Wireless Propagation Letters, vol. 12, pp. 1236 - 1239, September 2013.
[18] 林聖智,「台灣電力調度碳排放總量管制之可行性評估」,國立中山大學電機研究所碩士論文,民國102年6月。
[19] M. Dorigo, V. Maniezzo and A. Colorni, “The ant system: Optimization by a colony of cooperating agents,” IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 26, no. 1, pp. 29 - 41, February 1996.
[20] R. G. Reynolds and W. Sverdlik, “Problem solving using cultural algorithms,” Proceedings of the First IEEE Conference on Evolutionary Computation, 1994. IEEE World Congress on Computational Intelligence, vol. 2, pp. 645 – 650, January 1994.
[21] J. Kennedy and R. Eberhart, “Particle swarm optimization,” IEEE International Conference on Neural Networks, 1995. Proceedings, vol. 4, pp. 1942 - 1947, November 1995.
[22] Y. Shi and R. C. Eberhart, “Empirical Study of Particle Swarm Optimization,” Proc. IEEE Evol. Comput, vol. 3, pp. 69 - 73, 1999.
[23] S. Cheng, J. S. Tu, C. H. Lv and M. T. Tsay, “A Generalized Regression Neural Network for Solving Economic Dispatch Problem,” ICEE for the 21st Century with focus on Sustainability and Reliability, pp. 113, July 2007.
[24] A. Ratnaweera, S. k. Halgamuge and H. C. Watson, “Self-Organizing Hierarchical Particle Swarm Optimization with Time-Varying acceleration coefficients,” IEEE Transactions on Evolutionary Computation, vol. 8, no. 3, pp. 240 - 255, June 2004.
[25] K. T. Chaturvedi, M. Pandit and L. Srivastava, “Self-Organizing Hierarchical 102 Particle Swarm Optimization for Nonconvex Economic Dispatch,” IEEE Transactions on Power System, vol. 23, no. 3, pp. 1079 - 1087, August 2008.
[26] 吳元康、賴重瑀,「典型電力市場壅塞管理與相對應的電價機制」,台電工程月刊第811期,民國一百零五年三月。
[27] 鐘義順,「應用粒子群演算法於電流基礎之預防式安全限制最佳化電力潮流」,國立中山大學電機研究所碩士論文,民國九十七年一月。
[28] J. Bialek, “Tracing the flow of electricity.” IEE Proceedings-Generation, Transmission and Distribution, vol. 143, no. 4, pp. 313 – 320, July 1996.
[29] J. Bialek, “Identification of source-sink connections in transmission networks,” The 4th International Conference on Power System Control and Management, pp. 200 - 204, April 1996.
[30] J. Bialek and D. B. Tam, “Tracing the generators’ output,” International Conference on Opportunities and Advances in International Electric Power Generation, pp. 133 - 136, March 1996.
[31] D. Kirschen, R. Allan and G. Strbac, “Contributions of individual generators to loads and flows,” IEEE Transactions on Power Systems, vol. 12, no. 1, pp. 52 - 60, February 1997.
[32] G. Strbac, D. Kirschen and S. Ahmed, “Allocating transmission system usage on the basis of traceable contributions of generators and loads to flows,” IEEE Transactions on Power Systems, vol. 13, no. 2, pp. 527 - 534, May 1998.
[33] D. Lirschen and G. Strbac, “Tracing active and reactive power between generators and loads using real and imaginary currents,” IEEE Transactions on Power Systems, vol. 14, no 4, pp. 1312 - 1319, November 1999.
[34] T. C. Ou, K. H. Lu, W. M. Lin, and C. M. Hong, “A study for price-based unit commitment with carbon trading by DI&C simulation,” IEEE International Conference on Industrial Informatics (INDIN 2010), pp. 73 - 78, July 2010.
[35] Ou, Ting-Chia, Tsao, Ta-Peng, Li, Po-Yan, and Jiang, Da-Jyun, “Application of Quantum Ant Colony System for Generation Unit Commitment with Carbon Trading on Smart Grid,” Proc. 34th Symp. Elect. Power Eng., Taiwan, pp. 583 - 588, December 2013.
[36] Tsao, Ta-Peng, Lin, Yi-Hsiang, Lu, Chien-Lin, and Ou, Ting-Chia, “A study of Quantum Genetic Algorithm for Optimal Reactive Power Dispatch of Transmission Systems on Smart Grid Application,” Proc. 34th Symp. Elect. Power Eng., Taiwan, pp. 1083 - 1089, December 2013.
[37] W. M. Lin and T. C. Ou, “Unbalanced distribution network fault analysis with hybrid compensation,” IET Generation, Transmission & Distribution, vol. 5, no. 1, pp. 92 - 100, January 2012.
[38] T. C. Ou, T. P. Tsao, W. M. Lin, C. M. Hong, K. H. Lu, and C. S. Tu, “A novel power flow analysis for microgrid distribution system,” IEEE International Conference on Industrial Electronics and Applications (ICIEA 2013), pp. 1550 - 1555, June 2013.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code