Responsive image
博碩士論文 etd-0606116-172314 詳細資訊
Title page for etd-0606116-172314
論文名稱
Title
比較不同混凝劑與氧化劑處理某淨水廠清水鋁之研究
Comparison of different coagulants and oxidants for treating aluminum in a water treatment plant
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
84
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-06-02
繳交日期
Date of Submission
2016-07-06
關鍵字
Keywords
總鋁、顆粒鋁、飲用水、混凝劑
Coagulant, Drinking water, Total aluminum, Aluminum particles
統計
Statistics
本論文已被瀏覽 5716 次,被下載 0
The thesis/dissertation has been browsed 5716 times, has been downloaded 0 times.
中文摘要
本研究由某水庫原水背景資料可知,A淨水場原水有機物含量偏高。處理後水的鋁含量主要因淨水程序使用之鋁鹽混凝劑殘留存在,由於混凝效率會直接影響到水中殘餘鋁濃度值。
A淨水場原水經杯瓶試驗後,水中殘留鋁型態主要以顆粒鋁(約佔60 %以上)形態存在,先以此原水進行前氧化搭配混凝試驗。在氧化試驗中,將改變次氯酸鈉及高錳酸鉀氧化劑量及氧化攪拌時間,分析氧化後水中溶解鋁及顆粒鋁含量,以了解不同氧化劑對溶解鋁及顆粒鋁氧化程度之影響。再以不同混凝劑對清水中總鋁的抑制效果分析,結果由高到低依序為:氯化鐵>PACl>硫酸鋁混凝劑,結果顯示使用次氯酸鈉氧化劑濃度在0.73~1.5 mg/L及高錳酸鉀氧化劑濃度在0.8~1.27 mg/L後,再添加PACl混凝劑15 mg/L下,對水中重金屬可符合飲用水水質標準對水中鋁濃度小於0.4 mg/L之規範。
Abstract
According to the background investigation of the raw water from a certain reservoir, the raw water of a water treatment plant was found had a higher organic content. The aluminum contents of treated drinking water were due to the residue usage of aluminum coagulant existed during the water purification program. Because the efficiency of coagulation would directly affect the concentration of residue aluminum , the improving strategy of residual aluminum in drinking water was related to the dosage of coagulants added and efficiency of coagulation.

The tests results by jar test showed the main type of Al in water was existed as particles (about 60%). To understand the solution and oxidation degrees by changing the amount of sodium hypochlorite and potassium permanganate and mixing time with different oxidants were discussed. Analyzing the Al inhibitory effect by adding different coagulant, the results ranking from high to low were ferric chloride, PACl and aluminum sulfate. By using 0.73-1.5 mg/L sodium hypochlorite and 0.8-1.27 mg/L potassium permanganate, then added 15 mg/L PACl, the concentration of Al in treated water could be less than 0.4 mg/L which could pass the water quality of drinking water standard.
目次 Table of Contents
論文審定書 i
摘 要 ii
Abstract iii
目 錄 iv
表 次 vi
圖 次 vii
第一章 前 言 1
1-1 研究緣起 1
1-2 研究內容 2
第二章 研究背景與文獻整理 3
2-1 淨水場原水來源及供水現況 3
2-2 原水及清水鋁性質及控制方法 9
2-3 聚氯化鋁的化學性質與混凝機制 12
2-4 混凝藥劑及特性 16
2-5 混凝劑去除原水濁度之效能評估 18
2-6 高錳酸鉀氧化劑特性 20
第三章 研究方法及步驟 22
3-1 研究方法 22
3-2 水質項目與分析方法 24
3-3 採樣前置作業與品保品管作業 26
3-4 杯瓶試驗方法 26
3-5 分析儀器及設備 34
第四章 結果與討論 35
4-1 A淨水場豐水期與枯水期間各處理程序出水水質 35
4-2 不同氧化劑與不同混凝劑下之重金屬去除效率 48
第五章 結論與建議 66
5-1 結論 66
5-2 建議 68
參考文獻
附錄Ⅰ A淨水場原水水質分析報表
附錄Ⅱ A淨水場各處理水質分析報表
參考文獻 References
Yuan, B., Dongmei Xu, Fei Li, Ming-Lai Fu,2013, Removal efficiency and possible pathway of odor compounds(2-methylisoborneol and geosmin) by ozonation, Water Supply Res T., 117, 53-58.
Lin, B., Xie, Wang, Hong Liu, 2008, Using low intensity ultrasound to improve the efficiency of biological phosphorus removal, Ultrasonics Sonochemistry - Ultrason Sonochemistry, 15(5), 775-781.
Cook, D., Newcombe, G., Sztajnbok, P., 2001. The Application of Powdered Activated Carbon for MIB and Geosmin Removal: Predicting PAC Doses in Four Raw Waters, Water Research, 35, 1325-1333.
Considine, R., Denoyel R., Pendleton, P., Schumann, R. and Wong, S.H., 2001. The Influence of Surface Chemistry on Activated Carbon Adsorption of 2-Methylisoborneol from Aqueous Solution, Colloids andSurfaces A: Physicochemical and Engineering Aspects, 179, 271-280.
Croue, J.P., 2004, Isolation of Humic and Non-Humic NOM Fractions: Structural Characterization. Environ Monit Assess, 92(1-3), 193-207.
Cao, C., Zheng, B., Chen, Z., Minsheng Huang, Jialei Zhang, 2011, Eutrophication and algal blooms in channel type reservoirs: A novel enclosure experiment by changing light intensity. J Environ Sci (China). 23(10), 1660-70.
Dong, B. and Jiang, S., 2009. Characteristics and behaviors of soluble microbial products in sequencing batch membrane bioreactors at various sludge retention times. Desalination, 243, page. 240–250.
Bruce, D., P. Westerhoff, A. Brawley-Chesworth, 2002, Removal of 2-methylisoborneol and geosmin in surface water treatment plants in Arizona, J. Water Supply Res. T., 51, 183–197.
Cook, D., Newcombe G. and Sztajnbok P., 2001, The application of powdered activated carbon for MIB and geosmin removal: predicting PAC doses in four raw waters, Water Research, 35(5), 1325-1333.
Escobar, I. C., Randall, A. A., 2001. Assimilable organic carbon (AOC) and biodegradable dissolved organic carbon (BDOC): complementary measurements. Water Research, 35(18), 4444–4454.
Evangelos A Voudrias, Richard A Larson, Vernon L Snoeyink, 1985. Effects of activated carbon on the reactions of combined chlorine with phenols, Water Research, 19(7), 909–915.
Burlingame, G.,A., I.H. Suffet, D. Khiari and A.L. Bruchet, 2004, Development of an odor wheel classification scheme for wastewater, Water Science & Technology, 49(9), 201-209.
Haibo Lia, Yinghua Lia, Zongqiang Gongb, Xiaodong Lic, 2013, Performance study of vertical flow constructed wetlands for phosphorus removal with water quenched slag as a substrate, Ecological Engineering, 53, 39-45.
Suffet, I.,.H., and P. Rosenfeld, 2007, The anatomy of odour wheels for odours of drinking water, wastewater, compost and the urban environment, Water Science & Technology, 55(5), 335-344.
Kenji Takeno, Ken Sasaki, Masanori Watanabe, Tadayuki Kaneyasu, Naomichi Nishio, 1999, Removal of phosphorus from oyster farm mud sediment using a photosynthetic bacterium, Rhodobacter sphaeroides IL106, Journal of Bioscience and Bioengineering, 88(4), 410-415.
Karine E. Borne, 2014, Floating treatment wetland influences on the fate and removal performance of phosphorus in stormwater retention ponds, Ecological Engineering, 69, 76-82.
Kalkan, H., P., Beriat, Y. Yardimci, T.C. Pearson, 2011, Detection of contaminated hazelnuts and ground red chili pepper flakes by multispectral imaging, Computers and Electronics in Agriculture, 77, 28-34.
Luong N. Nguyen , Faisal I. Hai , Jinguo Kang , William E. Price , Long D. Nghiem, 2012. Removal of trace organic contaminants by a membrane bioreactor–granular activated carbon (MBR–GAC) system.
Lalezary, S., Pirbazari, M. and McGuire, 1986. Oxidation of Five Earthy-Musty Taste and Odor Compounds, J. AWWA, 78:3, 62-69.
Lim J. L., Okada M., 2005. Regeneration of granular activated carbon using ultrasound. Ultrason Sonochem, 12(4), 277-82.
Lionel Ho, Gayle Newcombe, 2005, Effect of NOM, turbidity and floc size on the PAC adsorption of MIB during alum coagulation,Water Research, 39, 3668-3674.
Stephenson, T., 2000. Membrane bioreactors for wastewater treatment.
Suffet, I.H., Khiari, D., and A. Bruchet, 1999, The Drinking Water Taste and Odor Wheel for the Millennium: Beyond Geosmin and 2-Methylisoborneol, Water Science & Technology, 40, 1-13.
Swietlik J., Raczyk-Stanislawiak U., Bilozor S., Ilecki W., Nawrocki J., 2002, Adsorption of natural organic matter oxidized with ClO2 on granular activated carbon, Water Research, 36, 2328-2336.
Stalter, D., Magdeburg, A., Wagner, M., Oehlmann, J., 2011, Ozonation and activated carbon treatment of sewage effluents: removal of endocrine activity and cytotoxicity. Water Research, 45(3), 1015~1024.
Wang Haijun, Wang Hongzhu, 2009, Mitigation of lake eutrophication: Loosen nitrogen control and focus on phosphorus abatement. Progress in Natural Science, 19(10), 1445–1451.
Yang, J. S., Yuan, D. X., Weng, T. P., 2010. Pilot study of drinking water treatment with GAC, O3/BAC and membrane processes in Kinmen Island, Taiwan. Desalination, 263(1), 271-278.
Zhongming Li, Shuying Wang, Weitang Zhang, Lei Miao, Tianhao Cao, Yongzhen Peng, 2015., Nitrogen removal from medium-age landfill leachate via post-denitrification driven by PHAs and glycogen in a single sequencing batch reactor. Bioresource Technology, Volume 169, October 2014, Pages 773-777.
劉志仁,1996,水庫優養化對水質影響集水質處理研究,台灣大學環境工程研究所博士論文。
李丁來,2007,淨水程序中溶解性有機物之去除:生物濾床及污泥毯澄清池之操作評估,交通大學環境工程研究所博士論文。
王至誠,2011,建立同時部分硝化、厭氧氨氧化及脫硝系統,國立交通大學環境工程系所博士論文。
曾韋斌,2013,以生物活性碳濾床方法去除水中微量有機物之研究,國立中山大學環境工程研究所博士論文。
郭修志,2006,自來水配水系統消毒副產物生成模式之研究,國立臺灣大學環境工程學研究所。
吳建璋,2013,生物濾床方法處理東港溪原水效能探討,國立中山大學環境工程研究所碩士論文。
森若美代子、齊家,台灣地區水庫浮游藻類圖鑑,行政院環境保護署環境檢驗所。
吳俊宗,2005,藻類與水質。
楊州斌,2005,台灣水資源利用與水庫水質。
蕭獻章、李丁來、陳文祥、甘其銓、萬孟瑋、劉泰麟,2009,以不同氧化劑處理地下水中鐵錳之研究,水利產業研討會,國立成功大學。
葉宣顯、鄭幸雄、曾怡禎、林財富,2000,澄清湖高級淨水處理模型廠試驗研究(第二年),成功大學環境工程系研究報告。
甘其銓,2013,淨水場清水鋁含量改善策略(第二年),台灣自來水公司。
甘其銓、唐俊成、樂育麟,淨水場清水鋁含量改善對策與措施,自來水會刊,31(3),50-57。
李俊德、陳是瑩、王月花、鄭明蕊,李名輝,澄清湖原水臭味控制方法之研究,國立成功大學環境工程研究報告第45號。
行政院環保署網站,http://www.epa.gov.tw.
行政院環境保護署環境檢驗所 http://www.niea.gov.tw/
維基百科,http://zh.wikipedia.org
經濟部水利署南區水資源局,http://www.wrasb.gov.tw/
行政院全國環境水質監測資訊網,http://wq.epa.gov.tw
阿公店水庫水門操作規定修正規定100.07.08。
彭惠君,2001,高錳酸鉀對水中有機物去除機制之研究,國立成功大學環境工程研究所碩士論文。
傅崇德,氨氮管制之現況及處理技術展望,環保簡訊第20期,1-10。
李文善 (2007) “預先混凝處理之截留式微過濾薄膜回收淨水場砂濾反洗水之研究:膠羽特性影響”,國立交通大學環境工程研究所碩士論文。
林志麟 (2008) “聚氯化鋁水解物種之混凝行為:膠體去穩定機制及膠羽形成分析”,國立交通大學環境工程研究所博士論文。
陳韋弘 (2005) “混凝劑 Al 型態對高濁水混凝行為之影響”,國立交通大學環境 工程研究所碩士論文。
陳曼莉 (2008) “自來水設施維護管理指南 第七篇 淨水設施”,中華民國自來水 協會技術報告。
黃志彬 (2008) “水公司淨水場低濁度難處理原水處理最適化之研究”,台灣自來 水公司研究報告七月。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.148.102.90
論文開放下載的時間是 校外不公開

Your IP address is 3.148.102.90
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code