Responsive image
博碩士論文 etd-0606117-220039 詳細資訊
Title page for etd-0606117-220039
論文名稱
Title
應用於近場無線功率傳輸系統之雙頻線圈模組設計
Dual-Band Coil Module Design for Near-Field Wireless Power Transfer Systems
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
100
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-07-05
繳交日期
Date of Submission
2017-07-06
關鍵字
Keywords
無線功率傳輸、線圈模組、雙頻、多頻、頻率偏移、中繼線圈、近場
coil module, wireless power transfer, dual-band, frequency deviation, repeater, near-field, multi-band
統計
Statistics
本論文已被瀏覽 5770 次,被下載 378
The thesis/dissertation has been browsed 5770 times, has been downloaded 378 times.
中文摘要
多頻線圈模組將能有效地實現多頻段、高功率或快速充電的無線功率傳輸系統。因此,它將成為未來無線功率傳輸的重要研究議題之一。本論文提出一雙頻線圈模組作為實現多頻無線功率傳輸應用的實例。不同於多線圈組的雙頻無線功率傳輸,本論文所提出的線圈模組僅使用一組線圈作為功率耦合傳輸,以避免產生不必要的交互耦合現象。依據所提出的雙頻線圈模組之設計方法,經由適當的線圈參數的選擇,將可提升無線功率傳輸在弱耦合狀態下的效率和避免發生強耦合狀態下的頻率分裂現象。
當兩工作頻率的比率值變大時,雙頻無線功率傳輸將無法有效地運作。為了克服這個問題,本論文進一步提出採用中繼線圈的改良式線圈模組。相對於應用在一般單頻的無線功率傳輸系統,本論文提出了適用於多樣化雙頻線圈模組的中繼線圈之電路分析。所提出的設計方法將可有效地運用在採用中繼線圈的雙頻無線功率傳輸系統。實驗結果的數據都能與所提出的電路設計方法吻合。因此,本論文實現了有效的雙頻線圈模組,而將有助於多頻無線功率傳輸系統的應用實現。
Abstract
Multi-band coil modules facilitate efficient access to distinct-band, high-power, or rapid-charging wireless power transfer (WPT) systems. It will be one of the important WPT research topics in the future. A dual-band WPT coil module is presented as an example of multi-band WPT applications in this dissertation. Different from multi-coil dual-band WPT, no unwanted cross coupling exists in this dual-band coil module because it uses only one coil for power coupling. An analytical process of the dual-band coil module design guideline is presented. By selecting appropriate coil parameters, the improvement of coil power transfer efficiency in the weakly coupling region can be obtained and the frequency splitting in the strongly coupling region can be avoided.
When the frequency ratio between two operating frequencies is large, dual-band WPT do not function efficiently. To overcome this problem, the enhanced dual-band coil modules that adopt repeaters in the WPT system is proposed. In comparison to the conventional analysis of a single-band repeater, the circuit-based analysis for repeaters applied at various dual-band coil modules is presented. The analytical results provide a design methodology applicable to diverse types of dual-band coil modules with a repeater in the WPT system. The experimental results are consistent with the circuit-based analysis. Therefore, efficient dual-band coil modules are obtained in this dissertation and they facilitate the realization and application of multi-band WPT systems.
目次 Table of Contents
論文審定書 i
誌謝 iii
中文摘要 iv
ABSTRACT v
CONTENTS vi
LIST OF FIGURES viii
LIST OF TABLES xiii
CHAPTER 1 INTRODUCTION 1
1.1 Research Motivation 2
1.2 Overview 5
CHAPTER 2 DUAL-BAND WPT COIL MODULE 7
2.1 Dual-Band Coil Design 7
2.2 Dual-Band Coil Module 11
2.2.1. Dual-Band Impedance Matching 12
2.2.2. Dual-Band Coil Module PTE 23
2.3 Experimental Analysis 28
CHAPTER 3 DUAL-BAND EFFICIENCY DISCREPANCY AND WPT REPEATER 34
3.1 Efficiency Discrepancy 34
3.2 WPT Repeater 36
3.2.1 Effect of Repeater on WPT System 37
3.2.2 Coil Module With Odd Repeater 45
CHAPTER 4 DUAL-BAND COIL MODULE WITH REPEATER 47
4.1 Dual-Band TX Coil to Individual Single-Band RX Coils 47
4.2 Dual-Band TX Coil to Multiple Single-Band RX Coils 50
4.3 Dual-Band TX Coil to Dual-Band RX Coil 52
4.4 Experimental Analysis 54
4.4.1 Type-I 200-kHz and 6.78-MHz Experiment 57
4.4.2 Type-II 200-kHz and 6.78-MHz Experiment 59
4.4.3 Type-III Experiment 61
4.4.4 Experiment With Varied Distance and Load 65
CHAPTER 5 CONCLUSION 71
APPENDIX WPT PARAMETERS DERIVATION AND VALIDATION PROCESS 73
A.1 Main Parameters of Dual-Band Coil Design Guideline 73
A.2 Lossless Equality of Dual-Band WPT Impedance Matching 74
A.3 Validation Among Coil PTE and Conventional PTE Expressions 75
A.4 Lossless Coil PTE of WPT System With a Repeater 77
REFERENCES 78
VITA 85
參考文獻 References
[1]J. Garnica, R. A. Chinga, and J. Lin, “Wireless power transmission: from far field to near field,” Proc. IEEE, vol. 101, no. 6, pp 1–11, Jun. 2013.
[2]G. A. Covic, and J. T. Boys, “Inductive power transfer,” Proc. IEEE, vol. 101, no. 6, pp 1276–1289, Jun. 2013.
[3]A. Kurs, A. Karalis, R. Moffatt, J. D. Joannopoulos, P. Fisher, and M. Soljacic, “Wireless power transfer via strongly coupled magnetic resonances,” Science, vol. 317, no. 5834, pp. 83–86, Jul. 2007.
[4]C. Liu, A. P. Hu, and N.-K. C Nair, “Coupling study of a rotary capacitive power transfer system,” Proc. IEEE Int. Conf. Ind. Technol., pp. 1-6, 2009.
[5]H. Zhang, F. Lu, H. Hofmann, W. Liu, and C. C. Mi, “A four-plate compact capacitive coupler design and LCL-compensated topology for capacitive power transfer in electric vehicle charging application,” IEEE Trans. Power Electron., vol. 31, no. 12, pp. 8541-8551, Dec. 2016.
[6]C. L. Yang, C. L. Tsai, Y. L. Yang, and C.S. Lee, “Enhancement of wireless power transmission by using novel multitone approaches for wireless recharging,” IEEE Antennas Wireless Propag. Lett., vol. 10, pp. 1354–1357, Dec. 2011.
[7]J. Shin, S. Shin, Y. Kim, S. Ahn, S. Lee, G. Jung, S.-J. Jeon, and D.-H. Cho, “Design and implementation of shaped magnetic-resonance-based wireless power transfer system for roadway-powered moving electric vehicles,” IEEE Trans. Ind. Electron., vol. 61, no.3, pp. 1179–1192, Mar. 2014.
[8]U. Jow and M. Ghovanloo, “Optimization of data coils in multi-band wireless link for neuroprosthetic implantable devices,” IEEE Trans. Biomed. Circuits Syst., vol. 4, no. 5, pp. 301–310, Oct. 2010.
[9]S. Y. Hui, “Planar wireless charging technology for portable electronic products and Qi,” Proc. IEEE, vol. 101, no. 6, pp 1290–1301, Jun. 2013.
[10]A. P. Sample, D. A. Meyer, and J. R. Smith, “Analysis, experimental results, and range adaptation of magnetically coupled resonators for wireless power transfer,” IEEE Trans. Ind. Electron., vol. 58, no.2, pp. 544–554, Feb. 2011.
[11]L. Chen, S. Liu, Y. C. Zhou, and T. J. Cui, “An optimizable circuit structure for high-efficiency wireless power transfer,” IEEE Trans. Ind. Electron., vol. 60, no.1, pp. 339–349, Jan. 2013.
[12]E. M. Thomas, J. D. Heebl, C. Pfeiffer, and A. Grbic, “A power link study of wireless non-radiative power transfer systems using resonant shielded loops,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 59, no. 9, pp. 2125–2136, Sep. 2012.
[13]R. Jegadeesan and Y.-X. Guo, “Topology selection and efficiency improvement of inductive power links,” IEEE Trans. Antennas Propag., vol. 60, no.10, pp. 4846–4854, Oct. 2012.
[14]X. Zhang, S. L. Ho, and W. N. Fu, “Analysis and optimization of magnetically coupled resonators for wireless power transfer,” IEEE Trans. Magn., vol. 48, no. 11, pp. 4511–4514, Nov. 2012.
[15]T. Mizuno, S. Yachi, A. Kamiya, and D. Yamamoto, “Improvement in efficiency of wireless power transfer of magnetic resonant coupling using magnetoplated wire,” IEEE Trans. Magn., vol. 47, no.10, pp. 4445–4448, Oct. 2011.
[16]N. Inagaki, “Theory of image impedance matching for inductively coupled power transfer systems,” IEEE Trans. Microw. Theory Techn., vol. 62, no. 4, pp.901–908, 2014.
[17]M. Dionigi, M. Mongiardo, and R. Perfetti, “Rigorous network and full-wave electromagnetic modeling of wireless power transfer Links,” IEEE Trans. Microw. Theory Techn., vol. 63, no. 1, pp. 65–75, Jan. 2015.
[18]CISPR, “Information technology equipment—Radio disturbance characteristics—Limits and methods of measurement,” CISPR 22, 2006, 5-2 ed.
[19]FCC, “Code of federal regulations,” Title 47, 2009, vol. 1, pt. 15.
[20]P. S. Riehl, A. Satyamoorthy, H. Akram, Y.-C. Yen, J.-C. Yang, B. Juan, C.-M. Lee, F.-C. Lin, V. Muratov, W. Plumb, and P. F. Tustin, “Wireless power systems for mobile devices supporting inductive and resonant operating modes,” IEEE Trans. Microw. Theory Techn., vol. 63, no. 3, pp 780–790, Mar. 2015.
[21]D. Ahn and P. P. Mercier, “Wireless power transfer with concurrent 200 KHz and 6.78 MHz operation in a single transmitter device,” IEEE Trans. Power Electron., vol. 31, no. 7, pp. 5018–5029, Jul. 2016.
[22]G. Wang, W. Liu, M. Sivaprakasam, M. Zhou, J. D. Weiland, and M. S. Humayun, “A dual band wireless power and data telemetry for retinal prosthesis,” in Proc. IEEE Engineering in Medicine and Biology Society Conf., pp. 4392–4395, 2006.
[23]M. Ghovanloo and S. Atluri, “A wide-band power-efficient inductive wireless link for implantable microelectronic devices using multiple carriers,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol.54, no. 10, pp. 2211–2221, Oct. 2007.
[24]G. Wang, P. Wang, Y. Tang, and W. Liu, “Analysis of dual band power and data telemetry for biomedical implants,” IEEE Trans. Biomed. Circuits Syst., vol. 6, no. 3, pp. 208–215, Jun. 2012.
[25]Z. Pantic, K. Lee and S. M. Lukic, “Multifrequency inductive power transfer,” IEEE Trans. Power Electron., vol. 29, no. 11, pp. 5995–6005, Nov. 2014.
[26]M.-L. Kung, and K.-H. Lin, “Enhanced analysis and design method of dual-band coil module for near-field wireless power transfer systems,” IEEE Trans. Microw. Theory Techn., vol. 63, no. 3, pp 821–832, Mar. 2015.
[27]C. L. Yang, C. L. Tsai, Y. L. Yang, and C.S. Lee, “Enhancement of wireless power transmission by using novel multitone approaches for wireless recharging,” IEEE Antennas Wireless Propag. Lett., vol. 10, pp. 1354–1357, Dec. 2011.
[28]M. D. Prete, F. Berra, A. Costanzo and D. Masotti, “Exploitation of a dual-band cell phone antenna for near-field WPT,” in Proc. Wireless Power Transfer Conf., Boulder, USA, 2015, pp. 1–4.
[29]H. Kim, C. Song, D.-H. Kim, D. H. Jung, I.-M. Kim, Y.-I. Kim, J. Kim, S. Ahn, and J. Kim, “Coil design and measurements of automotive magnetic resonant wireless charging system for high-efficiency and low magnetic field leakage,” IEEE Trans. Microw. Theory Techn.,vol. 64, no. 2, pp. 383–400, Feb. 2016.
[30]M. Dionigi and M. Mongiardo, “A novel resonator for simultaneous wireless power transfer and near field magnetic communications,” in Proc. MTT, Montreal, 2012, pp.1–3.
[31]J. Kim, H.-C. Son, K.-H. Kim and Y.-J. Park, “Efficiency analysis of magnetic resonance wireless power transfer with intermediate resonant coil,” IEEE Antennas Wireless Propag. Lett., vol. 10, pp. 389–392, Mar. 2011.
[32]F. Zhang, S. A. Hackworth, W. Fu, C. Li, Z. Mao, and M. Sun, “Relay effect of wireless power transfer using strongly coupled magnetic resonances,” IEEE Trans. Magn., vol. 47, no. 5, pp. 1478–1481, May 2011.
[33]M. Kiani, U.M. Jow and M. Ghovanloo, “Design and optimization of a 3-coil inductive link for efficient wireless power transmission,” IEEE Trans. Biomed. Circuits Syst., vol. 5, no. 6, pp. 579–591, Dec. 2011.
[34]D. Ahn, and S. Hong, “A study on magnetic field repeater in wireless power transfer,” IEEE Trans. Ind. Electron., vol. 60, no. 1, pp. 360–371, Jan. 2013.
[35]A. K. RamRakhyani, S. Mirabbasi, and M. Chiao, “Design and optimization of resonance-based efficient wireless power delivery systems for biomedical implants,” IEEE Trans. Biomed. Circuits Syst., vol. 5, no. 1, pp. 48-63, Feb. 2011
[36]A. K. RamRakhyani, G. Lazzi, “On the design of efficient multi-coil telemetry system for biomedical implants,” IEEE Trans. Biomed. Circuits Syst., vol. 7, no. 1, pp. 11-23, Feb. 2013.
[37]S.-C. Moon, B.-C. Kim, S.-Y. Cho, G.-H. Ahn and G.-W. Moon, “Analysis and design of wireless power transfer system with an intermediate coil for high efficiency,” IEEE Trans. Ind. Electron., vol. 61, no. 11, pp. 5861–5870, Nov. 2014.
[38]V. T. Nguyen, S. H. Kang, J. H. Choi and C. W. Jung, “Magnetic resonance wireless power transfer using three-coil system with single planar receiver for laptop applications,” IEEE Trans. Consum. Electron., vol. 61, no. 2, pp. 160–166, May 2015.
[39]J. Lee, Y. Lim, H. Ahn, J.-D. Yu and S.-O. Lim, “Impedance-matched wireless power transfer systems using an arbitrary number of coils with flexible coil positioning,” IEEE Antennas Wireless Propag. Lett., vol. 13, pp. 1207–1210, Jul. 2014.
[40]B. Luo, S. Wu and N. Zhou, “Flexible design method for multi-repeater wireless power transfer system based on coupled resonator bandpass filter model,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 61, no. 11, pp. 3288–3297, Nov. 2014.
[41]X. Zhang, S. L. Ho and W. N. Fu, “Quantitative design and analysis of relay resonators in wireless power transfer system,” IEEE Trans. Magn., vol. 48, no. 11, pp. 4026–4029, Nov. 2012.
[42]M.-L. Kung, and K.-H. Lin, “A 6.78 MHz and 13.56 MHz dual-band coil module with a repeater for wireless power transfer systems,” in Proc. IEEE AP-S. Int. Symp., Puerto Rico, 2016, pp. 157-158.
[43]Y. Zhang, Z. Zhao, and K. Chen, “Frequency-splitting analysis of four-coil resonant wireless power transfer,” IEEE Trans. Ind. Appl., vol. 50, no. 4, pp. 2436–2445, Jul. 2014.
[44]M.-L. Kung and K.-H. Lin, “Investigation of dual-band coil module for near-field wireless power transfer systems,” in Proc. Wireless Power Transfer Conf., Jeju, Korea, 2014, pp. 265–268.
[45]H. Hashemi and A. Hajimiri, “Concurrent multi-band low-noise amplifiers-theory, design, and applications,” IEEE Trans. Microw. Theory Techn., vol. 50, no.1, pp. 288–301, Jan. 2002.
[46]M. Ghovanloo and S. Atluri, “A wide-band power-efficient inductive wireless link for implantable microelectronic devices using multiple carriers,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol.54, no.10, pp. 2211-2221, Oct. 2007.
[47]C. M. Zierhofer and E. S. Hochmair, “Geometric approach for coupling enhancement of magnetically coupled coils,” IEEE Trans. Biomed. Eng., vol. 43, no. 7, pp. 708–714, Jul. 1996.
[48]S. Cheon, Y. H. Kim, S. Y. Kang, M. L. Lee, J. M. Lee, and T. Zyung, “Circuit-model-based analysis of a wireless energy-transfer system via coupled magnetic resonances,” IEEE Trans. Ind. Electron., vol. 58, no.7, pp. 2906–2914, Jul. 2011.
[49]T. C. Beh, M. Kate, T. Imura, S. Oh, and Y. Hori, “Automated impedance matching system for robust wireless power transfer via magnetic resonance coupling,” IEEE Trans. Ind. Electron., vol. 60, no. 9, pp. 3689–3698, Sept. 2013.
[50]M. Pinuela, D. C. Yates, S. Lucyszyn and P. D. Mitcheson, “Maximizing dc-to-load efficiency for inductive power transfer,” IEEE Trans. Power Electron., vol. 28, no. 5, pp. 2437-2447, May 2013.
[51]M. Fu, H. Yin, X. Zhu, C. Ma, “Analysis and tracking of optimal load in wireless power transfer systems,” IEEE Trans. Power Electron., vol. 30, no. 7, pp. 3952-3963, Jul. 2015.
[52]G. Gonzalez, “REPRESENTATIONS OF TWO-PORT NETWORKS,” in Microwave Transistor Amplifiers Analysis and Design, 2nd ed. Upper Saddle River, NJ, USA: Prentice-Hall, 1997.
[53]R. L. Boylestad, “Transformers,” in Introductory Circuit Analysis, 7th ed. Englewood Cliffs, NJ, USA: Merrill, 1994.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code