Responsive image
博碩士論文 etd-0607101-164848 詳細資訊
Title page for etd-0607101-164848
論文名稱
Title
長波段摻鉺光纖放大器增益控制技術之研究
Gain-Clamping Technique of L-Band Erbium-Doped Fiber Amplifier
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
52
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2001-06-05
繳交日期
Date of Submission
2001-06-07
關鍵字
Keywords
增益控制、摻鉺光纖放大器
EDFA, gain clamping/giam control
統計
Statistics
本論文已被瀏覽 5683 次,被下載 0
The thesis/dissertation has been browsed 5683 times, has been downloaded 0 times.
中文摘要
長波段摻鉺光纖放大器近來受到高度的重視,新增1570 ~ 1600 nm長波段的放大範圍若與傳統波段(1530 ~ 1560 nm)的摻鉺光纖放大器並行使用,便能增加波長分波多工系統的傳輸容量達一倍以上。在系統中,當訊號功率或頻道數不停的發生變動時,一般增益平坦化的靜態控制技術便無法有效控制各個頻道的功率為固定值。因此,動態增益控制技術便發展出來。而增益控制的研究目前仍限於傳統波段的摻鉺光纖放大器,在長波段摻鉺光纖放大器的方面,尚未見任何報導。本研究的目的是發展長波段摻鉺光纖放大器增益控制的方法,觀察其增益和雜訊指數。
在不同的回授信號波長(1568 nm和1600 nm)和衰減量對於長波段摻鉺光纖放大器增益控制的結果不同,而由實驗結果發現不論單波長或多波長傳輸時,若將回授信號lGC=1568 nm和lGC=1600 nm比較後,則以回授信號lGC=1568 nm對於長波段摻鉺光纖放大器增益控制的效果較佳,其中以衰減量ATT=0 dB時,增益的變化量最少(約為0.1 dB),且增益值較高(約為19.4 dB),輸入信號功率的可變動範圍DR≧30 dB。與未加上增益控制技術(W/O GC)時相比,增益變化量改善17 dB,輸入信號功率的可變動範圍改善25 dB。
Abstract
Recently, the long-wavelength band (L-band, 1570-1600 nm) erbium-doped fiber amplifiers (EDFAs) has received much attention. By combining the gain bandwidth of a conventional C-band EDFA and L-band EDFA in parallel, the available gain bandwidth can be increased by a factor of two. The change in the input power and the number of channels leads to the variation of the channel output power, which, in turn, changes the gain spectrum and flatness. To cope with this problem, the gain-clamped (GC) technique has been proposed. The gain-clamping techniques have been extensively explored for C-band EDFAs, but fewer for L-band EDFAs.
In this thesis, we experimentally investigate an optically gain-clamped L-band EDFA with different lasing lights (1568 nm and 1600 nm) and different loop attenuation. The characteristics of such L-band GC-EDFAs measured in a simulated add-drop operation are examined and compared. We find that the 1568-nm lasing light with 0-dB loop attenuation is the better selection for L-band GC-EDFA to offer good channel gain (19.4 dB) and satisfied noise figure characteristics. Compared to the gain variation observed for GC-EDFA with an open loop, the GC-EDFA was effective in reducing the total gain variation of 17 dB and increasing the dynamic range of 25 dB.
目次 Table of Contents
中文摘要………………………………………………………………Ⅰ
英文摘要………………………………………………………………Ⅱ
內容目錄………………………………………………………………Ⅲ
附表目錄………………………………………………………………Ⅳ
附圖目錄………………………………………………………………Ⅴ
第一章 簡介…………………………………………………………1
1.1 研究背景…………………………………………………………1
1.2 研究動機…………………………………………………………2
1.3 論文結構…………………………………………………………2
第二章 摻鉺光纖放大器增益控制技術之原理與特性……………3
2.1 摻鉺光纖放大器之基本原理……………………………………3
2.2 光放大器特性參數的定義與量測方法…………………………6
2.3 增益控制技術之原理……………………………………………10
2.4 傳統波段摻鉺光纖放大器增益控制技術之介紹………………11
2.5 長波段摻鉺光纖放大器與增益控制技術………………………15
第三章 長波段摻鉺光纖放大器增益控制技術之實驗……………17
3.1 元件特性量測及光放大器之組裝………………………………17
3.2 長波段摻鉺光纖放大器增益控制技術之組……………………19
3.3 單一波長特性量測結果…………………………………………20
3.4 多波長特性量測結果……………………………………………22
3.5 討論………………………………………………………………23
第四章 結論…………………………………………………………25
參考文獻………………………………………………………………26
附表……………………………………………………………………28
附圖……………………………………………………………………31
參考文獻 References
[1] D. Derickson, Fiber Optical Test and Measurement, Prentice Hall PTR, New Jersey, 1998.
[2] G. P. Agrawal, Fiber-Optical Communication System, John Wiley & Sons, Inc., New York, 1997.
[3] P. C. Becker, N. A. Olsson and J. R. Simpson, Erbium-Doped Fiber Amplifiers- Fundamentals and Technology, Academic Press, San Diego and London, 1999.
[4] M. Yamada, A. Mori, K. Kobayashi, H. Ono, T. Kanamori, K. Oikawa, Y. Nishida and Y. Ohishi, “Gain-flattened tellurite-based EDFA with a flat amplification bandwidth of 76 nm,” IEEE Photon. Technol. Lett., vol. 10, no. 9, pp. 1244-1246, 1998.
[5] J. F. Massicott, R. Wyatt, B. J. Ainslie and S. P. Craig-Ryan, “Efficient, high power, high gain, Er3+ dope silica fiber amplifier,” Electron. Lett., vol. 26, pp. 1038-1039, 1990.
[6] E. Desurvire, J. L. Zyskind, and J. R. Simpson, “Spectral gain-hole-burning at 1.53 nm in erbium-doped fiber amplifiers”, IEEE Photon. Technol. Lett., vol. 2, pp. 246-248, 1990.
[7] J. Aspell, J. F. Federici, B. M. Nyman, D. L. Wilson and D. S. Shenk, “Accurate noise figure measurements of erbium-doped fiber amplifier in saturation conditions,” in OFC’92, Tech. Digest, paper TahA4, 1992.
[8] D. M. Baney, and J. Stimple, “WDM EDFA gain characterization with a reduced set of saturating channels”, IEEE Photon. Technol. Lett., vol.8, no. 12, pp.1615-1617, 1996.
[9] M. Zirngibl, “Gain control in erbium-doped fiber amplifier by an all-optical feedback loop,” Electron. Lett., vol. 27, no 7, pp. 560-561, 1991.
[10] K. Inoue, “Gain-clamped fiber amplifier with a short length of preamplification fiber,” IEEE Photon. Technol. Lett., vol. 11, no. 9, pp. 1108-1110, 1999.
[11] M. Kobayashi, “Noise figure improvement of optical gain-clamped fiber amplifier by mid-point band reject filter for lasing light,” Electron. Lett., vol. 35, pp. 486-488, 1999.
[12] S. H. Lee, and S. H. Kim, “All optical gain-clamping in erbium-doped fiber amplifier using stimulated Brillouin scattering,” IEEE Photon. Technol. Lett., vol. 10, no. 9, pp. 1316-1318, 1998.
[13] Y. Takushima, and K. Kikuchi, “Gain spectrum equalization of all-optical gain-clamped erbium-doped fiber amplifier,” IEEE Photon. Technol. Lett., vol.11, no. 2, pp. 176-178, 1999.
[14] B. E. A. Saleh, and M. C. Teich, Fundamentals of photonics, John Wiley & Sons, Inc., New York, 1991.
[15] J. F. Massicott, J. R. Armitage, R. Wyatt, B. J. Ainslie, and S. P. Craigryan, “High gain broadband, 1.6 μm Er3+ doped silica fiber amplifer,” Electron. Lett., vol. 26, pp. 1645-1646, 1990.
[16] J. F. Massicott, R. Wyatt, and B. J. Ainslie, “Low noise operation of Er3+ doped silica fiber amplifier around 1.6μm,” Electron. Lett., vol. 28, pp. 1924-1925, 1992.
[17] H. Ono, M. Yamada, and Y. Ohishi, “Gain-flattened Er3+-doped fiber amplifier for a WDM signal in the 1.57-1.60-μm wavelength region,” IEEE Photon. Technol. Lett., vol. 9, pp. 596-598, 1997.
[18] H. Ono, M. Yamada, T. Kanamori, S. Sudo, and Y. Ohishi, “1.58μm band Er3+ doped fiber amplifier pump in the 0.98 and 1.48μm bands,” Electron. Lett., vol. 33, no. 10, pp. 876-877, 1997.
[19] Y. Sun, J. W. Sulhoff, A. K. Srivastava, J. L. Zyskind, and C. Wolf, “An 80 nm ultra wide band EDFA with low noise figure and high output power,” Proc. ECOC’97, vol. 5, pp. 69-72, 1997.
[20] H. Ono, M. Yamada, T. Kanamori, S. Sudo, and Y. Ohishi, “1.58-μm band gain-flattened erbium-doped fiber amplifiers for WDM transmission systems,” J. Lightwave Technol., vol. 17, no. 3, pp.490-496, 1999.
[21] S. Y. Park and H. K. Kim, “Efficient and low-noise operation in a gain-flattened 1580-nm band EDFA,” in OFC’99, Tech. Digest, paper WG8-2, 1999.
[22] J. Lee, U. C. Ryu, S. J. Ahn and N. Park, “Enhancement of power conversion efficiency for an L-band EDFA with a secondary pumping effect in the unpumped EDF section,” IEEE Photon. Technol. Lett., vol. 11, no. 1, pp. 42-44, 1999.
[23] H. Ono, M. Yamada, M. Shimizu, and Y. Ohishi, “Comparison of amplification characteristics of 1.58 and 1.55μm band EDFAs,” Electron. Lett., vol. 34, no. 15, pp. 1509-1510, 1998.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.144.12.205
論文開放下載的時間是 校外不公開

Your IP address is 3.144.12.205
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code