Responsive image
博碩士論文 etd-0607102-182048 詳細資訊
Title page for etd-0607102-182048
論文名稱
Title
串聯電池之平衡充電
Balance Charging for Series Connected Batteries
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
84
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2002-05-27
繳交日期
Date of Submission
2002-06-07
關鍵字
Keywords
數位訊號處理器、降升壓轉換器、平衡充電、電池、平衡充電電路
Digital signal processor (DSP), Buck-boost converter, Charge equalization, Balance charging circuit, Battery
統計
Statistics
本論文已被瀏覽 5704 次,被下載 83
The thesis/dissertation has been browsed 5704 times, has been downloaded 83 times.
中文摘要
由於串聯電池組中各個電池的充放電特性並不一致,充電時易造成電池電量的不平衡,因而縮短電池的壽命,甚至損害電池。為了延長電池使用壽命,電池組之充電器需具備平衡充電的功能。本文針對串聯電池組提出以降升壓式轉換器為基礎的平衡充電電路架構。串聯電池組中的每一電池都配屬一降升壓式轉換器,當其電量較高時,可將能量釋出,重新分配給其它電量較低的電池,有效地緩和電池組的不平衡狀態。
為了達成複雜且精確的控制策略,平衡充電電路係採數位訊號處理器配合感測與介面電路,隨時監測各個電池電壓的變化,計算電池電壓與平均電壓的差異,致動附屬之降升壓式轉換器,控制轉換器之導通率,調節所欲釋放之能量,避免電池之過度充電,達到電壓平衡的目的。由於採數位軟體控制,可減少硬體電路設計的複雜度,並藉由程式或參數的修改,更容易達到系統維護和彈性運用之目標。
本文以一個由四顆12V鉛酸電池串聯之電池組作為設計案例,藉以說明平衡充電電路的動作原理及工作模式,闡釋控制策略,並由實驗結果,驗證此平衡充電電路架構的可行性。
Abstract
Due to the differences in batteries of a series-connected battery bank, the restored capacity in each battery may not be the same when being charged. In order to extend battery cycle life, the charger for the battery bank must have the capability of charging equalization. This thesis proposes a non-dissipative balance charging circuit based on buck-boost topology for a series-connected battery bank. Each battery in a battery bank is associated with a buck-boost converter. This topology can efficiently alleviate the unbalance of charge among batteries by taking off the charge from the affluently charged batteries and then allotting to those insufficient ones.
To accomplish this complicated and accurate control, a digital signal processor (DSP) with sensors and interface circuits is adopted. It monitors the variations of battery voltages, activates the associated buck-boost converter, and adjusts the duty ratio of the converter to regulate the energy to be released. In virtue of the adoption of digital control kernel, the control circuit can be simple and the control flexibility can be favored.
A battery bank with four series connected lead-acid batteries is used for illustrating the operating behavior and describing the operation modes of the balance charging circuit. The results of experiments convincingly advocate the applicability of the proposed approach.
目次 Table of Contents
第一章 緒論 1
1-1 研究背景 1
1-2 研究動機及目的 2
1-3 本文大綱 8
第二章 鉛酸電池的介紹 9
2-1 電池的構造及化學反應 9
2-2 電池的充放電特性 13
2-3 容量與殘(電)量偵測 15
2-4 電池的等效電路模型 19
2-4-1 利用電路元件構成模型 20
2-4-2 電氣特性行為模型 22
2-5 充電策略 22
2-6 充電過程的控制 26
第三章 平衡充電電路 28
3-1 電路架構 28
3-1-1 充電電路 29
3-1-2 平衡充電電路 32
3-2 平衡電路設計分析 39
3-3 電路參數設計 45
第四章 控制電路及軟體設計 49
4-1 控制電路 49
4-2 軟體規劃設計 54
第五章 實驗量測 59
5-1 電路參數設計 59
5-2 實驗量測 60
5-2-1 平衡副電路動作量測 60
5-2-2 平衡充電 65
第六章 結論與未來研究方向 72
參考文獻 74
附錄 TMS320LF2407PGEA介紹 77
參考文獻 References
[1]C. C. Chan, “An Overview of Electric Vehicle Technology”, Proceedings of the IEEE, Vol. 81, No. 9, Sep. 1993, pp. 1202-1213.
[2]發展電動機車行動計畫,行政院環保署,轉載於電力電子技術No.44, 1988年四月號。
[3]H. Oman, “Battery Developments that will make Electric Vehicles Practical”, IEEE Aerospace & Electronics Systems Magazine, Vol. 1, Issue 8, Aug. 2000, pp. 11-21.
[4]H. Oman, “Making Batteries Last Longer”, IEEE Aerospace & Electronics Systems Magazine, Vol. 14, Issue 9, Sep. 1999, pp. 19-21.
[5]T. B. Gage, “Lead-Acid Batteries: Key to Electric Vehicle Commercialization – Experience with Design, Manufacture, and Use of EVs”, 15th Battery Conference on Applications and Advances, 2000, pp. 217-222.
[6]B. Dickinson and J. Gill, “Issues and Benefits with Fast Charging Industrial Batteries”, 15th Battery Conference on Applications and Advances, 2000, pp. 223-229.
[7]P. T. Krein, S. West, and C.Papenfuss, “Equalization Requirements for Series VRLA Batteries”, The 6th Annual Battery Conference on Applications and Advances, 2001, pp. 125-130.
[8]S. West and P. T. Krein, “Equalization of Valve-Regulated Lead-Acid Batteries: Issues and Life Test Results”, 22nd International Telecommunications Energy Conference, 2000, pp. 439-446.
[9]H. Sakamoto, K. Murata, E.Sakai, and K. Nishijima, “Balanced Charging of Series Connected Battery Cells”, Telecommunications Energy Conference, 1998. pp. 311-315.
[10]H. Leung, “Equalization of EV and HEV Batteries with a Ramp Converter”, IEEE Trans. on Aerospace and Electronic Systems, Vol. 33, No. 1, Jan. 1997, pp. 307-311.
[11]C. Pascual and P. T. Krein, “Switched Capacitor System for Automatic Series Battery Equalization”, APEC 1997, Conference Proceedings 1997, 12th, Vol. 2, 1997, pp. 848-854.
[12]N. H. Kutkut, H. L. N. Wiegman, D. M. Divan, and D. W. Novotny, “Charge Equalization for an Electric Vehicle Battery System”, IEEE Trans. on Aerospace and Electronic Systems, Vol. 34, No. 1, Jan. 1998, pp. 235-245.
[13]Z. Ye and T. A. Stuart, “Sensitivity of a Ramp Equalizer for Series Batteries”, IEEE Trans. on Aerospace and Electronic Systems, Vol. 34, No. 4, Oct. 1998, pp. 1227-1236.
[14]M. Tang and T. Stuart, “Selective Buck-Boost Equalizer for Series Battery Packs”, IEEE Trans. on Aerospace and Electronic Systems, Vol. 36, No. 1, Jan. 2000, pp. 201-211.
[15]N. H. Kutkut, “A Modular Non Dissipative Current Diverter for EV Battery Charge Equalization”, APEC 1998, Conference Proceedings 1998, 13rd , Vol. 2, 1998, pp. 686-690.
[16]S. T. Hung, D. C. Hopkins, and C. R. Mosling, “Extension of Battery Life via Charge Equalization Control”, IEEE Trans. On Industrial Electronics, Vol. 40, No. 1, Feb. 1993, pp. 96-104.
[17]D. C. Hopkins, C. R. Mosling, and S. T. Hung, “Dynamic Equalization During Charging of Serial Energy Storage Elements”, IEEE Trans. On Industry Applications, Vol. 29, No.2, Mar./Apr. 1993, pp. 363-368.
[18]H. Oman, “Battery Developments that will make Electric Vehicles Practical”, IEEE Aerospace & Electronics Systems Magazine, Vol. 1, Issue 8, Aug. 2000, pp.11-21.
[19]T. B. Gage, “Lead-Acid Batteries: Key to Electric Vehicle Commercialization – Experience with Design, Manufacture, and Use of EVs”, 15th Battery Conference on Applications and Advances, 2000, pp.217-222.
[20]H. Oman, “Making Batteries Last Longer”, IEEE Aerospace & Electronics Systems Magazine, Vol. 14, Issue 9, Sep. 1999, pp.19-21.
[21]B. Dickinson and J. Gill, “Issues and Benefits with Fast Charging Industrial Batteries”, 15th Battery Conference on Applications and Advances, 2000, pp.223-229.
[22]D. Berndt and W. E. M. Jones, “Balanced Float Charging of VRLA Batteries by Means of Catalysts”, INTELEC, 22th International, Telecommunications Energy Conference, 1998, pp.443-451.
[23]D. Berndt, R. Brautigam, and U. Teutsch, “Temperature Compensation of Float Voltage – The Special Situation of VRLA Batteries”, Telecommunications Energy Conference, 1995, INTELEC, 17th International, pp.1-12.
[24]W. B. Gu, G. Q. Wang, and C. Y. Wang, “Modeling the Overcharge Process of VRLA Batteries”, 16th Annual Battery Conference on Applications and Advances, 2001, pp.181-186.
[25]B. Y. Liaw and K. Bethune, “On Validation of the Modeling of Overcharge Process in VRLA Cells”, 16th Annual Battery Conference on Applications and Advances, 2001, pp.187-192.
[26]R. Rynkiewicz, “Discharge and Charge Modeling of Lead Acid Batteries”, Applied Power Electronics Conference and Exposition, APEC’99, 14th Annual, Vol. 2, 1999, pp. 707-710.
[27]J. H. Aylor, A. Thieme, and B. W. Johnson, “A Battery State-of-Charge Indicator for Electric Wheelchairs”, IEEE Trans. on Industrial Electronics, Vol. 39, No. 5, Oct. 1992, pp.398-409.
[28]Y. H. Kim and H. D. Ha, “Design of Interface Circuits With Electrical Battery Models”, IEEE Trans. on Industrial Electronics, Vol. 44, No. 1, Feb. 1997, pp.81-86.
[29]M. A. Casacca and Z. M. Salameh, “Determination of Lead-Acid Battery Capacity Via Mathematical Modeling Techniques”, IEEE Trans. on Energy Conversion, Vol. 7, No. 3, Sept. 1992, pp.442-446.
[30]Z. M. Salameh, M. A. Casacca, and W. A. Lynch, “A Mathematical Model for Lead-Acid Batteries”, IEEE Trans. on Energy Conversion, Vol. 7, No. 1, Mar. 1992, pp.93-98.
[31]C. M. Shepherd, “Design of Primary and Secondary Cells, II An Equation Describing Battery Discharge”, Journal of the Electrochemical Society, Vol. 112, No. 7, 1965, pp.657-664.
[32]Lead-Acid Batteries, Hans Bode, John Wiley & Sons, 1977.
[33]T. Ikeya, etc., “Multi-step Constant-Current Charging Method for Electric Vehicle, Valve-Regulated, Lead/Acid Batteries during Night Time for Load-Leveling”, Journal of Power Sources, Vol. 75, Issue 1, 1998, pp.101-107.
[34]P. Jehangir, B. F. Gaudenz, and S. S. Paul, “Lead Acid Charger with Ratiod Time-out Periods and Current Pulse Mode of Operation”, U.S. Pat. No. 5670863, Feb. 7, 1995.
[35]G. G. Phyland, N. C. Wilson, and L. T. Lam, “Charging of Batteries”, U.S. Pat. No. 6154011, May 10, 1999.
[36]“Sealed Lead-Acid Batteries”, Kung Long Batteries Industrial Co.
[37]N. H. Kutkut, H. L. N. Wiegman, and D. M. Divan, “Design Consideration for Charge Equalization of an Electric Vehicle Battery System”, IEEE Trans. on Industry Applications, Vol. 35, Issue 1, Jan./Feb. 1999, pp.28 –35
[38]TMS320C2x/C2xx/C5x Optimizing C Compiler User’s Guide, Texas Instruments Inc., 1999.
[39]TMS320LF/LC240xA DSP Controllers System and Peripherals Reference Guide, Texas Instruments Inc., 2000.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內公開,校外永不公開 restricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.141.201.26
論文開放下載的時間是 校外不公開

Your IP address is 3.141.201.26
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code