Responsive image
博碩士論文 etd-0607114-161154 詳細資訊
Title page for etd-0607114-161154
論文名稱
Title
於兼氣及好氧下利用PU網狀泡綿生物濾床處理高科技廢水中之氨氮
Removal of NH3-N from high-tech industrial wastewater using PU-net sponge mediated biofilter under facultative and aerobic conditions
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
92
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-06-18
繳交日期
Date of Submission
2014-07-07
關鍵字
Keywords
EBCT、高科技廢水處理廠、生物濾床、廢水處理、氨氮、溶氧
empty bed residence time, dissolved oxygen, ammonia nitrogen, PU-net sponge mediated biofilter, high-tech industrial wastewater treatment plant, wastewater treatment
統計
Statistics
本論文已被瀏覽 5689 次,被下載 1088
The thesis/dissertation has been browsed 5689 times, has been downloaded 1088 times.
中文摘要
  高科技產業不但需水量高,而且產生的廢水排放更是國內環保之重要議題。環保署計畫將於2016年將氨氮納入廢水排放管制,因此盡快提出可行的廢水處理方法以因應氨氮之問題。
  本文以某高科技廢水處理廠為案例,實驗初期使用該廠初沉池出水來馴養本研究之生物濾床。將該廠已處理過廢水通過一套已填充網狀PU泡綿之生物濾床,目的為探討廢水中氨氮之轉化效率。操作條件範圍為空床停留時間(EBCT)(從1 hr至8 hr)及水中溶氧量(兼氧:1~2 mg/L至好氧:3~4 mg/L)。結果顯示,生物濾床在好氧條件下轉化率隨EBCT增加而增加,EBCT八小時之氨氮轉化率高達95%。當在足夠的水力停留時間或EBCT下,溶氧量降低至兼氧條件1~2 mg/L,氨氮轉化率比起溶氧量3~4 mg/L低約30%。初步顯示本研究方法對某高科技廢水之氨氮為有效的處理方法。
Abstract
  Along with the technical progress, the people live are getting more and more convenient, however, behind the gorgeous high tech product there is depletion of resources and huge waste. The water resource, which people are closely linked, is indispensable for the producing processes of high-technology industry. The high-technology industry not only has the huge requirement to the water resources, the wastewater produced from producing processes is an important topic. In recent years, with the environmental consciousness upward in Taiwan, the wastewater emission standard of high-technology industry is sterner, and the ammonia nitrogen in the wastewater will be limited in 2016.
  The treatment of high-technology industrial wastewater in a PU-net sponge mediated biofilter was investigated. The experimental parameters comprised the dissolved oxygen and empty bed residence time, i.e. Facultative,1~2 mg/L,1 hr~8 hr; aerobic,3~4 mg/L,1 hr~8 hr.In this study,the conversion in the aerobic condition of ammonia nitrogen were 95% in EBCT 8 hr. The procedures of aerobic condition provided a 30% greater conversion compared to facultative condition. Therefore,the results indicated that the ammonia nitrogen can be effectively conversion using the PU-net sponge mediated biofilter .
目次 Table of Contents
論文審定書 ii
摘要 iii
Abstract iv
目錄 v
圖目錄 viii
表目錄 x
第一章 前言 1
 1-1研究緣起 1
 1-2研究目的 3
 1-3研究內容 3
第二章 文獻回顧 4
 2-1高科技產業 4
  2-1-1科技廠工業廢水來源及處理特性 4
  2-1-2 科學園區污水處理廠簡介 11
  2-1-3 科學園區污水處理廠之成效 11
 2-2 生物除氮 13
  2-2-1 水中含氮污染物 13
  2-2-2 硝化作用 16
  2-2-3 脫硝作用 19
 2-3生物除氮最新技術 21
  2-3-1部分硝化程序: 22
  2-3-2 SHARON程序: 23
  2-3-3厭氧氨氧化程序化 24
  2-3-4 CANON 程序 25
  2-3-5固定式生物處理系統(EMMC) 26
 2-4廢水氨氮與總氮控制之未來法規因應 29
  2-4-1國內廢水氨氮與總氮控制之未來法規因應 29
  2-4-2中國廢水氨氮與總氮控制之未來法規因應 29
  2-4-3國外廢水氨氮與總氮控制之法規 30
 2-5廢水生物濾床之硝化脫硝菌相 35
 3-1 研究流程之規劃 36
 3-2 生物濾床處理程序實驗方法 37
 3-3 水質分析項目與方法 39
  3-3-1水溫 41
  3-3-2導電度 41
  3-3-3 氨氮 41
  3-3-4 硝酸鹽氮 42
  3-3-5 懸浮固體物 42
  3-3-6 總有機碳 42
  3-3-7 溶解性有機碳 43
  3-3-8 生物需氧量(BOD) 43
  3-3-9化學需氧量(COD) 43
  3-3-10 溶氧 44
  3-3-11氧化還原電位(ORP) 44
  3-3-12 UV254 44
  3-3-13 SUVA 44
  3-3-14 鹼度 44
 3-4 實驗分析儀器設備 45
第四章 結果與討論 48
 4-1生物濾床之微生物馴養 48
  4-1-1 入流水氨氮濃度變化 48
 4-2實驗原水之介紹及現場監測 50
  4-2-1原水介紹 50
  4-2-2 現場監測 50
 4-3生物濾床之處理效能 52
  4-3-1在不同溶氧及不同EBCT之氨氮轉化率 52
  4-3-2在不同溶氧及不同EBCT之硝酸鹽轉化率 55
  4-3-3在不同溶氧及不同EBCT之化學需氧量去除率 57
  4-3-4在不同溶氧及不同EBCT之生化需氧量去除率 59
  4-3-5在不同溶氧及不同EBCT之總有機碳去除率 61
  4-3-6在不同溶氧及不同EBCT之溶解性有機碳去除率 63
  4-3-7在不同溶氧及不同EBCT之懸浮固體物去除率 65
  4-3-8固定溶氧下以不同EBCT之UV254去除 67
  4-3-9固定溶氧下以不同EBCT之SUVA變化 69
第五章 結論與建議 72
 5-1結論 72
 5-2建議 74
參考文獻 75
參考文獻 References
  Adav, S.S., Lee, D.J. and Lai, J.Y. (2010) Enhanced biological denitrification of high concentration of nitrite with supplementary carbon source. Environmental Biotechnology 85, 773-778.
  Choi, C., Lee, J. Lee, K. and Kim, M. (2008) The effects on operations of sludge retention time and carbon/nitrogen ratio in an intermittently aerated membrane bioreactor (IAMBR). Bioresource Technology 99, 5397-5401.
  Ciudad, G., Rubilar, O., Muñoz, P., Ruiz, G., Chamy, R., Vergara, C. and Jeison, D. (2005) Partial nitrification of high ammonia concentration wastewater as a part of a shortcut biological nitrogen removal process. Process Biochemistry 40, 1715-1719.
  Cornelissen, E.R., Harmsen, D., Beerendonk, E.F., Qin, J.J., Oo, H., de Korte, K.F. and Kappelhof, J.W.M.N. (2011) The innovative osmotic membrane bioreactor (OMBR) for reuse of wastewater. Water Science and Technology 63, 1557-1565.
  Dong, B. and S. Jiang, (2009), “Characteristics and behaviors of soluble microbial products in sequencing batch membrane bioreactors at various sludge retention times. ” Desalination, 243, pp. 240–250
  Ersu, C.B., Ong, S.K., Arslankaya, E. and Lee, Y.W. (2010) Impact of solids residence time on biological nutrient removal performance of membrane bioreactor. Water research 44, 3192-3202.
  Fu, Z.,Yang, f., An, Y. and Xue, Y. (2009) Simultaneous nitrification and denitrification coupled with phosphrus removal in an modified anoxic/oxic-membrane bioreactor (A/O-MBR). Biochemical Engineering Journal 43, 191-196.
  Gerardi, M. (2002). Nitrification and Denitrification in the Activated Sludge Process. Wiley-Interscience, New York.
  Gerardi, M. (2002). Taming sewer smells; biological malodor production and control in sewer systems. Env. Protection.
  Gerardi, M. (2003). The Microbiology of Anaerobic Digesters.
  Wiley-Interscience, New York.
  Gray, S., J. K. P. Read and A. Marland, (2000), Nutrient Assimilative Capacity of Maerl as a Substrate in Constructed Wetland Systems for Waste Treatment, Water Research, Vol. 34, No. 8, pp.2183-2190
  Guo, X., Kim, J.H., Behera, S.K. and Park, H.S. (2008) Influence of dissovled oxygen concentration and aeration time on accumulation in partial nitrification process. International journal of Environment Science and Technology 5, 527-534.
  He, S.B., Xue, G. and Wang, B.Z. (2009) Factors affecting simultaneous nitrification and de-nitrification (SND) and its kinetics model in membrane bioreactor. Journal of Hazardous Materials 168, 704-710.
  Jang, N., X. Ren, G. Kim, C. Ahn, J. Cho, and I. S. Kim, (2007) ,Characteristics of soluble microbial products and extracellular polymeric substances in the membrane bioreactor for water reuse. Desalination, 202
  oxidation by marine and freshwater planctomycete-like bacteria." Applied microbiology and biotechnology
  Kartal, Boran, et al. ,(2006), "Adaptation of a freshwater anammox population to high salinity wastewater." Journal of Biotechnology 126.4: 546-553.
  Kartal, Boran, et al., (2007),"Anammox bacteria disguised as denitrifiers: nitrate reduction to dinitrogen gas via nitrite and ammonium." Environmental microbiology 9.3: 635-642.
  Kartal, Boran, et al. (2008)"Candidatus ‘Brocadia fulgida’: an autofluorescent anaerobic ammonium oxidizing bacterium." FEMS microbiology ecology 63.1: 46-55.
  Kim, D., Kim, K.Y., Ryu, H.D., Min, K.K. and Lee, S.I. (2009) Long term operation of pilot-scale biological nutrient removal process in treating municipal wastewater. Bioresource Technology 100, 3180-3184.
  Komorowska-Kaufman, M., Majcherek, H. and Klaczynski, E. (2006) Factors affecting the biological nitrogen removal from wastewater. Process Biochemistry 41, 1015-1021.
  Lee, J.K., Choi, C.K., Lee, K.H. and Yim, S.B. (2008) Mass balance of nitrogen, and estimates of COD, nitrogen and phosphorus used in microbial synthesis as a function of sludge retention time in a sequencing batch reactor system. Bioresource Technology 99, 7788-7796.
  Metcalf and Eddy, (2004), Wastewater Engineering Treatment and Reuse, fourth ed, Tchobanoglous, G, F. L. Burton and H. D. Stensel.
  Ng, H.Y., Tan, T.W., Ong, S.L., Toh, C.A. and Loo, Z.P. (2006) Effects of solid retention time on the performance of submerged anoxic/oxic membrane bioreactor. Water Science and Technology 53, 7-13.
  Rittmann, B.E. and McCarty, P.L. (2001) Environmental biotechnology: principles and applications (First edition) McGraw-Hill.
  Ruiz, G., Jeison, D. and Chamy, R. (2003) Nitrification with high nitrite accumulation for the treatment of wastewater with high ammonia concentration. Water Research 37, 1371-1377.
  Schmid, Markus C., et al. ,(2007), "Anaerobic ammonium‐oxidizing bacteria in marine environments: widespread occurrence but low diversity." Environmental microbiology 9.6: 1476-1484.
  Schmid, Markus C., et al. ,(2008), "Environmental detection of octahaem cytochrome c hydroxylamine/hydrazine oxidoreductase genes of aerobic and anaerobic ammonium‐oxidizing bacteria." Environmental microbiology 10.11: 3140-3149.
  Shen, J.Y., He, R., Han, W.Q., Sun, X.Y., Li, J.S. and Wang, L.J. (2009) Biological denitrification of high-nitrate wastewater in a modified anoxic/oxic-membrane bioreactor (A/O-MBR). Journal of Hazardous Materials 172, 595-600.
  Song, K.G., Cho, J., Cho, K.W., Kim, S.D. and Ahn, K.H. (2010) Characteristics of simultaneous nitrogen and phosphorus removal in a pilot-scale sequencing anoxic/anaerobic membrane bioreactor at various conditions. Desalination 250, 801-804.
  S.Z. Ahammad, A. Zealand, J. Dolfing, C. Mota, D.V. Armstrong, D.W. Graham ,(2013), Low-energy treatment of colourant wastes using sponge biofilters for the personal care product industry
  Third, K. A., et al., (2001), "The CANON system (completely autotrophic nitrogen-removal over nitrite) under ammonium limitation: interaction and competition between three groups of bacteria." Systematic and applied microbiology 24.4: 588-596.
  Wang, J. and Yang, N. (2004) Partial nitrification under limited dissolved oxygen conditions. Process Biochemistry 39, 1223-1229.
  Zhang, Lei, et al. (2008),"Anaerobic ammonium oxidation for treatment of ammonium-rich wastewaters." Journal of Zhejiang University Science B 9.5: 416-426.

  劉佳鈞,包埋微生物細胞載體脫碳硝化與脫硝反應動力之研究,臺灣大學環境工程學研究所學位論文, (2013)
  王光傑,多孔性材料添加對於 Anammox 系統功能之影響,臺灣大學環境工程學研究所學位論文, (2013).
  馮宇柔,利用通氣式薄膜生物反應槽與厭氧氨氧化程序進行廢水除氮之研究,國立臺灣大學環境工程學研究所學位論文, (2008)
  何俊明,利用自營性薄膜生物反應槽進行除氮之研究,國立台灣大學環境工程研究所博士論文.,(2004)
  曾四恭,以固定氮細菌之方式促進硝化及脫硝之功能之研究,國立台灣大學環境工程研究所碩士論文,(2002)
  曾四恭,利用中空矽膠管薄膜生物反應槽進行廢水除氮之研究,國立台灣大學環境工程研究所碩士論文,(2001)
  李珮芸,外加碳源對生物薄膜反應器處理低碳氮比高科技業廢水之影響,國立交通大學環境工程研究所碩士論文,(2011)
  蕭丞祺,綠藻製程廢水以生物濾床處理及回收利用,國立中山大學海洋環境工程研究所碩士論文,(2009)
  林郁靜,以實驗方法探討人工濕地之水質淨化效益,國立中央大學土木工程研究所碩士論文,(2008)
  陳依旻,薄膜生物處理系統(MBR)中溶解性微生物產物(SMP)特性與影響之研究,國立中央大學環境工程研究所碩士論文,(2011)
  陳必祥,利用臭氧與氯消毒水中微生物來探討高級水處理場AOC變化及蓄水池水塔清洗頻率相關性之研究,國立中山大學環境工程研究所碩士論文,(2012)
  李曉芬,高科技產業園區廢水除磷技術操作成本比較分析,國立朝陽科技大學環境工程與管理系碩士論文(2009)
  邱英齊,應用 BioNET 技術於污水處理系統之研究,國立雲林科技大學環境與安全衛生工程系 ,(2014)
  陳建宏,礫間接觸氧化對水中氨氮去除成效之評估,明志科技大學生化工程研究所碩士論文,(2011)
  呂志宏,有機廢水之硝化與脫硝處理研究,大同大學生物工程研究所碩士論文(2001)
  鄭幸雄,高科技廢水氨氮去除技術介紹,國立成功大學環境工程系南部科學工業園區台南園區環工中心廢(污)水處理防制宣導說明會,(2011)
  財團法人中興工程顧問社,產業廢水污染調查及管制措施研議計畫(第二年),(2010)
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code