Responsive image
博碩士論文 etd-0607114-161240 詳細資訊
Title page for etd-0607114-161240
論文名稱
Title
多重酵素修飾線微流體系統於全血中尿素氮及血糖偵測
Multiple enzyme-doped thread-based microfluidic system for blood urea nitrogen and glucose detection in human whole blood
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
87
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-06-26
繳交日期
Date of Submission
2014-07-07
關鍵字
Keywords
尿素氮、葡萄糖、線微流體、電泳、PVC膜
Electrophoresis, Thread-based microfluidic system, PVC membrane, Blood urea nitrogen, Glucose
統計
Statistics
本論文已被瀏覽 5865 次,被下載 521
The thesis/dissertation has been browsed 5865 times, has been downloaded 521 times.
中文摘要
在現今的生醫晶片系統中,量測人體全血中的尿素和血糖是健康相當重要的指標。血尿素氮 ( BUN) 的形成主要是來自蛋白質代謝的最終產物,因此血中尿素氮的濃度,也可以用來做評估腎功能的指標,所以當血液中的尿素氮值升高,超過標準值時表示腎臟過濾功能可能出現問題,這是一個重要的警訊。然而,隨著現今全球文明化和飲食文化的改變,許多的文明病便相伴而至例如糖尿病,所以血糖指數的多寡是相當重要的,當血糖值過高表示胰島素的缺乏是糖尿病的高危險群,因此開發一個生醫晶片整和電化學電泳 ( CE-EC )去量測生醫樣品,以期能運用在醫療檢驗上做為疾病的預防和檢測機制是相當重要的。
本研究提出了一種新的方法來檢測人體全血中的尿素和葡萄糖,利用多種不同反應的酶滴在線微流體上使其和檢測樣品做反應以利偵測,再者使用PVC膜包覆在線體的外部形成一個密閉式管道。滴在線上的酶可以直接和樣品反應無須經過任何的表面改質和加工,而流經過的生物樣品經由酶的轉化,最後再由下端的電極做電化學檢測。所以利用以上的方法結合CE -EC檢測生物樣品,可以得到很好的量測結果。本研究進一步做人體的全血量測,首先利用RBC裂解液滴在多出的注入端部分而後在加入約2-µL全血混和後,利用正負高電壓驅動線微流體上的電滲流流動,可以裂解血液中的紅細胞和同時過濾掉其他雜質,做為一個過濾器使用,使其提高偵測性能和對阻塞管道的影響降低。由於焦耳熱效應關係,管道上緩衝液和樣品是很容易蒸發,而且溫度上也不耐高,容易造成線體的損壞,所以塗佈PVC 膜可以改善以上的情形。此外,PVC塗佈的線體可以在更高的分離電場500 V/cm進行操作。
一般尿素和飯前血糖的正常範圍值分別是1.78~7.12 Mm 和 3.89~6.11 mM ,結果表示,此研發晶片系統在量測表準樣品尿素和葡萄糖中擁有良好的線性結果,尿素濃度範圍在0.1 mM – 10.0 mM (R2=0.9850) 間;葡萄糖濃度範圍在0.1 mM – 13.0 mM (R2=0.9668) 間,擁有良好的靈敏度。在全血的檢測中也成功分離出血液中的離子,並測得尿素和血糖濃度分別為3.98 mM 和 4.94 mM。本研究開發的線微流體系統提供了一個低成本,高性能且創新的方法應用在人體血液中的檢驗。
Abstract
In biological chip systems, urea and glucose are important indicators for detection in human blood. Urea forms in the liver as a waste product of protein metabolism then collects in the bloodstream. The concentration of blood urea nitrogen (BUN) is an important biological indicator used for monitoring the functionality of the kidney. In general, patients with kidney failure have high BUN levels. However, with changing food culture, glucose has also become a identify control factor for diabetes mellitus. Excessive glucose displays a deficiency of insulin. Therefore, developing a microfluidic device for capillary electrophoresis electrochemical (CE-EC) detection of bio-samples is a necessary.
This research presents a novel technique for detection in human whole blood which utilizes a novel enzyme-doped thread with a PVC (polyvinylchloride) membrane coating for on-site urea and glucose detection on a thread-based microfluidic device. The enzyme can be directly applied to the thread without delicate pretreatment or a surface modification process. The passing biomolecules are digested by the enzymes and then electrochemically detected downstream. With this approach, CE-EC detection with on-site bio-reaction can be simply achieved. The whole blood sample is first mixed with a RBC lysis buffer to prevent blood coagulation. The lysed RBC and other solid pieces are simultaneously filtered away while electrokinetically flowing through the thread-based microfluidic system. A thin layer of PVC membrane is coated on the enzyme-doped thread to further fix the applied enzyme and to prevent rapid evaporation of the running buffer due to the Joule heating effect. In addition, the PVC coated thread can be operated at a higher separation electric field of 500 V/cm due to the reduction of buffer evaporation.
Results also indicate that the developed system exhibits a good linear dynamic range for detecting urea and glucose in concentrations from 0.1 mM – 10.0 mM (R2=0.9850) and 0.1 mM – 13.0 mM (R2=0.9668), which is suitable for adoption in detecting the BUN concentration in serum (1.78~7.12 mM) and the glucose fasting measuring range (3.89~6.11 mM). The whole blood detection shows that the developed thread-based microfluidic system can successfully separate the ions, BUN and glucose in blood. The calculated concentrations for BUN and GLU-AC in the whole blood sample are 3.98 mM and 4.94 mM, respectively.
目次 Table of Contents
Acknowledgements I
中文摘要 III
Abstract V
Table of Contents VII
List of Figures X
List of Tables XIII
Nomenclature XIV
Abbreviations XVI
Chapter 1 Inotoduction 1
1.1 Background 1
1.2 Capillary electrophoresis 1
1.2.1 The basic principle of electrophoresis 1
1.2.2 Substrate and production methods of electrophoresis chip 5
1.2.3 Detection methods of electrophoresis chip 7
1.3 Electrochemical 9
1.3.1 The system of electrochemical electrode 9
1.3.2 Detection methods of electrochemical 10
1.4 Paper microfluidic chip 13
1.5 Motivation and objective 16
1.6 Thesisorganization 17
Chapter 2 Theory and Design 19
2.1 Characteristics of thread 19
2.1.1 Hydrophilic and capillary force 19
2.1.2 Characteristics of polyester thread 20
2.2 Explore 2D and 3D electrodes 21
2.3 Biomicrofluidic chip 22
Chapter 3 Methods and Materials 25
3.1 Chips design 25
3.1.1 3D detecting electrode chip 25
3.1.2 Enzyme-doped thread coated with PVC membrane chip 26
3.2 Biochips fabrication 28
3.2.1 3D electrodes fabrication 28
3.2.2 Enzyme-doped thread coated with PVC membrane fabrication 29
3.3 Explore the surface of the plasma-treated 31
3.4 Explore PVC membrane coated with thread 32
3.5 Variable sample volumes 33
3.6 Reagent and apparatus preparation 34
3.6.1 Regent preparation 34
3.6.2 Experimental apparatus 35
3.7 Experimental procedure 36
3.7.1 Fundamental measurements 36
3.7.2 Biosample detection 37
3.7.3 Human whole blood detection 38
Chapter 4 Results and Discussion 40
4.1 EOF characteristics of the thread-based microfluidic system 40
4.2 Explore the variable volumes on thread 41
4.3 Evaluate concentration of enzyme 45
4.4 Performance evaluation on the2D and 3D electrodes 47
4.5 Electrophoresis of enzyme doped thread coated with PVC membrane 49
4.6 Detection of human whole blood on thread microfluidic system 50
4.7 Detection of human whole blood with enzyme doped thread coated with PVC membrane 52
Chapter 5 Conclusions and Future Work 55
5.1 Conclusions 55
5.2 Future work 56
Reference 57
Biography 66
Publication list 66
參考文獻 References
[1] R. L. Chien and D. S. Burgi, "Sample stacking of an extremely large injection volume in high-performance capillary electrophoresis," Analytical Chemistry, vol. 64, pp. 1046-1050, 1992.
[2] A. T. Woolley and R. A. Mathies, "Ultra-high-speed DNA sequencing using capillary electrophoresis chips," Analytical Chemistry, vol. 67, pp. 3676-3680, 1995.
[3] J. H. Kim, C. Kang, and Y. S. Kim, "Development of a microfabricated disposable microchip with a capillary electrophoresis and integrated three-electrode electrochemical detection," Biosensors and Bioelectronics, vol. 20, pp. 2314-2317, 2005.
[4] Y. Shi and J. S. Fritz, "Separation of metal ions by capillary electrophoresis with a complexing electrolyte," Journal of Chromatography A, vol. 640, pp. 473-479, 1993.
[5] A. Tiselius, "A new apparatus for electrophoretic analysis of colloidal mixtures," Transactions of the Faraday Society, vol. 33, pp. 524-531, 1937.
[6] R. Virtanen, "Zone electrophoresis in a narrow-bore tube employing potentiometric detection-Theoretical and experimental study," Acta Polytechnica Scandinavica-Chemical Technology Series, pp. 1-67, 1974.
[7] J. W. Jorgenson and K. D. Lukacs, "Zone electrophoresis in open-tubular glass capillaries," Analytical Chemistry, vol. 53, pp. 1298-1302, 1981.
[8] J. W. Jorgenson and K. Lukacs, "Capillary zone electrophoresis," Science, vol. 222, pp. 266-272, 1983.
[9] A. G. Ewing, R. A. Wallingford, and T. M. Olefirowicz, "Capillary electrophoresis," Analytical Chemistry, vol. 61, pp. 292A-303A, 1989.
[10] T. Kaneta, S. Tanaka, and H. Yoshida, "Improvement of resolution in the capillary electrophoretic separation of catecholamines by complex formation with boric acid and control of electroosmosis with a cationic surfactant," Journal of Chromatography A, vol. 538, pp. 385-391, 1991.
[11] P. Li and F. Zhang, "The electrochemistry of a glass surface and its application to bioactive glass in solution," Journal of Non-crystalline Solids, vol. 119, pp. 112-118, 1990.
[12] Y. Luo, J. Qin, and B. Lin, "Methods for pumping fluids on biomedical lab-on-a-chip," Frontiers in Bioscience (Landmark edition), vol. 14, pp. 3913-3924, 2008.
[13] S. Zeng, C. H. Chen, J. C. Mikkelsen Jr, and J. G. Santiago, "Fabrication and characterization of electroosmotic micropumps," Sensors and Actuators B: Chemical, vol. 79, pp. 107-114, 2001.
[14] D. Maynes and B. Webb, "Fully developed electro-osmotic heat transfer in microchannels," International Journal of Heat and Mass Transfer, vol. 46, pp. 1359-1369, 2003.
[15] A. Meulemans and F. Delsenne, "Measurement of nitrite and nitrate levels in biological samples by capillary electrophoresis," Journal of Chromatography B: Biomedical Sciences and Applications, vol. 660, pp. 401-404, 1994.
[16] C. M. Chen, G. L. Chang, and C. H. Lin, "Performance evaluation of a capillary electrophoresis electrochemical chip integrated with gold nanoelectrode ensemble working and decoupler electrodes," Journal of Chromatography A, vol. 1194, pp. 231-236, 2008.
[17] D. J. Harrison, A. Manz, Z. Fan, H. Luedi, and H. M. Widmer, "Capillary electrophoresis and sample injection systems integrated on a planar glass chip," Analytical Chemistry, vol. 64, pp. 1926-1932, 1992.
[18] R. H. Horng, P. Han, H. Y. Chen, K. W. Lin, T. M. Tsai, and J. M. Zen, "PMMA-based capillary electrophoresis electrochemical detection microchip fabrication," Journal of Micromechanics and Microengineering, vol. 15, p. 6, 2005.
[19] B. C. Hsieh, H. Y. Hsiao, T. J. Cheng, and R. L. Chen, "Assays for serum cholinesterase activity by capillary electrophoresis and an amperometric flow injection choline biosensor," Analytica Chimica Acta, vol. 623, pp. 157-162, 2008.
[20] X. Li, D. R. Ballerini, and W. Shen, "A perspective on paper-based microfluidics: current status and future trends," Biomicrofluidics, vol. 6, p. 011301, 2012.
[21] C. H. Lin, G. B. Lee, Y. H. Lin, and G.-L. Chang, "A fast prototyping process for fabrication of microfluidic systems on soda-lime glass," Journal of Micromechanics and Microengineering, vol. 11, p. 726-734, 2001.
[22] Z. J. Jia, Q. Fang, and Z. L. Fang, "Bonding of glass microfluidic chips at room temperatures," Analytical chemistry, vol. 76, pp. 5597-5602, 2004.
[23] C. H. Lin, C. H. Tsai, and L. M. Fu, "A rapid three-dimensional vortex micromixer utilizing self-rotation effects under low Reynolds number conditions," Journal of Micromechanics and Microengineering, vol. 15, p. 935, 2005.
[24] Y. Zeng, H. Chen, D. W. Pang, Z. L. Wang, and J. K. Cheng, "Microchip capillary electrophoresis with electrochemical detection," Analytical Chemistry, vol. 74, pp. 2441-2445, 2002.
[25] H. You, N. Matsuzuka, T. Yamaji, and O. Tabata, "Deep X-ray exposure system with multistage for 3D microfabrication," in Micromechatronics and Human Science, 2000. MHS 2000. Proceedings of 2000 International Symposium on, 2000, pp. 53-58.
[26] R. M. McCormick, R. J. Nelson, M. G. Alonso-Amigo, D. J. Benvegnu, and H. H. Hooper, "Microchannel electrophoretic separations of DNA in injection-molded plastic substrates," Analytical Chemistry, vol. 69, pp. 2626-2630, 1997.
[27] N. Ruecha, W. Siangproh, and O. Chailapakul, "A fast and highly sensitive detection of cholesterol using polymer microfluidic devices and amperometric system," Talanta, vol. 84, pp. 1323-1328, 2011.
[28] M. Pumera, J. Wang, F. Opekar, I. Jelínek, J. Feldman, H. Löwe, and S. Hardt, "Contactless conductivity detector for microchip capillary electrophoresis," Analytical Chemistry, vol. 74, pp. 1968-1971, 2002.
[29] J. Wang, M. P. Chatrathi, B. Tian, and R. Polsky, "Microfabricated electrophoresis chips for simultaneous bioassays of glucose, uric acid, ascorbic acid, and acetaminophen," Analytical Chemistry, vol. 72, pp. 2514-2518, 2000.
[30] R. Wilke and S. Büttgenbach, "A micromachined capillary electrophoresis chip with fully integrated electrodes for separation and electrochemical detection," Biosensors and Bioelectronics, vol. 19, pp. 149-153, 2003.
[31] D. R. Ballerini, X. Li, and W. Shen, "Flow control concepts for thread-based microfluidic devices," Biomicrofluidics, vol. 5, p. 014105, 2011.
[32] D. J. Harrison, K. Fluri, K. Seiler, Z. Fan, C. S. Effenhauser, and A. Manz, "Micromachining a miniaturized capillary electrophoresis-based chemical analysis system on a chip," Science-Nwe York Then Washington-, vol. 261, pp. 895-895, 1993.
[33] S. C. Jacobson, R. Hergenroder, L. B. Koutny, and J. M. Ramsey, "High-speed separations on a microchip," Analytical Chemistry, vol. 66, pp. 1114-1118, 1994.
[34] V. Dolník, S. Liu, and S. Jovanovich, "Capillary electrophoresis on microchip," Electrophoresis, vol. 21, pp. 41-54, 2000.
[35] J. R. Anderson, D. T. Chiu, H. Wu, O. J. Schueller, and G. M. Whitesides, "Fabrication of microfluidic systems in poly (dimethylsiloxane)," Electrophoresis, vol. 21, pp. 27-40, 2000.
[36] J. Caslavska, E. Gassmann, and W. Thormann, "Modification of a tunable UV-visible capillary electrophoresis detector for simultaneous absorbance and fluorescence detection: profiling of body fluids for drugs and endogenous compounds," Journal of Chromatography A, vol. 709, pp. 147-156, 1995.
[37] B. S. Imai and S. M. Mische, "Mass spectrometric identification of proteins from silver-stained polyacrylamide gel: a method for the removal of silver ions to enhance sensitivity," Electrophoresis, vol. 20, pp. 601-605, 1999.
[38] A. T. Woolley, K. Lao, A. N. Glazer, and R. A. Mathies, "Capillary electrophoresis chips with integrated electrochemical detection," Analytical Chemistry, vol. 70, pp. 684-688, 1998.
[39] J. Qin, Y. Fung, D. Zhu, and B. Lin, "Native fluorescence detection of flavin derivatives by microchip capillary electrophoresis with laser-induced fluorescence intensified charge-coupled device detection," Journal of Chromatography A, vol. 1027, pp. 223-229, 2004.
[40] J. Webster, M. Burns, D. Burke, and C. Mastrangelo, "Monolithic capillary electrophoresis device with integrated fluorescence detector," Analytical Chemistry, vol. 73, pp. 1622-1626, 2001.
[41] W. F. Patton, "A thousand points of light: the application of fluorescence detection technologies to two-dimensional gel electrophoresis and proteomics," Electrophoresis, vol. 21, pp. 1123-1144, 2000.
[42] P. A. Limbach and Z. Meng, "Integrating micromachined devices with modern mass spectrometry," Analyst, vol. 127, pp. 693-700, 2002.
[43] T. Soga, Y. Ohashi, Y. Ueno, H. Naraoka, M. Tomita, and T. Nishioka, "Quantitative metabolome analysis using capillary electrophoresis mass spectrometry," Journal of Proteome Research, vol. 2, pp. 488-494, 2003.
[44] R. D. Smith, J. A. Loo, C. G. Edmonds, C. J. Barinaga, and H. R. Udseth, "Sensitivity considerations for large molecule detection by capillary electrophoresis-electrospray ionization mass spectrometry," Journal of Chromatography A, vol. 516, pp. 157-165, 1990.
[45] J. B. Fenn, M. Mann, C. K. Meng, S. F. Wong, and C. M. Whitehouse, "Electrospray ionization for mass spectrometry of large biomolecules," Science, vol. 246, pp. 64-71, 1989.
[46] M. Moseley, L. Deterding, K. Tomer, and J. Jorgenson, "Determination of bioactive peptides using capillary zone electrophoresis/mass spectrometry," Analytical Chemistry, vol. 63, pp. 109-114, 1991.
[47] R. W. Gross, "High plasmalogen and arachidonic acid content of canine myocardial sarcolemma: A fast atom bombardment mass spectroscopic and gas chromatography-mass spectroscopic characterization," Biochemistry, vol. 23, pp. 158-165, 1984.
[48] J. Wang, B. Tian, and E. Sahlin, "Integrated electrophoresis chips/amperometric detection with sputtered gold working electrodes," Analytical Chemistry, vol. 71, pp. 3901-3904, 1999.
[49] M. A. Schwarz and P. C. Hauser, "Recent developments in detection methods for microfabricated analytical devices," Lab on a chip, vol. 1, pp. 1-6, 2001.
[50] A. H. Suroviec, "Introduction to Electrochemistry," Journal of Laboratory Chemical Education, vol. 1, pp. 45-48, 2013.
[51] I. Švancara, L. Baldrianová, E. Tesařová, S. B. Hočevar, S. A. Elsuccary, A. Economou, S. Sotiropoulos, B. Ogorevc, and K. Vytřas, "Recent Advances in Anodic Stripping Voltammetry with Bismuth‐Modified Carbon Paste Electrodes," Electroanalysis, vol. 18, pp. 177-185, 2006.
[52] R. A. Wallingford and A. G. Ewing, "Capillary zone electrophoresis with electrochemical detection," Analytical Chemistry, vol. 59, pp. 1762-1766, 1987.
[53] R. S. Martin, A. J. Gawron, S. M. Lunte, and C. S. Henry, "Dual-electrode electrochemical detection for poly (dimethylsiloxane)-fabricated capillary electrophoresis microchips," Analytical Chemistry, vol. 72, pp. 3196-3202, 2000.
[54] P. Kissinger, C. Refshauge, R. Dreiling, and R.-N. Adams, "An electrochemical detector for liquid chromatography with picogram sensitivity," Analytical Letters, vol. 6, pp. 465-477, 1973.
[55] D. c. Chen, F. L. Hsu, D. Z. Zhan, and C. h. Chen, "Palladium film decoupler for amperometric detection in electrophoresis chips," Analytical Chemistry, vol. 73, pp. 758-762, 2001.
[56] F. E. Mikkers, F. M. Everaerts, and T. P. Verheggen, "High-performance zone electrophoresis," Journal of Chromatography A, vol. 169, pp. 11-20, 1979.
[57] A. J. Zemann, E. Schnell, D. Volgger, and G. K. Bonn, "Contactless conductivity detection for capillary electrophoresis," Analytical Chemistry, vol. 70, pp. 563-567, 1998.
[58] J. Wang, G. Chen, and A. Muck, "Movable contactless-conductivity detector for microchip capillary electrophoresis," Analytical Chemistry, vol. 75, pp. 4475-4479, 2003.
[59] W. E. Morf, The principles of ion-selective electrodes and of membrane transport: Elsevier, 2012.
[60] G. A. Crespo, S. Macho, and F. X. Rius, "Ion-selective electrodes using carbon nanotubes as ion-to-electron transducers," Analytical Chemistry, vol. 80, pp. 1316-1322, 2008.
[61] A. Hulanicki and A. Lewenstam, "Model for treatment of selectivity coefficients for solid-state ion-selective electrodes," Analytical Chemistry, vol. 53, pp. 1401-1405, 1981.
[62] E. Lindner and B. D. Pendley, "A tutorial on the application of ion-selective electrode potentiometry: an analytical method with unique qualities, unexplored opportunities and potential pitfalls; Tutorial," Analytica Chimica Acta, vol. 762, pp. 1-13, 2013.
[63] D. Antiohos, M. Romano, J. Chen, and J. M. Razal, "Carbon Nanotubes for Energy Applications," 2013.
[64] P. Ertl, C. A. Emrich, P. Singhal, and R. A. Mathies, "Capillary electrophoresis chips with a sheath-flow supported electrochemical detection system," Analytical Chemistry, vol. 76, pp. 3749-3755, 2004.
[65] D. R. Ballerini, X. Li, and W. Shen, "Patterned paper and alternative materials as substrates for low-cost microfluidic diagnostics," Microfluidics and Nanofluidics, vol. 13, pp. 769-787, 2012.
[66] A. W. Martinez, S. T. Phillips, Z. Nie, C. M. Cheng, E. Carrilho, B. J. Wiley, and G. M. Whitesides, "Programmable diagnostic devices made from paper and tape," Lab on a Chip, vol. 10, pp. 2499-2504, 2010.
[67] X. Liu, C. Cheng, A. Martinez, K. Mirica, X. Li, S. Phillips, M. Mascarenas, and G. Whitesides, "A portable microfluidic paper-based device for ELISA," in Micro Electro Mechanical Systems (MEMS), 2011 IEEE 24th International Conference on, 2011, pp. 75-78.
[68] M. Reches, K. A. Mirica, R. Dasgupta, M. D. Dickey, M. J. Butte, and G. M. Whitesides, "Thread as a matrix for biomedical assays," ACS Applied Materials &Iinterfaces, vol. 2, pp. 1722-1728, 2010.
[69] A. W. Martinez, S. T. Phillips, and G. M. Whitesides, "Three-dimensional microfluidic devices fabricated in layered paper and tape," Proceedings of the National Academy of Sciences, vol. 105, pp. 19606-19611, 2008.
[70] W. Dungchai, O. Chailapakul, and C. S. Henry, "A low-cost, simple, and rapid fabrication method for paper-based microfluidics using wax screen-printing," Analyst, vol. 136, pp. 77-82, 2011.
[71] X. Li, J. Tian, G. Garnier, and W. Shen, "Fabrication of paper-based microfluidic sensors by printing," Colloids and Surfaces B: Biointerfaces, vol. 76, pp. 564-570, 2010.
[72] X. Li, J. Tian, T. Nguyen, and W. Shen, "Paper-based microfluidic devices by plasma treatment," Analytical Chemistry, vol. 80, pp. 9131-9134, 2008.
[73] X. Yang, O. Forouzan, T. P. Brown, and S. S. Shevkoplyas, "Integrated separation of blood plasma from whole blood for microfluidic paper-based analytical devices," Lab on a Chip, vol. 12, pp. 274-280, 2012.
[74] A. K. Yetisen, M. S. Akram, and C. R. Lowe, "Paper-based microfluidic point-of-care diagnostic devices," Lab on a Chip, vol. 13, pp. 2210-2251, 2013.
[75] P. Bhandari, T. Narahari, and D. Dendukuri, "‘Fab-Chips’: a versatile, fabric-based platform for low-cost, rapid and multiplexed diagnostics," Lab on a Chip, vol. 11, pp. 2493-2499, 2011.
[76] Y. C. Wei, L. M. Fu, and C. H. Lin, "RETRACTED ARTICLE: Electrophoresis separation and electrochemical detection on a novel thread-based microfluidic device," Microfluidics and nanofluidics, vol. 14, pp. 723-730, 2013.
[77] Y. A. Yang, W. C. Kuo, and C. H. Lin, "Enzyme-doped polyester thread coated with PVC membrane for on-site urea and glucose detection on a thread-based microfluidic system," in Micro Electro Mechanical Systems (MEMS), 2014 IEEE 27th International Conference on, 2014, pp. 959-962.
[78] J. C. Fanguy and C. S. Henry, "The analysis of uric acid in urine using microchip capillary electrophoresis with electrochemical detection," Electrophoresis, vol. 23, pp. 767-773, 2002.
[79] K. T. Liao, C. M. Chen, H. J. Huang, and C. H. Lin, "Poly (methyl methacrylate) microchip device integrated with gold nanoelectrode ensemble for in-column biochemical reaction and electrochemical detection," Journal of Chromatography A, vol. 1165, pp. 213-218, 2007.
[80] J. Sheng, L. Zhang, J. Lei, and H. Ju, "Fabrication of tunable microreactor with enzyme modified magnetic nanoparticles for microfluidic electrochemical detection of glucose," Analytica chimica acta, vol. 709, pp. 41-46, 2012.
[81] J. McIntyre, "The Historical Development of Polyesters," Modern Polyesters: Chemistry and Technology of Polyesters and Copolyesters, p. 3, 2003.
[82] N. Sprang, D. Theirich, and J. Engemann, "Plasma and ion beam surface treatment of polyethylene," Surface and Coatings Technology, vol. 74, pp. 689-695, 1995.
[83] K.-Y. Lu, A. M. Wo, Y.-J. Lo, K.-C. Chen, C.-M. Lin, and C.-R. Yang, "Three dimensional electrode array for cell lysis via electroporation," Biosensors and Bioelectronics, vol. 22, pp. 568-574, 2006.
[84] N. Honda, M. Inaba, T. Katagiri, S. Shoji, H. Sato, T. Homma, T. Osaka, M. Saito, J. Mizuno, and Y. Wada, "High efficiency electrochemical immuno sensors using 3D comb electrodes," Biosensors and Bioelectronics, vol. 20, pp. 2306-2309, 2005.
[85] R. Gasparac, B. J. Taft, M. A. Lapierre-Devlin, A. D. Lazareck, J. M. Xu, and S. O. Kelley, "Ultrasensitive electrocatalytic DNA detection at two-and three-dimensional nanoelectrodes," Journal of the American Chemical Society, vol. 126, pp. 12270-12271, 2004.
[86] Q. J. Wan, P. Kubáň, J. Tanyanyiwa, A. Rainelli, and P. C. Hauser, "Determination of major inorganic ions in blood serum and urine by capillary electrophoresis with contactless conductivity detection," Analytica chimica acta, vol. 525, pp. 11-16, 2004.
[87] Y. H. Lin, S. H. Wang, M. H. Wu, T. M. Pan, C. S. Lai, J. D. Luo, and C. C. Chiou, "Integrating solid-state sensor and microfluidic devices for glucose, urea and creatinine detection based on enzyme-carrying alginate microbeads," Biosensors and Bioelectronics, vol. 43, pp. 328-335, 2013.
[88] J. Wang, "Electrochemical glucose biosensors," Chemical reviews, vol. 108, pp. 814-825, 2008.
[89] M. Bonakdar, J. Vilchez, and H. A. Mottola, "Bioamperometric sensors for phenol based on carbon paste electrodes," Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol. 266, pp. 47-55, 1989.
[90] K. Zhou, Y. Zhu, X. Yang, J. Luo, C. Li, and S. Luan, "A novel hydrogen peroxide biosensor based on Au–graphene–HRP–chitosan biocomposites," Electrochimica Acta, vol. 55, pp. 3055-3060, 2010.
[91] Y. Xiao, H. X. Ju, and H.Y. Chen, "Hydrogen peroxide sensor based on horseradish peroxidase-labeled Au colloids immobilized on gold electrode surface by cysteamine monolayer," Analytica Chimica Acta, vol. 391, pp. 73-82, 1999.
[92] A. Saleh Ahammad, "Hydrogen peroxide biosensors based on horseradish peroxidase and hemoglobin," Biosensors and Bioelectronic S, vol. 9, 2013.
[93] C. A. Cauthen, M. J. Lipinski, A. Abbate, D. Appleton, A. Nusca, A. Varma, E. Goudreau, M. J. Cowley, and G. W. Vetrovec, "Relation of blood urea nitrogen to long-term mortality in patients with heart failure," The American Journal of Cardiology, vol. 101, pp. 1643-1647, 2008.
[94] A. Manerba, C. Lombardi, E. Vizzardi, C. Maiandi, G. Milesi, S. Bugatti, L. Bettari, A. Romeo, M. Metra, and L. D. Cas, "Role of blood urea nitrogen variations in patients with chronic heart failure," in Europan Heart Journal, vol, pp. 1053-1054.
[95] A. Schuchert-Shi and P. C. Hauser, "Monitoring the enzymatic conversion of urea to ammonium by conventional or microchip capillary electrophoresis with contactless conductivity detection," Analytical Biochemistry, vol. 376, pp. 262-267, 2008.
[96] T. Ferri, S. Maida, A. Poscia, and R. Santucci, "A Glucose Biosensor Based on Electro‐Enzyme Catalyzed Oxidation of Glucose Using a HRP‐GOD Layered Assembly," Electroanalysis, vol. 13, pp. 1198-1202, 2001.
[97] C. D. García and C. S. Henry, "Direct determination of carbohydrates, amino acids, and antibiotics by microchip electrophoresis with pulsed amperometric detection," Analytical chemistry, vol. 75, pp. 4778-4783, 2003.
[98] U. Backofen, F.-M. Matysik, and C. E. Lunte, "A chip-based electrophoresis system with electrochemical detection and hydrodynamic injection," Analytical chemistry, vol. 74, pp. 4054-4059, 2002.
[99] S. L. Delinger and J. M. Davis, "Influence of analyte plug width on plate number in capillary electrophoresis," Analytical Chemistry, vol. 64, pp. 1947-1959, 1992.
[100] C. S. Effenhauser, A. Manz, and H. M. Widmer, "Glass chips for high-speed capillary electrophoresis separations with submicrometer plate heights," Analytical Chemistry, vol. 65, pp. 2637-2642, 1993.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code