Responsive image
博碩士論文 etd-0607115-160817 詳細資訊
Title page for etd-0607115-160817
論文名稱
Title
晶圓級晶片尺寸封裝之介電層互連可靠度強化
Enhancement of interconnection reliability of dielectric layer for wafer level chip scale package
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
79
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-06-26
繳交日期
Date of Submission
2015-07-07
關鍵字
Keywords
晶圓級晶片尺寸封裝、脫層、反應曲面法、奈米壓印試驗、有限元素法、均勻設計法、克利金
delamination, wafer level chip scale package, FEM, uniform design method, response surface methodology, Kriging, nanoindentation
統計
Statistics
本論文已被瀏覽 5720 次,被下載 0
The thesis/dissertation has been browsed 5720 times, has been downloaded 0 times.
中文摘要
近年來使用聚合物-金屬及金屬-金屬間接合之方式,在封裝結構之應用領域展現日漸重要的趨勢。尤以晶圓級晶片尺寸封裝(WLCSP)製程具有高度系統整合而受到重視,但高分子介電材料在與重新佈線層(RDL)間因熱膨脹係數不匹配將易導致裂縫產生,而造成元件失效。因此,高分子介電材料的機械性質探討與構裝體的應力分佈分析能使可靠度提升是一重要的研究項目。於IC封裝過程中,有許多因素影響元件的穩定性與可靠度,如溫度、熱膨脹係數、應力、材料的楊氏係數等材料特性的影響下使得封裝結構發生翹曲變形(Warpage)、破裂(Crack)與脫層(Delamination)等問題。然而於過去研究中,對於封裝結構的翹曲變形、基板脫層等有許多探討,但針對多層封裝的脫層問題較少論及。
本論文將針對無凸塊底層(UBM)之晶圓級晶片尺寸封裝結構造成的介電層與重新佈線層所產生脫層的裂縫下,利用奈米壓痕試驗機進行介電層之高分子材料機械性質的測試、再利用有限元素分析軟體ANSYS建立一簡易WLCSP的模型,模擬封裝結構於熱負載下的熱應力與熱應變行為、最後藉由均勻實驗設計法的設計,再建立Kriging模型與反應曲面進行參數最佳化調整,求得較佳製程參數,並以此較佳製程參數帶入所建立之模型進行模擬。模擬顯示經實驗設計法調整後的參數可使其熱應力由86.3 MPa 降低至51.5MPa下降。Kriging模型預測與ANSYS模擬預測其誤差為3.7%。
Abstract
Recently, adopting the polymer-metal and metal-metal combination in the application of package shows the incremental importance. Among of the packaging process, the wafer level chip scale packaging (WLCSP) process with high integration of system was taken seriously. However, the mismatched thermal expansion coefficient between polymer dielectric material and redistribution layer (RDL) can result in the generation of crack which can make element be dysfunctional. Therefore, the investigation of mechanical characteristics of polymer dielectric material and analysis of stress distribution of package can be used to improve the reliability. For the past research, the warpage and delamination of package structure were investigated widely. However, the delamination of multi-layer package was less investigated.
In this study, the delamination between the dielectric layer and RDL is resulted from the under bump metallization (UBM)-free WLCSP. The nanoindentation is adopted to test the mechanical characteristics of polymer dielectric material. Then, the WLCSP model was built by using finite element analysis, ANSYS, and is used to simulate the thermal stress and thermal strain of package structure under thermal loading. Finally, the uniform design method with Kriging model and response surface methodology was used to obtain the optimal experimental parameter which is substituted into the built model and simulated. From the result of simulation, the thermal stress decrease from 86.3 MPa to 51.5 MPa with the optimal parameter. The error between Kriging and ANSYS simulation was 3.7%.
目次 Table of Contents
致謝 ii
摘要 iii
Abstract iv
目錄 v
圖目錄 viii
表目錄 x
第一章 緒論 1
1.1 前言 1
1.2 研究背景 2
1.2.1 IC封裝技術 2
1.2.2 晶圓級晶片尺寸封裝 4
1.3 研究動機與目的 6
1.4 文獻回顧 7
1.5 本文架構 8
第二章 理論基礎與原理 9
2.1 奈米壓痕技術 9
2.1.1 奈米壓痕基本概述 9
2.1.2 奈米壓痕理論 10
2.1.3 探針特性 12
2.1.4 連續勁度量測技術 (CSM) 14
2.2 均勻設計實驗法 17
2.2.1 實驗設計 17
2.2.2 均勻設計實驗法概論 18
2.2.3 均勻設計表 18
2.2.4 均勻設計實驗法程序 21
2.2.5 均勻設計實驗法結果分析 21
2.3 克利金模型插值法 (Kriging method) 22
2.4 Kriging 反應曲面 22
第三章 研究方法 25
3.1 實驗架構 25
3.2 實驗設備─ MTS XP 奈米壓痕試驗機 26
3.3 有限元素分析 28
3.3.1 模型架構 28
3.3.2 基本假設 30
3.3.3 邊界拘束條件與負載 30
3.3.4 ANSYS有限元素分析 32
第四章 均勻實驗法最佳化分析 34
4.1 參數設計 35
4.2 均勻設計表選擇 37
4.3 建立Kriging模型與反應曲面 38
4.4 熱應力之Kriging模型建立 39
4.5 熱應力最佳化分析方法 40
第五章 實驗結果與討論 42
5.1 壓痕機械性質分析 42
5.1.1 楊氏係數 43
5.1.2 硬度 46
5.2 數值模擬結果分析 47
5.2.1 相同介電層材料之單一溫度模擬分析 47
5.2.2 相異兩層介電層材料性質之熱應力分析 52
5.3 均勻設計實驗法之數值分析與統計 55
5.3.1 均勻設計實驗結果 55
5.3.2 均勻設計實驗線性回歸分析 56
5.4 Kriging 反應曲面 57
5.5 製程參數最佳化分析 61
5.6 最佳化參數之熱應力模擬分析 61
5.7 模型驗證 62
第六章 結論與未來方向 63
參考文獻 65
參考文獻 References
[1] Wafer Level Chip Scale Package (WLCSP), Freescale Semiconductor Application Note, 2012.
[2] W.T. Chen and C.W. Nelson, “Thermal Stress In Bonded Joints,” IBM Journal of Research and Development, vol. 23, No. 2, pp. 179-188, 1979.
[3] R. Darveaux, I. Turlik, L.T. Hwang and A. Reisman, ”Thermal Stress Analysis of a Multichip Package Design”, IEEE Transactions on Components, Hybrids and Manufacturing Technology, vol. 12, No. 4, pp. 663-672, 1989.
[4] A. Kuo, “Thermal Stress at the Edge of a Bimetallic Thermostat,” Journal of Applied Mechanics, vol. 56, pp. 585-589, 1989.
[5] S. Michaelides and S.K. Sitaraman, “Effect of Material and Geometry Parameters on the Thermo-Mechanical Reliability of Flip-Chip Assemblies,” IEEE InterSociety Conference on Thermal Phenomena, pp. 193-200, 1998.
[6] 陳育儒, “3維晶方尺寸構裝之尺寸效應的數值探討,” 國立成功大學工程科學系論文, 2000.
[7] John J.H. Reche, D.H. Kim, “Wafer level packaging having bump-on-polymer structure,” Microelectronics Reliability, vol. 43, pp. 879-894, 2003.
[8] 梁金條, “利用田口方法分析對WLCSP含UBM厚度與錫球形狀之最佳化分析,” 國立成功大學工程科學系碩士論文, 2005.
[9] M.C. Yew, C.C. Chiu, S.M. Chang and K.N. Chiang, “A novel crack and delamination protection mechanism for a WLCSP using soft joint technology,” Soldering & Surface Mount Technology, vol. 18, pp. 3-13, 2006.
[10] H. Hertz, “Über die Berührung fester elastischer Körper,” Journal für die reine und angewandte Mathematik, pp. 156-171, 1881.
[11] I. N. Sneddon, “The relation between load and penetration in the axisymmetric boussinesq problem for a punch of arbitrary profile,” International Journal of Engineering Science, pp. 47-57, 1965.
[12] M. Doerner and W.D. Nix, “A method for interpreting the data from depth-sensing indentation instruments,” Journal of Materials Research, pp. 601-609, 1986.
[13] G.M. Pharr, W.C. Oliver, and F.R. Brotzen, “On the generality of the relationship among contact stiffness, contact area, and elastic modulus during indentation,” Journal of Materials Research, vol. 7, pp. 613-617, 1992.
[14] MTS Nanoindenter XP handbook, MTS systems corporation, pp. 199-207, 1999.
[15] 方開泰, "均勻設計-數理方法在試驗設計中的應用," 概率統計通訊, vol. 1, pp. 56-97, 1978.
[16] Y. Wang, Fang, K.T., “A note on uniform distribution and experimental design,” Kexue Tongbao, vol. 26, pp. 485-489, 1981.
[17] 快速精通實驗設計邁向Six Sigma的關鍵方法, 全華科技圖書股份有限公司, 台北, 2009..
[18] 蔡孟儒, “應用均勻實驗設計與克利金反應曲面於人工牙根最佳化設計,”
國立高雄第一科技大學機械與自動化工程系碩士論文, 2012.
[19] 方開泰, “均勻設計與均勻設計表,” 科學出版社, 北京, 1994
[20] K.T. Fang, and Demmis K.J. Lin, “Uniform experimental designs and their application in industry,” R. Khattree and C.R. Rao,eds., Handbook of statistics, vol. 22, pp. 131-170
[21] 林育如, “田口及均勻實驗法應用於多元醇合成奈米銀分析,” 國立中山大學機械與機電工程系碩士論文, 2015.
[22] 林晉禾, “應用均勻實驗設計與克利金插值法於自行車車架之最佳化分析,” 國立高雄第一科技大學機械與自動化工程系碩士論文, 2011.
[23] D.G. Krige, “A statistical approack to some mine valuation and allied problems on the witwatersrand,” Master’s thesis, University of Witatersrand, 1951.
[24] J. Sacks et al., “Design and analysis of computer experiments,” Statistical Science, vol. 4, no. 4, pp. 409-439, 1989.
[25] L. Etman, “The method of sacks, Design and analysis of computer experiments,” tech. rep., Eindhoven University of Technology, 1994.
[26] S. Sakata, F. Ashida, and M. Zako, “Eigenfrequency optimization of stiffened plate using kriging estimation,” Computational Mechanics, vol. 31, no. 5, pp. 409-418, 2003.
[27] C.H. Liu, and K.Y. Chan, “Reliability-base design of a pressure tank under random and stochastic environments,” ASMS International Design Engineering Technical Conference, 2008.
[28] 鄭永長, 蔡孟儒, 江卓培, 李政鋼, “以均勻實驗設計與有限元素法求解人工牙根之最佳設計,” 中國機械工程學會第二十九屆全國學術研討會, 2012.
[29] M. Li, G. Li, S. Azarm, “A kriging metamodel assisted multi-objective genetic algorithm for design optimization,” Journal of Mechanical Design, vol. 130, 2008.
[30] Soren N. Lophaven, Hans Bruun Nielsen, Jacob Sondergaard, “A MATLAB kriging toolbox DACE,” Report IMM-TR-2002-12, Informatics and Mathematical Modelling, DTU, 2002.
[31] Robert L. Hubbard, and B.S. Lee, “Reduced stress and improved 2.5/3DIC process compatibility with stable polyimide dielectrics,” International wafer level packaging conference, 2012.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.221.197.132
論文開放下載的時間是 校外不公開

Your IP address is 18.221.197.132
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code