Responsive image
博碩士論文 etd-0607115-173952 詳細資訊
Title page for etd-0607115-173952
論文名稱
Title
以觸控膜為基材之延伸閘極場效應電晶體應用於水中氫離子濃度感測
Extended-Gate Field Effect Transistor Produced with Touch Panel Film for Hydrogen Ion Concentration Measurement
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
103
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-07-07
繳交日期
Date of Submission
2015-07-22
關鍵字
Keywords
離子感測場效應電晶體、觸控薄膜、氧化銦錫、酸鹼量測、延伸式離子感測場效應電晶體
ISFET, ITO, EGFET, touch panel film, pH sensor
統計
Statistics
本論文已被瀏覽 5677 次,被下載 187
The thesis/dissertation has been browsed 5677 times, has been downloaded 187 times.
中文摘要
本研究提出使用工業量產之低成本塑膠觸控薄膜,結合高互導值場效應電晶體,開發高性能可拋棄式的酸鹼感測器(TPFET pH sensor)。其工業用觸控薄膜為本實驗所採用的感測材料,為分層鍍有雙面氧化銦錫/二氧化矽/五氧化二鈮(ITO/SiO2/Nb2O5)之可撓性聚對苯二甲酸乙二酯(PET)膜,厚度為180.2 μm。氧化銦錫鍍膜因具有可快速大量生產特性,故成本較低,且薄膜輕薄導電性佳,又具備有抗酸鹼特性,對水溶液中的離子具有良好的選擇性,針對水溶液中之氫離子量測有極大的優勢。因此我們在On-film系統中對此薄膜進行後製程的動作,在感測薄膜上加入一參考電極,使整個系統符合離子感測場效應電晶體(ISFET)的架構,再將此薄膜連結上自行設計的高互導值轉換電路與C0003晶片,與一般市售的電晶體IC相比,具有能將輸出訊號放大(4至6倍)的功效,且搭配插拔式插槽裝置,當感測薄膜長時間量測(6小時以上)受到腐蝕損壞時(電子顯微鏡下觀察),方便薄膜快速更換,使其成為一種高性能氫離子濃度偵測裝置。我們利用該薄膜結合電晶體,採用ISFET原理組合成延伸式閘極離子感測場效應電晶體(EGFET),開發出Off-film與On-film系統,用以量測該薄膜表面吸附氫離子所形成的電位。結果顯示,量測經由氫氧化鈉(NaOH)和鹽酸(HCl)所調配出來不同pH值的酸鹼溶液,範圍可達pH3到pH13,線性度和靈敏度分別為0.9915和60.90 mV/pH。在不同大小的感測面積量測下,感測薄膜最小可到邊長8×8 mm2。在長時間穩定度量測部分,將離子感測薄膜長時間浸泡在不同的pH值溶液內連續量測,其各點變異量均小於1%,此方式所開發出來的氫離子感測器所量測出來的酸鹼值具有低誤差、高穩定、再現性高和反應快速等特性。在循環階層的量測中,也再次獲得印證,在高離子濃度干擾的量測環境下也有一定的抵抗能力,極具有商品開發效益。
Abstract
A high performance ion-sensitive field-effect- transistor (ISFET) based pH sensor utilizing commercial touch panel film (TPF) as the sensing material. The metal oxide layers (ITO/SiO2/Nb2O5) on the TPF is ideal for measuring dissociated hydrogen ions. A high transconductance MOSFET chip composed of 10 parallel FETs provided by CIC is used to convert the effective pH level into the equivalent gate voltage. A high current response of 2.156 mA/V is obtained in On-Film system due to the high transconductance property compared with commercial IC in Off-Film system. The industrial roll-to-roll process for producing the TPF film and the quick plugging slot make the sensing layer suitable for disposable applications. An Ag/AgCl reference electrode will integration on the film after back-end process. The On-film system is also produced to further enhance the sensing performance and reduce the system volume. Results show that the TPF-based pH sensor exhibits good response (60.9 mV/pH) for detecting solutions of the pH values in 3-13. The rapid time response (< 30 s) and good stability (C.V. < 2%) also confirmed the sensing performance of the developed pH sensor under different pH conditions. Observed the difference in surface structure of the sensing film under the scanning electron microscope. The film was mot damage of using less than 60 minutes in the sample solution. Moreover, the sensor also shows low response to the interference ions in various solutions of normal saline, city water and DI water. Results showed that the developed pH sensor was not sensitive to the ionic strength of the sample solutions. In the section of conversion circuit design. This study used an operational amplifier, changing the resistance value of its negative feedback to enhance sensitivity of the system (four to six times). The developed pH sensor has presented its capabilities for rapid and low-cost hydrogen ion detections.
目次 Table of Contents
論文授權書 i
論文審定書 ii
致謝 iii
中文摘要 iv
Abstract v
目錄 vi
圖目錄 ix
表目錄 xii
符號表 xiii
簡寫表 xvi
第一章 緒論 1
1.1 前言 1
1.2 酸鹼感測器的應用 2
1.2.1 酸鹼感測器種類與原理 3
1.2.2 酸鹼感測器效能評斷 6
1.3 離子感測場效電晶體感測器 9
1.3.1 ISFET離子感測場效應電晶體 9
1.3.2 Bio-ISFET生醫感測之應用 11
1.3.3 EGFET延伸閘極式感測場效應電晶體 13
1.4 ITO氧化銦錫薄膜發展與應用 16
1.5 研究動機與目的 19
1.6 論文架構 20
第二章 材料製備及原理 21
2.1 ITO導電觸控薄膜製備 21
2.2 系統偵測原理 24
2.2.1 離子感測場效應電晶體量測原理 24
2.2.2 吸附鍵結理論 26
2.2.3 電雙層模型原理 28
第三章 元件封裝與實驗架設 32
3.1 感測元件設計 32
3.1.1 MOSFET晶片封裝 32
3.1.2 薄膜晶片後製程 36
3.2 氫離子酸鹼量測系統 38
3.2.1 Off-Film氫離子量測系統 38
3.2.2 On-Film氫離子量測系統 39
3.2.3 Off-Film與On-Film數據擷取系統 41
第四章 實驗結果與討論 44
4.1 MOS IC特性曲線分析 44
4.2 酸鹼範圍量測分析 49
4.3 感測面積對效能影響 52
4.4 薄膜與參考電極間距離影響 55
4.5 系統響應時間分析 57
4.6 酸鹼環境下長時間重複性量測 59
4.6.1 固定酸鹼值長時間量測分析 59
4.6.2 循環式長時間量測分析 60
4.7 混合物中離子干擾測試 63
4.8 ESEM表面觀察與EDAX組成分析 66
4.9 後端轉換電路模擬 68
第五章 結論與未來展望 71
5.1 結論 71
5.2 未來展望 74
參考文獻 75
自述 84
參考文獻 References
[1] D. Briand, B. van der Schoot, N. F. de Rooij, H. Sundgren, and I. Lundstrom, "A low-power micromachined MOSFET gas sensor" Journal of Microelectromechanical Systems, vol. 9, pp. 303-308, 2000.
[2] H. Sundgren, I. Lundström, F. Winquist, I. Lukkari, R. Carlsson, and S. Wold, "Evaluation of a multiple gas mixture with a simple MOSFET gas sensor array and pattern recognition" Sensors and Actuators B: Chemical, vol. 2, pp. 115-123, 1990.
[3] K. Arshak, E. Moore, G. Lyons, J. Harris, and S. Clifford, "A review of gas sensors employed in electronic nose applications" Sensor Review, vol. 24, pp. 181-198, 2004.
[4] Z.-H. Zhang, Y.-H. Zhang, L.-T. Liu, and T.-L. Ren, "A novel MEMS pressure sensor with MOSFET on chip" IEEE Sensors coference, 2008, pp. 1564-1567.
[5] Y.-S. Chiu, C.-Y. Tseng, and C.-T. Lee, "Nanostructured EGFET pH sensors with surface-passivated ZnO thin-film and nanorod array" IEEE Sensors Journal, vol. 12, pp. 930-934, 2012.
[6] C.-E. Lue, I.-S. Wang, C.-H. Huang, Y.-T. Shiao, H.-C. Wang, C.-M. Yang, et al., "pH sensing reliability of flexible ITO/PET electrodes on EGFETs prepared by a roll-to-roll process" Microelectronics Reliability, vol. 52, pp. 1651-1654, 2012.
[7] S.-K. Lee, Y.-S. Sohn, and S.-Y. Choi, "Fabrication characteristics of Al2O3 pH-Ion sensitive field effect transistor fabricated using atomic layer deposition and sputter" Sensor Letters, vol. 9, pp. 3-6, 2011.
[8] W. B. Jensen, "The symbol for pH" Journal of Chemical Education, vol. 81, p. 21, 2004.
[9] R. G. Bates, "Determination of pH: theory and practice" Determination of pH: theory and practice., 1964.
[10] G. Eisenman, "Cation selective glass electrodes and their mode of operation" Biophysical Journal, vol. 2, pp. 259-323, 1962.
[11] J. Carr and J. Brown, "Introduction to biomedical equipment technology" Prentice Hall, 1993
[12] P. Bergveld, "Development of an ion-sensitive solid-state device for neurophysiological measurements" IEEE Transactions on Biomedical engineering, pp. 70-71, 1970.
[13] P. Bergveld, "Thirty years of ISFETOLOGY: What happened in the past 30 years and what may happen in the next 30 years" Sensors and Actuators B: Chemical, vol. 88, pp. 1-20, 2003.
[14] Z. Baccar, N. Jaffrezic-Renault, C. Martelet, H. Jaffrezic, G. Marest, and A. Plantier, "K+-ISFET type microsensors fabricated by ion implantation" Materials chemistry and physics, vol. 48, pp. 56-59, 1997.
[15] Y. Sanada, T. Akiyama, Y. Ujihira, and E. Niki, "Preparation of Na+-selective electrodes by ion-implantation of lithium and silicon into single-crystal alumina wafer and its application to the production of ISFET" Fresenius Zeitschrift für analytische Chemie, vol. 312, pp. 526-529, 1982.
[16] A. Bratov, N. Abramova, C. Domı́nguez, and A. Baldi, "Ion-selective field effect transistor (ISFET)-based calcium ion sensor with photocured polyurethane membrane suitable for ionised calcium determination in milk" Analytica chimica acta, vol. 408, pp. 57-64, 2000.
[17] S.-K. Lee and S.-Y. Choi, "Improvement of Drift Characteristic to Continuously Measure Al2O3 pH-ISFET with the Protective Structure" Meeting Abstracts, 2010, pp. 38-38.
[18] S.-K. Lee, Y.-S. Sohn, and S.-Y. Choi, "Fabrication characteristics of Al2O3 pH-Ion sensitive field effect transistor fabricated using atomic layer deposition and sputter" Sensor Letters, vol. 9, pp. 3-6, 2011.
[19] C.-E. Lue, C.-S. Lai, I. Wang, and C.-M. Yang, "Sensitivity of trapping effect on Si3N4 sensing membrane for ion sensitive field effect transistor/reference field effect transistor pair application" Sensor Letters, vol. 8, pp. 725-729, 2010.
[20] R. R. Jarmin, L. Y. Khuan, H. Hashim, A. Ahmad, and M. Mazzuan, "A new pspice macro model for electrolyte insulator interface based Si3N4 Field Effect transistor responsive to H+ ion concentration for biomedical sensor" Biomedical Engineering and Sciences(IECBES) on 2010 IEEE EMBS Conference, 2010, pp. 505-508.
[21] I. Lundström, S. Shivaraman, C. Svensson, and L. Lundkvist, "A hydrogen− sensitive MOS field− effect transistor" Applied Physics Letters, vol. 26, pp. 55-57, 1975.
[22] U. Lampe, E. Simon, R. Pohle, M. Fleischer, H. Meixner, H.-P. Frerichs, et al., "GasFET for the detection of reducing gases" Sensors and Actuators B: Chemical, vol. 111, pp. 106-110, 2005.
[23] M. Fleischer, B. Ostrick, R. Pohle, E. Simon, H. Meixner, C. Bilger, et al., "Low-power gas sensors based on work-function measurement in low-cost hybrid flip–chip technology" Sensors and Actuators B: Chemical, vol. 80, pp. 169-173, 2001.
[24] R. Pohle, E. Simon, R. Schneider, M. Fleischer, R. Sollacher, H. Gao, et al., "Fire detection with low power fet gas sensors" Sensors and Actuators B: Chemical, vol. 120, pp. 669-672, 2007.
[25] T. Matsuo and M. Esashi, "Methods of ISFET fabrication" Sensors and Actuators, vol. 1, pp. 77-96, 1981.
[26] B. Liu, Y. Su, and S. Chen, "Ion-sensitive field-effect transistor with silicon nitride gate for pH sensing" International Journal of Electronics Theoretical and Experimental, vol. 67, pp. 59-63, 1989.
[27] A. Topkar and R. Lal, "Effect of electrolyte exposure on silicon dioxide in electrolyte-oxide-semiconductor structures" Thin Solid Films, vol. 232, pp. 265-270, 1993.
[28] L. Bousse, S. Mostarshed, B. van der Schoot, and N. De Rooij, "Comparison of the hysteresis of Ta2O5 and Si3N4 pH-sensing insulators" Sensors and Actuators B: Chemical, vol. 17, pp. 157-164, 1994.
[29] R. Smith and D. Scott, "An integrated sensor for electrochemical measurements" Biomedical Engineering on IEEE Transactions, pp. 83-90, 1986.
[30] R. vanHal, P. Bergveld, and J. Engbersen, "Fabrication and packaging of Mesa ISFETs" Sensors and Materials, vol. 8, pp. 455-468, 1996.
[31] J.-C. Chou and C.-Y. Weng, "Sensitivity and hysteresis effect in Al2O3 gate pH-ISFET" Materials Chemistry and Physics, vol. 71, pp. 120-124, 2001.
[32] L. Bousse, D. Hafeman, and N. Tran, "Time-dependence of the chemical response of silicon nitride surfaces" Sensors and Actuators B: Chemical, vol. 1, pp. 361-367, 1990.
[33] W. Olthuis, J. Luo, B. Van der Schoot, J. Bomer, and P. Bergveld, "Dynamic behaviour of ISFET-based sensor-actuator systems" Sensors and Actuators B: Chemical, vol. 1, pp. 416-420, 1990.
[34] A. Mroz, "Disposable reference electrode" Analyst, vol. 123, pp. 1373-1376, 1998.
[35] S. Collins, "Practical limits for solid-state reference electrodes" Sensors and Actuators B: Chemical, vol. 10, pp. 169-178, 1993.
[36] Y. Kato, K. Yoshikawa, and M. Kitora, "Temperature-dependent dynamic response enables the qualification and quantification of gases by a single sensor" Sensors and Actuators B: Chemical, vol. 40, pp. 33-37, 1997.
[37] W. Gui-Hua, Y. Dun, and W. Yao-Lin, "ISFET temperature characteristics" Sensors and Actuators, vol. 11, pp. 221-237, 1987.
[38] M. J. Schöning and A. Poghossian, "Bio FEDs (Field‐Effect Devices): State‐of‐the‐Art and New Directions" Electroanalysis, vol. 18, pp. 1893-1900, 2006.
[39] D. Pijanowska and W. Torbicz, "Biosensors for bioanalytical applications" Technical Sciences, vol. 53, 2005.
[40] S. Caras and J. Janata, "Field effect transistor sensitive to penicillin" Analytical Chemistry, vol. 52, pp. 1935-1937, 1980.
[41] J. Janata, "Chemically sensitive field effect transistor" United States Patent, US4411741 A, 1983.
[42] C. Cané, A. Götz, A. Merlos, I. Gracia, A. Errachid, P. Losantos, et al., "Multilayer ISFET membranes for microsystems applications" Sensors and Actuators B: Chemical, vol. 35, pp. 136-140, 1996.
[43] A. P. Soldatkin, J. Montoriol, W. Sant, C. Martelet, and N. Jaffrezic-Renault, "Creatinine sensitive biosensor based on ISFETs and creatinine deiminase immobilised in BSA membrane" Talanta, vol. 58, pp. 351-357, 2002.
[44] B. Premanode and C. Toumazou, "A novel, low power biosensor for real time monitoring of creatinine and urea in peritoneal dialysis" Sensors and Actuators B: Chemical, vol. 120, pp. 732-735, 2007.
[45] M. Yuqing, G. Jianguo, and C. Jianrong, "Ion sensitive field effect transducer-based biosensors" Biotechnology advances, vol. 21, pp. 527-534, 2003.
[46] P. B. Luppa, L. J. Sokoll, and D. W. Chan, "Immunosensors—principles and applications to clinical chemistry" Clinica Chimica Acta, vol. 314, pp. 1-26, 2001.
[47] Y.-C. Wu, S.-J. Wu, and C.-H. Lin, "Mass-produced polyethylene-terephthalate film coated with tantalum pentoxide for pH measurement under ISFET detection configuration" Microsystem Technologies, pp. 1-6, 2015.
[48] L. Bousse and P. Bergveld, "The role of buried OH sites in the response mechanism of inorganic-gate pH-sensitive ISFETs" Sensors and Actuators, vol. 6, pp. 65-78, 1984.
[49] J. Stoof and J. Kebabian, "Two dopamine receptors: biochemistry, physiology and pharmacology" Life Sciences, vol. 35, pp. 2281-2296, 1984.
[50] 王俊傑, "離子感測場效應電晶體與微流體晶片平面化封裝技術及其於酸鹼與流速感測之應用" 中山大學機械與機電工程學系研究所學位論文, pp. 1-83, 2014.
[51] J. Janata, "Electrochemistry of chemically sensitive field effect transistors" Sensors and Actuators, vol. 4, pp. 255-265, 1983.
[52] I. Lauks, P. Chan, and D. Babic, "The extended gate chemically sensitive field effect transistor as multi-species microprobe" Sensors and Actuators, vol. 4, pp. 291-298, 1983.
[53] T. Katsube, T. Araki, M. Hara, T. Yaji, S. Kobayashi, and K. Suzuki, "A multi-species biosensor with extended-gate field effect transistors" Proceedings of the 6th Sensor Symposium, 1986, pp. 211-214.
[54] L.-T. Yin, J.-C. Chou, W.-Y. Chung, T.-P. Sun, and S.-K. Hsiung, "Separate structure extended gate H+-ion sensitive field effect transistor on a glass substrate" Sensors and Actuators B: Chemical, vol. 71, pp. 106-111, 2000.
[55] 洪文進, 郭書瑋, 許登貴, 萬明安, and 蘇昭瑾, "ITO 透明導電薄膜: 從發展與應用到製備與分析" Chinese Chemical Society, Taipei, vol. 63, pp. 409-418, 2005.
[56] A. Hattori, H. Tachibana, N. Yoshiike, and A. Yoshida, "Ozone sensor made by dip coating method" Sensors and Actuators A: Physical, vol. 77, pp. 120-125, 1999.
[57] H. Yumoto, T. Inoue, S. Li, T. Sako, and K. Nishiyama, "Application of ITO films to photocatalysis" Thin Solid Films, vol. 345, pp. 38-41, 1999.
[58] S Noguchi and H Sakata, "Electrical properties of undoped In2O3 films prepared by reactive evaporation" Journal of Physics D: Applied Physics, 1959, pp. 196-201.
[59] H. J. J. Boort, R. Groth, and G. M. J. De Neve, "Method of manufacturing glass articles having a heat-reflecting film" United States Patent, US3666534 A, 1972.
[60] 黃崇傑, "有機薄膜化能帶邊緣型光子晶體雷射之發光特性研究" 清華大學光電工程研究所學位論文, pp. 1-61, 2008.
[61] H. L. Hartnagel, A. Dawar, A. Jain, and C. Jagadish, "Semiconducting transparent thin films" Insitute of Physics Publishing, 1995.
[62] C. Coutal, A. Azema, and J.-C. Roustan, "Fabrication and characterization of ITO thin films deposited by excimer laser evaporation" Thin Solid Films, vol. 288, pp. 248-253, 1996.
[63] K. Maki, N. Komiya, and A. Suzuki, "Fabrication of thin films of ITO by aerosol CVD" Thin Solid Films, vol. 445, pp. 224-228, 2003.
[64] F. M. Penning, "Die Glimmentladung bei niedrigem Druck zwischen koaxialen Zylindern in einem axialen Magnetfeld" Physica, vol. 3, pp. 873-894, 1936.
[65] M. A. Aouaj, R. Diaz, A. Belayachi, F. Rueda, and M. Abd-Lefdil, "Comparative study of ITO and FTO thin films grown by spray pyrolysis" Materials Research Bulletin, vol. 44, pp. 1458-1461, 2009.
[66] O. Yamamoto, T. Sasamoto, and M. Inagaki, "Indium tin oxide thin films prepared by thermal decomposition of ethylene glycol solution" Journal of Materials Research, vol. 7, pp. 2488-2491, 1992.
[67] K. Nishio, T. Sei, and T. Tsuchiya, "Preparation and electrical properties of ITO thin films by dip-coating process" Journal of Materials Science, vol. 31, pp. 1761-1766, 1996.
[68] J.-L. Huang, Y.-T. Jah, B.-S. Yau, C.-Y. Chen, and H.-H. Lu, "Reactive magnetron sputtering of indium tin oxide films on acrylics–morphology and bonding state" Thin Solid Films, vol. 370, pp. 33-37, 2000.
[69] J.-J. Wang, C.-F. Lin, Y.-Z. Juang, H.-H. Tsai, H.-H. Liao, and C.-H. Lin, "Solid-state ISFET flow meter fabricated with a planar packaging process for integrating microfluidic channel with CMOS IC chip" Micro Electro Mechanical Systems (MEMS) on 2014 IEEE 27th International Conference 2014, pp. 1139-1142.
[70] G. Crawford, "Flexible flat panel displays" John Wiley & Sons, 2005.
[71] G. Gore, "On the properties of electro-deposited antimony" Philosophical Transactions of the Royal Society of London, pp. 185-197, 1858.
[72] M. Boehme and C. Charton, "Properties of ITO on PET film in dependence on the coating conditions and thermal processing" Surface and Coatings Technology, vol. 200, pp. 932-935, 2005.
[73] D. R. Cairns, D. C. Paine, and G. P. Crawford, "The mechanical reliability of sputter-coated indium tin oxide polyester substrates for flexible display and touchscreen applications" MRS Spring Meeting, p. F3. 24, 2001.
[74] Y. S. Kim, W. J. Hwang, K. T. Eun, and S.-H. Choa, "Mechanical reliability of transparent conducting IZTO film electrodes for flexible panel displays" Applied Surface Science, vol. 257, pp. 8134-8138, 2011.
[75] J. Lewis, "Material challenge for flexible organic devices" Materials today, vol. 9, pp. 38-45, 2006.
[76] C.-H. Lin and C. W. Liu, "Metal-insulator-semiconductor photodetectors" Sensors, vol. 10, pp. 8797-8826, 2010.
[77] Y. Yeh and H. Cummins, "Localized fluid flow measurements with an He–Ne laser spectrometer" Applied Physics Letters, vol. 4, pp. 176-178, 1964.
[78] H. L. F. von Helmholtz, "Some laws concerning the distribution of electric currents in volume conductors with applications to experiments on animal electricity" Browse Journals & Magazines, vol. 92, pp. 868-870, 2004.
[79] G. Torrie and J. Valleau, "Electrical double layers. 4. Limitations of the Gouy-Chapman theory" The Journal of Physical Chemistry, vol. 86, pp. 3251-3257, 1982.
[80] 周榮泉, "以 WO3 為感測膜之離子感測場效電晶體之模擬與研究," 中華醫學工程學刊, 1997.
[81] O. Stern, "The theory of the electrolytic double-layer" Journal of Physics and Chemistry of Solids, vol. 30, pp. 508-516, 1924.
[82] D. C. Grahame, "The electrical double layer and the theory of electrocapillarity" Chemical Reviews, vol. 41, pp. 441-501, 1947.
[83] C. D. Fung, P. W. Cheung, and W. H. Ko, "A generalized theory of an electrolyte-insulator-semiconductor field-effect transistor" Browse Journals & Magazines, vol. 33, pp. 8-18, 1986.
[84] D. E. Yates, S. Levine, and T. W. Healy, "Site-binding model of the electrical double layer at the oxide/water interface" Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, vol. 70, pp. 1807-1818, 1974.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code