Responsive image
博碩士論文 etd-0607116-154310 詳細資訊
Title page for etd-0607116-154310
論文名稱
Title
實廠及模場生物滴濾塔處理含丙酮排氣之性能研究
Study on the treatment of air-borne acetone by a full-scale and a pilot biotrickling filter
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
98
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-06-14
繳交日期
Date of Submission
2016-07-21
關鍵字
Keywords
揮發性有機物、合成樹脂、生物處理法、生物滴濾法、丙酮
synthetic resin, Volatile Organic Compounds(VOCs), biofilter, acetone, biotrickling filter
統計
Statistics
本論文已被瀏覽 5772 次,被下載 221
The thesis/dissertation has been browsed 5772 times, has been downloaded 221 times.
中文摘要
合成樹脂生產過中多半使用大量揮發性有機溶劑參與反應,易衍生出大量VOCs。本研究選擇新竹某PU樹脂化學製造廠,以生物滴濾塔去除轉水乳化製程排氣中之丙酮。研究主要目的為求取模場數據,以提供實廠操作參數。
模場生物滴濾塔為聚丙烯構成,尺寸為內徑0.3m、高為2.1m之圓柱體,填充約0.07 m3之2"PP皇冠型濾球於滴濾塔內;實廠設製活性碳吸附設備作為生物洗滌前段之緩衝槽,實廠生物滴濾塔以不銹鋼SUS304焊製,尺寸為4.5 m(W)×4.5 m(L)×5.5 m(H),塔內填充約50立方公尺2"PP皇冠型濾球。
模場試驗期間由2015年12月15日至2016年4月13日,共計122天,氣體經填充段之空塔停留時間(EBRT)分別為21、14、8.4秒;營養鹽比例(相當於丙酮轉換之COD:N:P質量比例)分別為150:5:1 (另添加果糖及牛奶)、2500:5:1(無果糖,但加牛奶)、2500:5:1(均未添加果糖及牛奶)進行丙酮去除試驗。
實廠試驗期間由2015年06月09日至2016年03月30日,共計300天,EBRT分為19.8、9.49、8.60、6.13、5.62秒;營養鹽COD:N:P質量比分別為500:2:1、1000:2:1、3300:5:1、5000:2:1。
排除馴養期及人為影響外,研究結果顯示在模場進氣濃度4.4-1143 mg丙酮/m3,總平均去除率為84.1%;實廠進氣濃度介於1.76-6596 mg/m3,總平均去除率為86.0%。
模場及實廠數據顯示,丙酮去除率隨EBRT之增加而上升。EBRT=21秒時,模場有最高(91.7%)之丙酮去除率;EBRT=19.8秒時,實廠丙酮最高去除率96.9%。模廠有機負荷小於260 g/m3.h時,平均去除率約91.2%,實廠有機負荷小於137 g/m3.h時,平均去除率約94.7%。估算顯示,以模場處理1000 m3含丙酮廢氣之操作費用為5.83元。
建議實廠營養鹽比例調整至2500:5:1、均不添加果糖及牛奶,EBRT調整至14秒,作為最佳操作條件。
Abstract
Some synthetic resin production processes use acetone and water to make emulsified resins. During the emulsification process, gas collection and end-of-pipe treatment equipments should be provided to reduce some vaporized acetone which would emit to the atmospheric environment. In this study, a pilot-scale and a field-scale biotrickling filters were set to test their performances on the removal of air-borne acetone. Data from the pilot-scale filter would be helpful to the operations of the field one.
The pilot filter was constructed of a PP (polypropylene) column (0.30 m inner diameter and 2.1 m high) with the inner space packed with 2.0" crown-type biospheres to a total packing volume of 0.70 m3. The full-scale (field) filter was constructed of stainless steel and has a dimension of 4.5 m(W)×4.5 m(L)×5.5 m(H) packed with 2.0" crown-type biospheres to a total packing volume of around 50 m3.
In the test period of 122 days for the pilot filter, an empty bed residence time (EBRT) of the influent gas through the packed section was controlled at 21, 14, and 8.4 s, respectively. Nutrients were added to the circulation water according to the ratios of COD (influent acetone equivalent):N:P = 150:5:1 (in addition to supplements of fructose and milk), 2500:5:1 (in addition to a supplement of milk), and 2500:5:1 (without any additional supplement), respectively, for nutrition tests. In the test period of 300 days for the field filter, EBRTs were in the range of 5.62-20 s and nutrients were added to the circulation water according to the ratio of COD:N:P = 1250:5:1, 2500:5:1, 3300:5:1, and 12,500:5:1, respectively, for nutrition tests, in addition to fructose and/or milk.
Results indicate that on an average, by the pilot filter, with influent acetone concentrations of 4.4-1143 mg/m3, 84.1% of the influent acetone could be removed; and by the field one, 86.0% of the influent acetone of 1.76-6596 mg/m3 was removed.
Results also display that the acetone removal increased with increasing EBRT for both filters. Maximum removal of 91.7 and 96.9% was observed at EBRT of 21.0 and 19.8 s, respectively, for the pilot and the field filter. With volumetric acetone loadings of L < 260 g/m3.h, 91.2% of the influent acetone could be removed, for the pilot and the field filter. With L = 137 g/m3.h, 94.7% of the influent acetone was removed, for the pilot and the field filter.
An economic analysis indicates that it costs 5.83 NTD for treating 1000 m3 of the acetone-containing air by the pilot filter. It is proposed that the field filter be operated at an EBRT of 14 s and nutrition rate of COD:N:P = 2500:5:1 without additional fructose and milk supplementation.
目次 Table of Contents
目錄
論文審定書………………………………………………………………………............... i
謝誌………………………………………………………………………………............... ii
中文摘要…………………………………………………………………………............... iii
Abstract…………………………………………………………………………………….. iv
目錄………………………………………………………………………………............... vi
表目錄……………………………………………………………………………............... ix
圖目錄……………………………………………………………………………............... xi
第一章 前言………………………………………………………………………………..... 1
1.1 研究背景…………………………………………………………………………..........1
1.2 研究內容及目的………………………………………………………………….. ........1
第二章 文獻回顧……………………………………………………………………............4
2.1 石化產業之VOCs排放特性…….………………………………………………. ....4
2.2 合成樹脂業介紹………………………………………………………………….. 4
2.3 揮發性有機物常見種類及危害………………………………………………….. 6
2.4 揮發性有機物控制技術比較…………………………………………………….. 8
2.5 生物處理法……………………………………………………………………….. 10
2.5.1 生物濾床法………………………………………………………............... 12
2.5.2 生物洗滌法………………………………………………………................ 12
2.5.3 生物滴濾法………………………………………………………............... 14
2.6 生物滴濾法影響因子…………………………………………………………….. 15
2.6.1 空塔停留時間……………………………………………………............... 15
2.6.2 循環水負荷……………………………………………………................... 15
2.6.3 濾床溫度……………………………………………………....................... 16
2.6.4 pH值……………………………………………………............................... 16
2.6.5 濾料選擇……………………………………………................................... 17
2.6.6 營養鹽……………………………………………………………............... 17
2.6.7 微生物菌相………………………………………………………............... 18
2.6.8 污染負荷…………………………………………………………............... 18
2.7 生物處理技術相關文獻………………………………………………………….. 19
第三章 實驗設備與材料方法……………………………………………………………. 21
3.1 實驗設備…….……………………………………………………………………. 21
3.1.1 模場設備…………………………………………………………............... 21
3.1.2 實廠設備…………………………………………………………................ 25
3.2 實驗材料………………………………………………………………………….. 28
3.2.1 進氣來源…………………………………………………………............... 28
3.2.1.1 模場………………………………………………………............... 28
3.2.1.2 實廠………………………………………………………............... 29
3.2.2 藥品………………………………………………....................................... 31
3.2.3濾料…………………………………………………………......................... 32
3.2.4 活性污泥…………………………………………………………............... 33
3.4 實驗分析項目、方法及設備…………………………………………………….. 34
3.5 微生物馴養……………………………………………………………………….. 36
3.6 操作參數介紹…………………………………………………………………….. 38
第四章 結果與討論………………………………………………………………………. 39
4.1 模場生物濾床丙酮濃度及去除率變化………………………………………….. 39
4.2 實廠生物濾床丙酮濃度及去除率變化………………………………………….. 43
4.3 循環水與排氣VOC濃度變化關係……………………………………............... 49
4.4.營養鹽對生物濾床之影響………………………………………………………... 51
4.5 有機負荷………………………………………………………………………….. 57
4.5.1 生物濾床之有機負荷變化………………………………………............... 57
4.5.2 有機負荷與去除率之關係………………………………………................ 59
4.6 進出口二氧化碳變化…………………………………………………………….. 63
4.7 生物濾床經濟評估……………………………………………………………….. 65
4.7.1 實廠操作費用……………………………………………………………... 65
4.7.2 模場操作費用……………………………………………………………… 67
第五章 結論與建議………………………………………………………………………. 69
5.1 結論………………………………………………………………………………. 69
5.2 建議……………………………………………………………………………….. 70
第六章 參考文獻…………………………………………………………………………. 71
附錄一……………………………………………………………………………………... 74
附錄二……………………………………………………………………………………... 79
附錄三……………………………………………………………………………………... 82
附錄四……………………………………………………………………………………... 84
參考文獻 References
1. Apel, W. A., and Barreet, K. B. (1994): Removal of gasoline vapors from air streams by biofiltration. Journal of the American Chemical Society, 142-159.
2. Barshter DW, Paff SW, King AB (1993) Biofiltration: room temperature incineration. In: Proceedings 86th Annual Meeting of the Air & Waste Management Association., Denver, Colorado.
3. Bohn, H. L. (1992): Consider biofiltration for decon-taminating gases. Chemical. Engineering Progress., 88(4), 34-40.
4. Bohn, H. L. (1993): Biofiltration:design principles and pitfall, Proceeding of the Air & Waste Management Association. 86th the Annual Meeting & Exhibition.
5. Cheng, W. H.; Chou, M. S., Perng, C. H., and Chu, F. S. (2004): Determining the equilibrium partitioning coefficients of volatile organic compounds at an air-water interface. Chemosphere, 54(7), 935-942.
6. Dharmararam, S., Casey, J., and Timmermans, T. (1993): Experimental evaluation of a biofiltration unit for removal of acetone. Air & Waste Management Association Annual Meeting., 3, 93-WP.
7. Diks, R. M. M., and Ottengraf, S. P. P. (1991): Verification studies of a simplified model for the removal of dichloromethane from waste gases using a biological trickling filter. Bioprocess Engineering, 6(3), 93-99.
8. Kim, J. O. (2003). Degradation of benzene and ethylene in biofilters. Process Biochemistry, 39(4), 447-453.
9. Leson, G. and Winer, A. M. (1991): Biofiltration: an innovative air pollution control technology for VOC emission. Journal of the Air & Waste Management Association., 41(8), 1045-1054.
10. Loy, J. (1995): Biological elimination of odoriferous pollutants and solvents in waste gas with the biotrickling filter. Air & Waste Management Association Annual Meeting., 4, 95-MP9A.
11. Lu, C., Chu, W., and Lin, M. R. (2000): Removal of BTEX vapor form waste gases by a trickle bed biofilter. Journal of the Air & Waste Msnagement Association, 50(3), 411-417.
12. Lu, C.S., Lin, M.R., Lin, J.C., and Chang, K., (2001): Removal of ethylacetate vapor from waste gases by a trickle-bed airbiofilter. Journal of Biotechnology, 87, 123-130.
13. Mohseni, M., & Allen, D. G. (2000): Biofiltration of mixtures of hydrophilic and hydrophobic volatile organic compounds. Chemical Engineering Science, 55(9), 1545-1558.
14. Mueller, J. C. (1988): Biofiltration of gases: A mature technology for control of a wide range of air pollutant. British Columbia Research.
15. Rene, E. R., Špačková, R., Veiga, M. C., & Kennes, C. (2010): Biofiltration of mixtures of gas-phase styrene and acetone with the fungus Sporothrix variecibatus. Journal of hazardous materials, 184(1), 204-214.
16. Rene, E. R., Veiga, M. C., & Kennes, C. (2010). Biodegradation of gas-phase styrene using the fungus Sporothrix variecibatus: impact of pollutant load and transient operation. Chemosphere, 79(2), 221-227.
17. Sun, Y., Quan, X., Chen, J., Yang, F., Xue, D., Liu, Y., & Yang, Z. (2002): Toluene vapour degradation and microbial community in biofilter at various moisture content. Process Biochemistry, 38(1), 109-113.
18. Togna, A. P. and Sam, F. (1993): Field-pilot study of styrene biodegradation using. Biofiltration. Proceeding. 86th Annual Meeting &Exhibition, Air and Waste Management Association.
19. Tongna, A. P., Skladany, G. J., Fucich, W. J., Guarini, W. J., Singh, M., and Webster, T. S. (1995): Removal of isopentane and isobutene vapors from an industrial process waste stream using a field-pilot biotrickling filter. Proceeding. 88th Annual Meeting and Exhibition, Air and Waste Management Association, 95-TA9B.02.
20. Weckhuysen, B., Vriens, L., and Verachtert, H. (1993): The effect of nutrient supplementation on the biofiltration removal butanal in contaminated Air. Applied Microbiology and Biotechnology, 39(3), 395-399.
21. 行政院環境保護署,揮發性有機廢氣生物處理系統建立及評估,中華民國八十九年十二月。
22. 高雄市政府環境保護局空污與噪音防制科,空氣污染防治網站http://air.ksepb.gov.tw/dispPageBox/AQMPCP.aspx?ddsPageID=AQMPC4&
23. 周明顯等,「逸散性臭味處理技術之評估及管理措施之研擬」,行政院環境保護署委託研究報告,EPA-86-FA41-09-13,民國86年6月。
24. 黃焰生 (1996),「以生物滴濾塔處理排氣中乙醚之操作性能研究」,國立中山大學環境工程研究所碩士論文。
25. 高銘木 (1998),「事業廢棄生物處理技術整合型研究-應用生物濾床處理石化ABS樹脂聚合烯類排氣之研究(II),國科會研究報告。
26. 新竹縣環境保護局(1999),新竹工業園區空氣品質改善規劃書。
27. http://en.wikipedia.org/wiki/Acetone - cite_note-7#cite_note-7
28. 王嘉禧 (1999),「以生物滴濾塔處理排氣中氨之操作性能研究」,國立中山大學環境工程研究所碩士論文。
29. 廖庭寬 (2000),「生物濾床中乙酸乙酯抑制二甲苯去除現象之研究」, 國立中興大學環境工程學系碩士論文。
30. 魏銀河 (2000) 「生物濾床處理五種樹脂工廠混合VOCs廢氣之研究」,國立中興大學環境工程學系所碩士論文。
31. 盧重興、白曛綾、張國財、許世杰 (2003),「操作績效自我評估管理制度手冊-生物濾床」,科學工業園區管理局。
32. 經濟部工業局,(2004),「揮發性有機物減量及處理技術手冊」。
33. 經濟部工業局綠色技術資訊平台整合性輔導,「行業製程減廢及污染防治技術-合成樹脂業介紹」。
34. 黃浩倫 (2004),「以生物滴濾塔處理油漆製程排氣之操作性能研究」,國立中山大學環境工程研究所碩士論文。
35. 彭筱婷 (2005),「以生物濾床處理排氣中乙酸甲氧基異丙酯(PGMEA)之操作性能研究」,國立中山大學環境工程研究所碩士論文。
36. 周明顯(2007),「臭味及揮發性有機物控制」,國立中山大學出版,中華民國九十六年十二月。
37. 葉梅紅 (2007),「高雄地區地面及上空揮發性有機化合物之採樣、分析與結果探稿」,國立高雄海洋科技大學海洋環境工程研究所碩士論文。
38. 林文川 (2009),「製成VOCs廢氣之收集與處理」,工業污染防治,第110期,第126-172頁。
39. 廖偉勝 (2009),「以生物濾床法處理樹脂廠揮發性有機物質儲槽廢氣之研究」,國立中興大學環境工程學系所碩士論文。
40. 袁中新、洪崇軒、甯蜀光,「石化/石油煉製業揮發性有機汙染物與微量異味物質監測技術建置、本土排放資料庫建立、異常排放增量評估及排放管制策略研擬」,99年度環保署/國科會空汙防制科研合作計畫期末報告。
41. 吳宏佑 (2013),「以生物濾床處理表面塗裝排氣」,國立中山大學環境工程研究所碩士論文。
42. 劉向千 (2014),「以滴濾式生物濾床法去除排氣中之丙二醇甲醚醋酸酯(PGMEA)之研究」,國立中山大學環境工程研究所碩士論文。
43. 高偉騰 (2014),「以滴濾式生物濾床處理實廠排放塑膠表面塗裝排氣中之揮發性有機物」,國立中山大學環境工程研究所碩士論文。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code