Responsive image
博碩士論文 etd-0607117-160732 詳細資訊
Title page for etd-0607117-160732
論文名稱
Title
利用牡蠣殼作為綠色化學製成球型氧化鈣奈米粒子及重金屬吸附劑
The preparation of CaO nanoparticles and heavy metals adsorbent using Oyster Shells as green chemical source
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
100
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-07-05
繳交日期
Date of Submission
2017-07-07
關鍵字
Keywords
碳酸鈣、銀奈米粒子、聚多巴胺、氧化鈣、牡蠣殼、表面增強拉曼光譜
CaO-NPs, CaCO3, silver nanoparticles, polydopamine, SERS, Oyster shell
統計
Statistics
本論文已被瀏覽 5691 次,被下載 0
The thesis/dissertation has been browsed 5691 times, has been downloaded 0 times.
中文摘要
近年來因環保意識及永續發展意識抬頭,使得更多人對於”綠色化學”此議題更加地重視,並且如何將可再生的原料發揮到最大經濟效應,一直都是科學家們致力於解決的問題。我們利用廢棄且易取得的牡蠣殼作為綠色化學來源,透過加工處理製成兩種材料並將其應用。本研究分為兩部分:第一部分以牡蠣殼利用水熱合成法,在密封的壓力容器中,以水作為溶劑,已成功地製備出球型的氧化鈣奈米粒子,並透過X-ray粉末繞射儀和穿透式電子顯微鏡對氧化鈣奈米粒子作特徵分析,其粒徑大小為約40 nm,具有分散均勻的特色。此外還利用聚多巴胺 (polydopamine, PDA) 作為包覆劑,因其對環境友善,可作為還原劑將銀奈米粒子還原上去,將其修飾於氧化鈣奈米粒子表面上,形成Ag/PDA/CaO的奈米複合材料,並且應用在表面增強拉曼散射 (SERS) 的基材,以4-aminothiophenil (4-ATP) 作為待測分子,且由拉曼結果顯示Ag/PDA/CaO可以有效地增強4-ATP的訊號,其偵測極限可達到10-8 M。第二部分為利用廢棄牡蠣殼加工處理後製備球霰石碳酸鈣粒子,探討去除不同重金屬離子的移除效果以及移除機制。實驗結果顯示,不同重金屬移除效果分別為 Pb2+ (99.9%)、Cr3+ (99.5%)、Fe3+ (99.3%)、Cu2+ (57.1%)。推測鈣離子與金屬離子之間的離子交換反應產生再結晶現象進一步影響移除效率;球霰石碳酸鈣結構具有大孔徑,由BET (Brunauer–Emmett–Teller) 顯示材料為巨孔隙吸附材料可以快速吸附大量金屬離子。球霰石碳酸鈣粒子除了優異的移除重金屬離子之外,該材料廉價、易於合成(產率約69%),我們期望可用於處理工業廢水的替代物。此新穎材料不只合成簡便且便宜,還具有綠色化學的特性,在未來應用上具有非常大的潛力。
Abstract
In recent years, concern for the environment and interest in sustainable development has risen dramatically. Modern researchers now attempt to find solutions to difficult technical challenges using "green chemistry" processes and renewable materials. In this study, we use Oyster shell as a “green” or natural material source to prepare three materials for use in several applications. This study is divided into two parts. In part 1, we prepared spherical calcium oxide nanoparticles (CaO-NPs) by hydrothermal synthesis in a sealed pressure vessel with water as the solvent. X-ray diffraction (XRD) was used to characterize the structure and transmission electron microscopy (TEM) to observe the CaO-NPs morphology. The CaO-NPs were approximately 40 nm in diameter and had a uniform dispersion. Additionally, we prepared silver/polydopamine/calcium-oxide (Ag/PDA/CaO) samples for use as surface-enhanced Raman scattering (SERS) substrates and evaluated them using the probe molecule 4-aminothiophenil (4-ATP). Ag/PDA/CaO enhanced the 4-ATP signal and increased the detection limit up to 10-8 M. In part 2 of our study, we prepared Vaterite particles from oyster shell and tested their removal efficiency for different heavy metal ions. The results showed the removal efficiency was Pb2+ (99.9%), Cr3+ (99.5%), Fe3+ (99.3%) and Cu2+ (57.1%). We speculate that the ion exchange reaction between calcium ions and metal ions produces recrystallization which further affects the removal efficiency. Furthermore, the BET (Brunauer-Emmett-Teller) model shows that Vaterite particles are a giant pore adsorbent material that can rapidly adsorb large amounts of metal ions. In addition to the high efficiency heavy metal ion removal, the Vaterite particles are cheap and easy to synthesize (69% yield), thus providing a low cost and efficient alternative for industrial wastewater remediation.
目次 Table of Contents
目錄
中文摘要 i
Abstract ii
第壹章 緒論 1
1-1 牡蠣殼 1
1-2 牡蠣殼化學成分 2
1-3 牡蠣殼之用途 2
1-4 研究動機 3
第貳章 儀器原理 4
2-1 拉曼光譜儀 4
2-1-1 拉曼散射 4
2-1-2 拉曼散射機制及理論 4
2-1-3 使用儀器及參數設定 7
2-2 穿透式電子顯微鏡 ( Transmission Electron Microscope, TEM ) 8
2-2-1 TEM工作原理 8
2-2-2 使用儀器與參數設定 8
2-3 掃描式電子顯微鏡 ( Scanning Electron Microscope, SEM ) 9
2-3-1 SEM原理 9
2-3-2 使用儀器與設定參數 10
2-4 X-ray 粉末繞射儀 11
2-4-1 X光粉末繞射及工作原理 11
2-4-2 使用儀器與參數設定 12
2-5 X光光電子光譜 12
2-5-1 X光光電子光譜及工作原理 12
2-5-2 使用儀器及參數設定 14
2-6 比表面積氣體吸附分析 14
2-6-1比表面積氣體吸附分析及工作原理 14
2-6-2 使用儀器與設定參數 19
2-7 感應耦合電漿質譜儀 ( Inductively coupled plasma mass spectrometry, ICP-MS ) 19
2-7-1 感應耦合電漿質譜儀及工作原理 19
2-7-2 使用儀器與設定參數 20
第參章 利用牡蠣殼以水熱合成法製成氧化鈣奈米粒子及表面增強拉曼應用 22
3-1 前言 22
3-2 文獻回顧 23
3-2-1 表面增強拉曼散射 ( Surface Enhanced Raman Scattering, SERS ) 23
3-2-2 SERS增強機制 23
3-2-3 聚多巴胺 26
3-3 實驗部分 30
3-3-1 實驗材料:牡蠣殼 30
3-3-2 實驗藥品 30
3-3-3實驗步驟 32
3-4 實驗結果 34
3-4-1 氧化鈣奈米粒子的特徵分析 34
3-4-2 氧化鈣奈米粒子表面修飾聚多巴胺及銀的特徵分析 35
3-4-3 Ag/PDA/CaO 合成機制探討 38
3-4-4 Ag/PDA/CaO的最佳製備條件 41
3-4-5 最低偵測極限測試 42
3-4-9 Ag/PDA/CaO 檢測4-ATP研究和其他文獻比較 43
3-4-6 表面增強拉曼散射討論 44
3-4-7 結論 47
第肆章 製備球霰石碳酸鈣粒子作為重金屬吸附劑 48
4-1 前言 48
4-2 文獻回顧 49
4-2-1 重金屬離子 (heavy metal ions) 49
4-2-2 重金屬污染去除 51
4-3 實驗部分 53
4-3-1 實驗藥品 53
4-3-2 實驗步驟 54
4-3-3 重金屬移除測試 54
4-4 實驗結果 55
4-4-1 球霰石碳酸鈣微球的特徵分析 55
4-4-2 重金屬離子吸附效果測試 58
4-4-3 鉛離子移除效果及機制探討 62
4-4-4 球霰石碳酸鈣對重金屬離子重複使用性效果測試 67
4-4-5 結論 68
第伍章 製程成本分析 69
第陸章 總結 71
第柒章 參考文獻 72
參考文獻 References
1. 何郁佩, 利基市場之研究 _ 以台灣牡蠣商業為例. 清華大學科技管理研究所學位論文 2013, 1-70.
2. 石偉成, 河川及其出海口海域毒性污染物分佈與牡蠣生物累積關係之研究. 元智大學化學工程與材料科學學系學位論文 2007, 1-225.
3. 杨富巍; 张秉坚; 潘昌初; 曾余瑶, 以糯米灰浆为代表的传统灰浆——中国古代的重大发明之一. 中国科学: E 辑 2009, (1), 1-7.
4. 朱東川. 廢棄牡蠣殼粉取代水泥及細骨材對水泥砂漿性質之影響. 國立雲林科技大學, 雲林縣, 2003.
5. 王培濠. 環保濾材應用於呈層複合土壤水質淨化系統之研究. 國立臺北科技大學, 台北市, 2014.
6. Smekal, A., Zur quantentheorie der dispersion. Naturwissenschaften 1923, 11 (43), 873-875.
7. Raman, C.; Krishnan, K., hν o hν. Nature 1928, 121, 501.
8. McCreery, R. L., Magnitude of Raman scattering. Raman spectroscopy for chemical analysis 2000, 15-33.
9. Todokoro, H.; Takamoto, K.; Otaka, T.; Mizuno, F.; Yamada, S.; Kuroda, K.; Ninomiya, K.; Kure, T., Scanning electron microscope and method for production of semiconductor device by using the same. Google Patents: 1995.
10. Vernon-Parry, K., Scanning electron microscopy: an introduction. III-Vs Review 2000, 13 (4), 40-44.
11. Barty, A.; Caleman, C.; Aquila, A.; Timneanu, N.; Lomb, L.; White, T. A.; Andreasson, J.; Arnlund, D.; Bajt, S.; Barends, T. R., Self-terminating diffraction gates femtosecond X-ray nanocrystallography measurements. Nature photonics 2012, 6 (1), 35-40.
12. Redecke, L.; Nass, K.; DePonte, D. P.; White, T. A.; Rehders, D.; Barty, A.; Stellato, F.; Liang, M.; Barends, T. R.; Boutet, S., Natively inhibited Trypanosoma brucei cathepsin B structure determined by using an X-ray laser. Science 2013, 339 (6116), 227-230.
13. Andrade, J. D., X-ray photoelectron spectroscopy (XPS). In Surface and interfacial aspects of biomedical polymers, Springer: 1985; pp 105-195.
14. Hadjarab, F.; Erskine, J., Image properties of the hemispherical analyzer applied to multichannel energy detection. Journal of electron spectroscopy and related phenomena 1985, 36 (3), 227-243.
15. Fratoddi, I.; Battocchio, C.; Polzonetti, G. In X-Ray Photoelectron Spectroscopy, Nova Science Publishers, Inc., 2011.
16. Lowell, S.; Shields, J. E.; Thomas, M. A.; Thommes, M., Characterization of porous solids and powders: surface area, pore size and density. Springer Science & Business Media: 2012; Vol. 16.
17. Brunauer, S., P. H. Emmett, E. J. Teller. J. Am. Chem. Soc 1938, 60.
18. Guo, L.; Xiao, L.; Shan, X.; Zhang, X., Modeling adsorption with lattice Boltzmann equation. Scientific reports 2016, 6.
19. Wang, W.; Liu, P.; Zhang, M.; Hu, J.; Xing, F., The pore structure of phosphoaluminate cement. 2012.
20. Houk, R.; Thompson, J. J., Inductively coupled plasma mass spectrometry. Mass Spectrometry Reviews 1988, 7 (4), 425-461.
21. 李珠; 譜儀, 感應耦合電漿質譜儀技術及其在材料分析上的應用. 工業材料雜誌: 2002.
22. Kneipp, K.; Kneipp, H.; Itzkan, I.; Dasari, R. R.; Feld, M. S., Ultrasensitive chemical analysis by Raman spectroscopy. Chemical reviews 1999, 99 (10), 2957-2976.
23. Liu, S.; Zhao, X.; Li, Y.; Chen, M.; Sun, M., DFT study of adsorption site effect on surface-enhanced Raman scattering of neutral and charged pyridine–Ag 4 complexes. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2009, 73 (2), 382-387.
24. Lombardi, J. R.; Birke, R. L., Time-dependent picture of the charge-transfer contributions to surface enhanced Raman spectroscopy. The Journal of chemical physics 2007, 126 (24), 244709.
25. Lombardi, J. R.; Birke, R. L., A unified view of surface-enhanced Raman scattering. Accounts of chemical research 2009, 42 (6), 734-742.
26. Mao, Z.; Song, W.; Chen, L.; Ji, W.; Xue, X.; Ruan, W.; Li, Z.; Mao, H.; Ma, S.; Lombardi, J. R., Metal–semiconductor contacts induce the charge-transfer mechanism of surface-enhanced Raman scattering. The Journal of Physical Chemistry C 2011, 115 (37), 18378-18383.
27. Moskovits, M., Surface-enhanced spectroscopy. Reviews of modern physics 1985, 57 (3), 783.
28. Otto, A., The ‘chemical’(electronic) contribution to surface‐enhanced Raman scattering. Journal of Raman Spectroscopy 2005, 36 (6‐7), 497-509.
29. Sun, M.; Liu, S.; Li, Z.; Duan, J.; Chen, M.; Xu, H., Direct visual evidence for the chemical mechanism of surface‐enhanced resonance Raman scattering via charge transfer:(II) Binding‐site and quantum‐size effects. Journal of Raman Spectroscopy 2009, 40 (9), 1172-1177.
30. Valley, N.; Greeneltch, N.; Van Duyne, R. P.; Schatz, G. C., A look at the origin and magnitude of the chemical contribution to the enhancement mechanism of surface-enhanced Raman spectroscopy (SERS): theory and experiment. The Journal of Physical Chemistry Letters 2013, 4 (16), 2599-2604.
31. Xia, L.; Chen, M.; Zhao, X.; Zhang, Z.; Xia, J.; Xu, H.; Sun, M., Visualized method of chemical enhancement mechanism on SERS and TERS. Journal of Raman Spectroscopy 2014, 45 (7), 533-540.
32. Zhang, Q.; Zhang, K.; Xu, D.; Yang, G.; Huang, H.; Nie, F.; Liu, C.; Yang, S., CuO nanostructures: Synthesis, characterization, growth mechanisms, fundamental properties, and applications. Progress in Materials Science 2014, 60, 208-337.
33. Fleischmann, M.; Hendra, P. J.; McQuillan, A. J., Raman spectra of pyridine adsorbed at a silver electrode. Chemical Physics Letters 1974, 26 (2), 163-166.
34. Jeanmaire, D. L.; Van Duyne, R. P., Surface Raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 1977, 84 (1), 1-20.
35. Qian, X.; Peng, X.-H.; Ansari, D. O.; Yin-Goen, Q.; Chen, G. Z.; Shin, D. M.; Yang, L.; Young, A. N.; Wang, M. D.; Nie, S., In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags. Nature biotechnology 2008, 26 (1), 83-90.
36. Kneipp, K.; Kneipp, H.; Itzkan, I.; Dasari, R. R.; Feld, M. S., Surface-enhanced Raman scattering and biophysics. Journal of Physics: Condensed Matter 2002, 14 (18), R597.
37. Campion, A.; Kambhampati, P., Surface-enhanced Raman scattering. Chemical Society Reviews 1998, 27 (4), 241-250.
38. Brolo, A. G.; Irish, D. E.; Smith, B. D., Applications of surface enhanced Raman scattering to the study of metal-adsorbate interactions. Journal of molecular structure 1997, 405 (1), 29-44.
39. Podsiadlo, P.; Liu, Z.; Paterson, D.; Messersmith, P. B.; Kotov, N. A., Fusion of Seashell Nacre and Marine Bioadhesive Analogs: High‐Strength Nanocomposite by Layer‐by‐Layer Assembly of Clay and L‐3, 4‐Dihydroxyphenylalanine Polymer. Advanced Materials 2007, 19 (7), 949-955.
40. Hawkins, B. J.; Levin, M. D.; Doonan, P. J.; Petrenko, N. B.; Davis, C. W.; Patel, V. V.; Madesh, M., Mitochondrial complex II prevents hypoxic but not calcium-and proapoptotic Bcl-2 protein-induced mitochondrial membrane potential loss. Journal of Biological Chemistry 2010, 285 (34), 26494-26505.
41. 刘宗光; 屈树新; 翁杰, 聚多巴胺在生物材料表面改性中的应用. 化学进展 2014, 27 (2/3), 212-219.
42. Hong, S.; Kim, J.; Na, Y. S.; Park, J.; Kim, S.; Singha, K.; Im, G. I.; Han, D. K.; Kim, W. J.; Lee, H., Poly (norepinephrine): Ultrasmooth Material‐Independent Surface Chemistry and Nanodepot for Nitric Oxide. Angewandte Chemie International Edition 2013, 52 (35), 9187-9191.
43. Waite, J. H., Surface chemistry: mussel power. Nature materials 2008, 7 (1), 8-9.
44. Lee, H.; Dellatore, S. M.; Miller, W. M.; Messersmith, P. B., Mussel-inspired surface chemistry for multifunctional coatings. science 2007, 318 (5849), 426-430.
45. Faure, E.; Falentin-Daudré, C.; Jérôme, C.; Lyskawa, J.; Fournier, D.; Woisel, P.; Detrembleur, C., Catechols as versatile platforms in polymer chemistry. Progress in polymer science 2013, 38 (1), 236-270.
46. van der Leeden, M. C., Are conformational changes, induced by osmotic pressure variations, the underlying mechanism of controlling the adhesive activity of mussel adhesive proteins? Langmuir 2005, 21 (24), 11373-11379.
47. Wang, K.; Luo, Y., Defined surface immobilization of glycosaminoglycan molecules for probing and modulation of cell–material interactions. Biomacromolecules 2013, 14 (7), 2373-2382.
48. Zhu, L.; Lu, Y.; Wang, Y.; Zhang, L.; Wang, W., Preparation and characterization of dopamine-decorated hydrophilic carbon black. Applied Surface Science 2012, 258 (14), 5387-5393.
49. Zangmeister, R. A.; Morris, T. A.; Tarlov, M. J., Characterization of polydopamine thin films deposited at short times by autoxidation of dopamine. Langmuir 2013, 29 (27), 8619-8628.
50. Kienzl, E.; Puchinger, L.; Jellinger, K.; Linert, W.; Stachelberger, H.; Jameson, R. F., The role of transition metals in the pathogenesis of Parkinson's disease. Journal of the neurological sciences 1995, 134, 69-78.
51. Dreyer, D. R.; Miller, D. J.; Freeman, B. D.; Paul, D. R.; Bielawski, C. W., Elucidating the structure of poly (dopamine). Langmuir 2012, 28 (15), 6428-6435.
52. Liu, L.; Shao, B.; Yang, F., Polydopamine coating–surface modification of polyester filter and fouling reduction. Separation and Purification Technology 2013, 118, 226-233.
53. Hong, S.; Na, Y. S.; Choi, S.; Song, I. T.; Kim, W. Y.; Lee, H., Non‐covalent self‐assembly and covalent polymerization co‐contribute to polydopamine formation. Advanced Functional Materials 2012, 22 (22), 4711-4717.
54. 黃培安、吳純衡, 淺談段燒殼粉與金屬氧化物之抑菌作用. 2010; Vol. 031.
55. Anantharaman, A.; Ramalakshmi, S.; George, M., Green Synthesis of Calcium Oxide Nanoparticles and Its Applications. Int. J. Eng. Res. Appl. 2016, 6, 27-31.
56. Niu, H.; Wang, S.; Zeng, T.; Wang, Y.; Zhang, X.; Meng, Z.; Cai, Y., Preparation and characterization of layer-by-layer assembly of thiols/Ag nanoparticles/polydopamine on PET bottles for the enrichment of organic pollutants from water samples. Journal of Materials Chemistry 2012, 22 (31), 15644-15653.
57. Yang, J.; Stuart, M. A. C.; Kamperman, M., Jack of all trades: versatile catechol crosslinking mechanisms. Chemical Society Reviews 2014, 43 (24), 8271-8298.
58. Liu, Y.; Ai, K.; Lu, L., Polydopamine and its derivative materials: synthesis and promising applications in energy, environmental, and biomedical fields. Chemical reviews 2014, 114 (9), 5057-5115.
59. Park, H.-H.; Zhang, X.; Choi, Y.-J.; Park, H.-H.; Hill, R. H., Synthesis of Ag nanostructures by photochemical reduction using citrate-capped Pt seeds. Journal of Nanomaterials 2011, 2011, 6.
60. Scherrer, P., Bestimmung der inneren Struktur und der Größe von Kolloidteilchen mittels Röntgenstrahlen. In Kolloidchemie Ein Lehrbuch, Springer: 1912; pp 387-409.
61. Son, H. Y.; Ryu, J. H.; Lee, H.; Nam, Y. S., Silver‐Polydopamine Hybrid Coatings of Electrospun Poly (vinyl alcohol) Nanofibers. Macromolecular Materials and Engineering 2013, 298 (5), 547-554.
62. Ball, V.; Nguyen, I.; Haupt, M.; Oehr, C.; Arnoult, C.; Toniazzo, V.; Ruch, D., The reduction of Ag+ in metallic silver on pseudomelanin films allows for antibacterial activity but does not imply unpaired electrons. Journal of colloid and interface science 2011, 364 (2), 359-365.
63. Yoosaf, K.; Ipe, B. I.; Suresh, C. H.; Thomas, K. G., In situ synthesis of metal nanoparticles and selective naked-eye detection of lead ions from aqueous media. The Journal of Physical Chemistry C 2007, 111 (34), 12839-12847.
64. Hsieh, C.-W.; Lin, P.-Y.; Hsieh, S., Improved surface-enhanced Raman scattering of insulin fibril templated colloidal gold nanoparticles on silicon. Journal of Nanophotonics 2012, 6 (1), 063501-1-063501-6.
65. Le Ru, E.; Blackie, E.; Meyer, M.; Etchegoin, P. G., Surface enhanced Raman scattering enhancement factors: a comprehensive study. The Journal of Physical Chemistry C 2007, 111 (37), 13794-13803.
66. Sun, L.; Song, Y.; Wang, L.; Guo, C.; Sun, Y.; Liu, Z.; Li, Z., Ethanol-induced formation of silver nanoparticle aggregates for highly active SERS substrates and application in DNA detection. The Journal of Physical Chemistry C 2008, 112 (5), 1415-1422.
67. Cha, M. G.; Kim, H.-M.; Kang, Y.-L.; Lee, M.; Kang, H.; Kim, J.; Pham, X.-H.; Kim, T. H.; Hahm, E.; Lee, Y.-S., Thin silica shell coated Ag assembled nanostructures for expanding generality of SERS analytes. PloS one 2017, 12 (6), e0178651.
68. Huang, J.; Ma, D.; Chen, F.; Chen, D.; Bai, M.; Xu, K.; Zhao, Y., Green in Situ Synthesis of Clean 3D Chestnutlike Ag/WO3–x Nanostructures for Highly Efficient, Recyclable and Sensitive SERS Sensing. ACS Applied Materials & Interfaces 2017, 9 (8), 7436-7446.
69. Yang, L.; Bao, Z.; Wu, Y.; Liu, J., Clean and reproducible SERS substrates for high sensitive detection by solid phase synthesis and fabrication of Ag‐coated Fe3O4 microspheres. Journal of Raman Spectroscopy 2012, 43 (7), 848-856.
70. Hopkins, B.; Vick, F., Thermionic and related properties of calcium oxide. British Journal of Applied Physics 1958, 9 (7), 257.
71. Taherpour, A. A.; Rizehbandi, M.; Jahanian, F.; Naghibi, E.; Mahdizadeh, N.-A., Theoretical study of electron transfer process between fullerenes and neurotransmitters; acetylcholine, dopamine, serotonin and epinephrine in nanostructures [neurotransmitters]. C n complexes. Journal of chemical biology 2016, 9 (1), 19-29.
72. Feng, J.-J.; Zhang, P.-P.; Wang, A.-J.; Liao, Q.-C.; Xi, J.-L.; Chen, J.-R., One-step synthesis of monodisperse polydopamine-coated silver core–shell nanostructures for enhanced photocatalysis. New Journal of Chemistry 2012, 36 (1), 148-154.
73. Akin, M. S.; Yilmaz, M.; Babur, E.; Ozdemir, B.; Erdogan, H.; Tamer, U.; Demirel, G., Large area uniform deposition of silver nanoparticles through bio-inspired polydopamine coating on silicon nanowire arrays for practical SERS applications. Journal of Materials Chemistry B 2014, 2 (30), 4894-4900.
74. Han, S.-T.; Zhou, Y.; Chen, B.; Zhou, L.; Yan, Y.; Zhang, H.; Roy, V., Two-dimensional molybdenum disulphide nanosheet-covered metal nanoparticle array as a floating gate in multi-functional flash memories. Nanoscale 2015, 7 (41), 17496-17503.
75. Xu, H.; Käll, M., Polarization‐Dependent Surface‐Enhanced Raman Spectroscopy of Isolated Silver Nanoaggregates. ChemPhysChem 2003, 4 (9), 1001-1005.
76. Haynes, C. L.; McFarland, A. D.; Duyne, R. P. V., Surface-enhanced Raman spectroscopy. ACS Publications: 2005.
77. Organization, W. H., Guidelines for drinking-water quality. World Health Organization: 2004; Vol. 1.
78. 万顺利; 薛瑶; 马钊钊; 刘国斌; 余艳霞; 马明海, 茶叶基水合氧化铁吸附水体中 Pb (Ⅱ (的性能. 环境科学 2014, 10, 023.
79. McSheehy, S.; Nash, M., 高效液相色谱与电感耦合等离子体质谱联用测定矿泉水中的三价铬与六价铬. 环境化学 2009, 28 (4), 618-620.
80. Zhong, L. S.; Hu, J. S.; Liang, H. P.; Cao, A. M.; Song, W. G.; Wan, L. J., Self‐Assembled 3D flowerlike iron oxide nanostructures and their application in water treatment. Advanced Materials 2006, 18 (18), 2426-2431.
81. Fei, J.; Cui, Y.; Yan, X.; Qi, W.; Yang, Y.; Wang, K.; He, Q.; Li, J., Controlled preparation of MnO2 hierarchical hollow nanostructures and their application in water treatment. Advanced Materials 2008, 20 (3), 452-456.
82. Zhuang, Y.; Yang, Y.; Xiang, G.; Wang, X., Magnesium silicate hollow nanostructures as highly efficient absorbents for toxic metal ions. The Journal of Physical Chemistry C 2009, 113 (24), 10441-10445.
83. Pan, J. H.; Zhang, X.; Du, A. J.; Sun, D. D.; Leckie, J. O., Self-etching reconstruction of hierarchically mesoporous F-TiO2 hollow microspherical photocatalyst for concurrent membrane water purifications. Journal of the American Chemical Society 2008, 130 (34), 11256-11257.
84. Stipp, S. L.; Hochella, M. F.; Parks, G. A.; Leckie, J. O., Cd2+ uptake by calcite, solid-state diffusion, and the formation of solid-solution: Interface processes observed with near-surface sensitive techniques (XPS, LEED, and AES). Geochimica et Cosmochimica Acta 1992, 56 (5), 1941-1954.
85. Al-Degs, Y. S.; El-Barghouthi, M. I.; Issa, A. A.; Khraisheh, M. A.; Walker, G. M., Sorption of Zn (II), Pb (II), and Co (II) using natural sorbents: equilibrium and kinetic studies. Water Research 2006, 40 (14), 2645-2658.
86. Shirvani, M.; Kalbasi, M.; Shariatmadari, H.; Nourbakhsh, F.; Najafi, B., Sorption–desorption of cadmium in aqueous palygorskite, sepiolite, and calcite suspensions: isotherm hysteresis. Chemosphere 2006, 65 (11), 2178-2184.
87. Zhou, G.-T.; Jimmy, C. Y.; Wang, X.-C.; Zhang, L.-Z., Sonochemical synthesis of aragonite-type calcium carbonate with different morphologies. New Journal of Chemistry 2004, 28 (8), 1027-1031.
88. Naka, K.; Tanaka, Y.; Chujo, Y., Effect of anionic starburst dendrimers on the crystallization of CaCO3 in aqueous solution: size control of spherical vaterite particles. Langmuir 2002, 18 (9), 3655-3658.
89. 何刚; 耿晨光; 罗睿, 重金属污染的治理及重金属对水生植物的影响. 贵州农业科学 2008, 36 (3), 147-150.
90. 刘有才; 钟宏; 刘洪萍, 重金属废水处理技术研究现状与发展趋势. 广东化工 2005, 32 (4), 36-39.
91. 王龍海, 以反應曲面法探討 Fe2+, Cu2+ 及 Cr3+ 金屬離子對 Fenton 系統去色 AO7 影響因子之研究. 2013.
92. 行政院環境保護署全國環境水質監測網, 相關詞彙及定義.
93. 邵利芬; 杨玉杰; 姚曙光; 连庆堂, 含铜电镀废水处理技术研究进展. 工业用水与废水 2007, 38 (3), 13-15.
94. 黄昌勇; 谢正苗; 陈一定; 卓苏能, 皇天畈试验场地下水的砷, 铁污染及自净作用. 环境科学学报 1989, 9 (1), 55-60.
95. 杜连柱; 张兰英; 王立东; 房芳, PRB 技术对地下水中重金属离子的处理研究. 环境污染与防治 2007, 29 (8), 578-582.
96. 魏树和; 周启星, 重金属污染土壤植物修复基本原理及强化措施探讨. 生态学杂志 2004, (1), 65-72.
97. 李锋民; 王新力, 铜铁铅单一及复合污染对铜草幼苗生长的影响. 农业环境保护 2001, 20 (2), 71-73.
98. 吳欣蓉, 鉻污染之土壤及地下水現地整治 (上). 經濟部環保技術 e 報 2004, (14).
99. Yavuz, O.; Guzel, R.; Aydin, F.; Tegin, I.; Ziyadanogullari, R., Removal of cadmium and lead from aqueous solution by calcite. Polish journal of environmental studies 2007, 16 (3), 467.
100. Aziz, H. A.; Adlan, M. N.; Ariffin, K. S., Heavy metals (Cd, Pb, Zn, Ni, Cu and Cr (III)) removal from water in Malaysia: Post treatment by high quality limestone. Bioresource technology 2008, 99 (6), 1578-1583.
101. Zachara, J.; Cowan, C.; Resch, C., Sorption of divalent metals on calcite. Geochimica et cosmochimica acta 1991, 55 (6), 1549-1562.
102. Cai, G.-B.; Zhao, G.-X.; Wang, X.-K.; Yu, S.-H., Synthesis of polyacrylic acid stabilized amorphous calcium carbonate nanoparticles and their application for removal of toxic heavy metal ions in water. The Journal of Physical Chemistry C 2010, 114 (30), 12948-12954.
103. Ma, X.; Li, L.; Yang, L.; Su, C.; Wang, K.; Yuan, S.; Zhou, J., Adsorption of heavy metal ions using hierarchical CaCO 3–maltose meso/macroporous hybrid materials: Adsorption isotherms and kinetic studies. Journal of hazardous materials 2012, 209, 467-477.
104. Ma, X.; Li, L.; Yang, L.; Su, C.; Wang, K.; Jiang, K., Preparation of hybrid CaCO 3–pepsin hemisphere with ordered hierarchical structure and the application for removal of heavy metal ions. Journal of Crystal Growth 2012, 338 (1), 272-279.
105. Köhler, S. J.; Cubillas, P.; Rodríguez-Blanco, J. D.; Bauer, C.; Prieto, M., Removal of cadmium from wastewaters by aragonite shells and the influence of other divalent cations. Environmental science & technology 2007, 41 (1), 112-118.
106. Sturchio, N. C.; Chiarello, R. P.; Cheng, L.; Lyman, P. F.; Bedzyk, M. J.; Qian, Y.; You, H.; Yee, D.; Geissbuhler, P.; Sorensen, L. B., Lead adsorption at the calcite-water interface: Synchrotron X-ray standing wave and X-ray reflectivity studies. Geochimica et Cosmochimica Acta 1997, 61 (2), 251-263.
107. López_Marzo, A. M.; Pons, J.; Merkoçi, A., Extremely fast and high Pb 2+ removal capacity using a nanostructured hybrid material. Journal of Materials Chemistry A 2014, 2 (23), 8766-8772.
108. Ma, X.; Yuan, S.; Yang, L.; Li, L.; Zhang, X.; Su, C.; Wang, K., Fabrication and potential applications of CaCO 3–lentinan hybrid materials with hierarchical composite pore structure obtained by self-assembly of nanoparticles. CrystEngComm 2013, 15 (41), 8288-8299.
109. Guo, H.; Sun, P.; Qin, Z.; Shan, L.; Zhang, G.; Cui, S.; Liang, Y., Sodium lignosulfonate induced vaterite calcium carbonate with multilayered structure. European Journal of Inorganic Chemistry 2014, 2014 (6), 1001-1009.
110. Khalfaoui, M.; Knani, S.; Hachicha, M.; Lamine, A. B., New theoretical expressions for the five adsorption type isotherms classified by BET based on statistical physics treatment. Journal of colloid and interface science 2003, 263 (2), 350-356.
111. Sing, K.; Everett, D.; Haul, R.; Moscou, L.; Pierotti, R.; Rouquerol, J.; Siemieniewska, T., Reporting physisorption data for 1, 0x10-3 1, 2x10-3 1, 4x10-3 1, 6x10-3 1, 8x10-3 2, 0x10-3-8-6-4-2 0 2 4-1 K) I II III gas/solid systems with special reference to the determination of surface area and porosity. Pure and Applied Chemistry 1985, 57, 603-619.
112. Schmitt, Y.; Schneider, H., Effect of the administration of highly-unsaturated fatty acids on the parameters of lipoprotein metabolism and rheology of patients under chronic hemodialysis treatment. Schweizerische medizinische Wochenschrift 1991, 121 (50), 1891-1894.
113. Gall, J., The systems bible: the beginner's guide to systems large and small. General Systemantics Press: 2002.
114. Liu, Z.; Shen, Q.; Zhang, Q.; Bian, L.; Liu, Y.; Yuan, B.; Pan, X.; Jiang, F., The removal of lead ions of the aqueous solution by calcite with cotton morphology. Journal of Materials Science 2014, 49 (15), 5334-5344.
115. Wang, B.; Wu, H.; Yu, L.; Xu, R.; Lim, T. T., Template‐free Formation of Uniform Urchin‐like α‐FeOOH Hollow Spheres with Superior Capability for Water Treatment. Advanced Materials 2012, 24 (8), 1111-1116.
116. Tian, X.; Zhou, S.; Zhang, Z.; He, X.; Yu, M.; Lin, D., Metal impurities dominate the sorption of a commercially available carbon nanotube for Pb (II) from water. Environmental science & technology 2010, 44 (21), 8144-8149.
117. Tofighy, M. A.; Mohammadi, T., Adsorption of divalent heavy metal ions from water using carbon nanotube sheets. Journal of Hazardous Materials 2011, 185 (1), 140-147.
118. López_Marzo, A. M.; Pons, J.; Merkoçi, A., Multifunctional system based on hybrid nanostructured rod formation, for sensoremoval applications of Pb 2+ as a model toxic metal. Journal of Materials Chemistry A 2013, 1 (43), 13532-13541.
119. Pala, I. R.; Brock, S. L., ZnS nanoparticle gels for remediation of Pb2+ and Hg2+ polluted water. ACS applied materials & interfaces 2012, 4 (4), 2160-2167.
120. Galiotos, J. K.; Morrison, J. A., Preparation and Properties of Trifluoromethylated Aryl Derivatives of Germanium, Tin, and Lead. High-Yield Syntheses of Trifluoromethylbenzene. Organometallics 2000, 19 (13), 2603-2607.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.141.24.134
論文開放下載的時間是 校外不公開

Your IP address is 3.141.24.134
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code