Responsive image
博碩士論文 etd-0608112-155652 詳細資訊
Title page for etd-0608112-155652
論文名稱
Title
微脈衝式Nd:YAG雷射銲接之銲域及殘留應力分佈之研究
A Study on the Welding Pool and Residual Stress Distribution in Nd:YAG Micro-Pulse Laser Welding
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
132
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-06-03
繳交日期
Date of Submission
2012-06-08
關鍵字
Keywords
鎖孔、有限元素分析、Nd:YAG雷射、殘留應力
keyhole, Nd:YAG pulsed laser, finite element method, residual stress
統計
Statistics
本論文已被瀏覽 5645 次,被下載 1475
The thesis/dissertation has been browsed 5645 times, has been downloaded 1475 times.
中文摘要
本文提出一可適用於有限元素法分析的體熱源模式,模擬銲接過程中之雷射熱能鎖定效應,並配合實驗數據,建立脈衝雷射能量與體熱源參數間之關係式。脈衝雷射銲接過程中,依其熱傳形式可分成低功率的表面熱傳與高功率區的之鎖孔熱傳兩種模式。兩者係以雷射功率密度是否超過臨界功率密度而定。此臨界功率密度則依銲接材料而定。小於此臨界功率密度之脈衝雷射銲接模式,其熱傳機制主要屬表面熱傳導模式。當雷射其功率密度大於臨界功率密度之分佈區域,於銲域熱熔過程中,除了表面熱傳外,更需要考慮鎖孔造成之高效率熱傳模式。文中利用Marc有限元素軟體,配合提出之體熱源熱傳分析模式,探討脈衝式Nd:YAG雷射對S304L不銹鋼進行熔燒時,其熔域溫度場、熔池形狀與銲後殘留應力分佈變化。並進行脈衝間隔時間、銲點間距及雷射功率密度對銲後殘留應力影響之分析。數值分析與實驗比照結果,均顯示所提出之體熱源鎖孔熱傳分析模式,能準確預估脈衝雷射熔池形狀,並藉此分析結果探討銲後殘留應力分佈之影響。脈衝間隔距離與時間,均為極敏感的參數。相同脈衝雷射能量與銲點間距條件下,脈衝間隔時間長短將嚴重影響銲域殘留應力分佈。研究結果顯示,於單點雙脈衝雷射銲接中,其脈衝間隔時間越長,銲點表面之殘留應力越小。多點銲接之銲點間距越小、銲點間隔時間越長,銲點表面之殘留應力越小。
Abstract
A volumetric heat source finite element model is proposed to simulate the key hole effect during the Nd:YAG pulse laser welding. The measured data has been used to correlate the volumetric model parameters and the laser parameters. The laser power distributed in the beam cross area is in a Gaussian type. Two heat transfer models are employed in the fusion area, i.e the surface absorption heat transfer model in the low power intensity region and the keyhole heat transfer model in the high power intensity region. An experimentally measured critical power intensity is introduced to identify the occurrence of keyhole effect. The value of critical power intensity is dependent on the welding material. A series of MARC finite element simulations based on the proposed single pulse model are performed to investigate the feasibility and accuracy of this proposed pulse laser welding model. Different power and welding duration pulse laser have used to weld the S304L specimens. The results indicate a good agreement between the simulated and measured shape and size of the weld pool with different laser energy intensities. The validity of the proposed model is confirmed for the S304L steel. The temperature and residual stress distributions around the welding pool in a continuous pulse welding and two sheet overlap welding have also been studied by using the proposal model. The numerical results indicate that the pulse energy, duration and dwell period may affect the residual stress distribution and post-weld deformation significantly. All these results reveal that the proposed volumetric heat source finite element model is a feasible model to analyze the welding phenomena during the pulse laser welding. The results indicate that the pulse dwell period increase in dual pulse laser welding the residual stress decrease on the top of the weld spot surface. The results also show the lower residual stress in multi spots pulse laser welding with smaller weld spots center pitch and weld spot dwell period.
目次 Table of Contents
論文審定書 i
謝 誌 ii
摘 要 iii
Abstract iv
目 錄 i
圖目錄 iii
表目錄 vii
符號說明 viii
第 1 章 緒 論 10
1.1 前言 14
1.2 研究動機及方法 16
1.3 文獻回顧 17
1.4 組織章節 21
第 2 章 雷射銲域熱傳理論分析模式之建立 22
2.1 雷射熱源高斯分佈 22
2.2 鎖孔分析模式 23
2.3 有限元素分析 27
2.3.1 有限元素模型建立 27
第 3 章 雷射銲域實驗設置與分析比較 30
3.1 實驗設置 30
3.2 光腰量測 35
3.3 功率密度與穿透深度 37
3.4 鎖孔效應 40
3.5 金相實驗 42
第 4 章 單層銲域分析 46
4.1 單脈衝單點單層銲域分析 46
4.2 雙脈衝單點單層銲域分析 50
4.3 單脈衝單點單層殘留應力分佈 54
4.4 雙脈衝單點單層殘留應力分佈 57
第 5 章 雙層銲域分析 60
5.1 溫度場分析 60
5.1.1 單脈衝銲域比較 60
5.2 雙脈衝銲域及溫度場分佈 63
5.3 殘留應力分析 73
5.3.1 單點單脈衝 73
5.3.2 單點雙脈衝 82
5.3.3 三點單脈衝 101
5.3.4 不同銲接順序之殘留應力 108
第 6 章 總 結 115
6.1 結論 115
6.2 未來工作 117
參考文獻 118

參考文獻 References
[1] H. Shen, X. Wang, and W. Y. Qiang, “Online Post Welding Shift Compensation in Butterfly Laser Module Packages Based on Welding Spot Distance,” Optical Engineering, Vol.48, 2009.
[2] Y. Deshayes, L. Bechou, F. Verdier, Y. Ousten, D. Laffitte, and J. L. Goudard, “Simulations of Thermo-mechanical Stresses and Optical Misalignment in 1550-nm Transmitter Optoelectronic Modules Using FEM and Process Dispersions,” IEEE Transactions on Components and Packaging Technologies, Vol. 31, pp. 759-766, 2008.
[3] Y. M. Lin and F.G. Shi, “Minimization of Welding-induced Alignment Distortion in Butterfly Laser Module Packages: A Study of Laser Pulse Shape,” Optical Engineering, Vol. 46, 2007.
[4] J. H. Song, Harendra N. J. Fernando, Brendan Roycroft, Brian Corbett, and Frank H. Peters, “Practical Design of Lensed Fibers for Semiconductor Laser Packaging Using Laser Welding Technique,” Journal of Lightwave Technology, Vol. 27, pp. 1533-1539, 2009.
[5] J. H. Song, Peter O’Brien, and Frank H. Peters, “Simulations of Thermo-mechanical Stresses and Optical Misalignment in 1550-nm Transmitter Optoelectronic Modules Using FEM and Process Dispersions,” Optics Express, Vol. 17, 2009.
[6] Y. C. Hsu, Y. C. Tsai, J. H. Kuang, and W. H. Cheng, “Postweld-Shift-Induced Fiber Alignment Shifts in Laser-Welded Laser Module Packages: Experiments and Simulations,” Journal of Lightwave Technology, Vol. 23, 2005.
[7] J. H. Kuang, M. T. Sheen, S. C. Wang, G. L. Wang, and W. H. Cheng, “Post-Weld-Shift in Dual-in-Line Laser Package,” IEEE Transactions on Advanced Packaging, Vol. 24, pp. 81-85, 2001.
[8] Y. Lin, C. Eichele, and Frank G. Shi, “Effect of Welding Sequence on Welding-Induced-Alignment-Distortion in Packaging of Butterfly Laser Diode Modules: Simulation and Experiment,” Journal of Lightwave Technology, Vol.23, pp. 615-623, 2005.
[9] W.W. Duley, Laser Welding, John Wiley & Sons, Inc. 1999.
[10] E. W. Kreutz, B. Ollier, and N. Pirch, “Melt Dynamics and Solidification in Surface Processing with Laser Radiation,” LAMP '92. Proceedings of International Conference on Laser Advanced Materials Processing Science and Applications, pp. 1, 1992.
[11] X. Sola, M. Ignatiev, G. Flamant, I. Smurov, and S. Konstantinov, “Monitoring of Melting and Solid State Phase Transformation Induced by Pulsed Laser Action on Pure Zirconium,” Applied Surface Science, Vol. 109, pp. 106-112, 1997.
[12] T. Zacharia, S. A. David, J. M. Vitek, and T. Debroy, “Weld Pool Development During GTA and Laser Beam Welding of Type 304 Stainless Steel Part I. Theoretical Analysis,” Welding Journal, Vol. 68, pp. 499-509, 1989.
[13] A. Kaplan, “A Model of Deep Penetration Laser Welding Based on Calculation of the Keyhole Profile,” Journal of Physics D: Apply Physics, Vol. 27, pp. 1805-1814, 1994.
[14] W. M. Steen, J. Dowden, M. Davis, and P. Kapadia, “A Point and Line Source Model of Laser Keyhole Welding,” Journal of Physics D: Apply Physics, Vol. 21, pp. 1255-1260, 1988.
[15] R. Akhter, and Davis Michael, “A Method for Calculating the Fused Zone Profile of Laser Keyhole Welds,” Journal of Physics D: Apply Physics, Vol. 21, pp. 23-28, 1989.
[16] Dowden, John, Kapadia, and Phiroz, “A Mathematical Investigation of the Penetration Depth in Keyhole Welding with Continuous CO2 Lasers,” Journal of Physics D: Apply Physics, Vol. 28, pp. 2252-2261, 1995.
[17] Lankalapalli, N. Kishore, Jay F. Tu, and Gartner Mark, “A Model for Estimating Penetration Depth of Laser Welding Processes,” Journal of Physics D: Apply Physics, Vol. 29, pp. 1831-1841, 1996.
[18] X. Z. Jin, L. J. Li, and Y. Zhang, “A Heat Transfer Model for Deep Penetration Laser Welding Based on an Actual Keyhole,” International Journal of Heat and Mass Transfer, Vol. 46, pp. 15-22, 2003.
[19] X. Z. Jin, L. J. Li, and Y. Zhang, “A Conduction Model for Deep Penetration Laser Welding Based on an Actual Keyhole,” International Journal of Heat and Mass Transfer, Vol. 35, pp. 5-12, 2003.
[20] J. Mazumder and W. M. Steen, “Heat Transfer Model for CW Laser Material Processing,” Journal of Applly Physics, Vol.51, pp. 941-947, 1980.
[21] T. Zacharia, S. A. David, J. M. Vitek, and T. Debroy, “Heat Transfer During Nd:YAG Pulsed Laser Welding and its Effect on Solidification Structure of Austenitic SS,” Metallurgical Transaction A, Vol. 20A, pp. 957-967, 1989.
[22] O. O. D. Neto and C. A. S Lima, “Nonlinear Three-Dimensional Temperature Profiles in Pulsed Laser Heated Solids,” Journal of Physics D: Applly Physics, Vol. 27, pp. 1795-1804, 1994.
[23] N. Sonti and M. F. Amateau, “Finite-Element Modeling of Heat Flow in Deep-Penetration Laser Welds in Aluminum Alloys,” Numerical Heat Transfer A., Vol. 16, pp. 351-370, 1989.
[24] R. Mueller, “A Model for Predicting Keyhole and Fusion Zone Depths in Blind Keyhole Welding,” International Congress on Applications of Lasers and Electro-Optics, pp. 509-518, 1994.
[25] W. S. Chang and S. J. Na, “A Study on the Prediction of the Laser Weld Shape with Varying Heat Source Equations and the Thermal Distortion of a Small Structure in Micro-Joining,” Journal of Material Processing and Technology, Vol. 120, pp. 208-214, 2002.
[26] Y. B. Chen, L. Q. Li, X. S. Feng, and J. F. Fang, “A Model of Laser- Tig Hybrid Welding Heat Source,” Chinese Journal of Mechanical Engineering, Vol. 117, pp. 511-514, 2004.
[27] J. Sabbaghzadeh, M. Azizi, and M. J. Torkamany, “Numerical and Experimental Investigation of Seam Welding with a Pulsed Laser,” Optics and Laser Technology, Vol. 40, pp. 289-296, 2008.
[28] K. Kazemi, and A. Goldak John, “Numerical Simulation of Laser Full Penetration Welding,” Computational Material Science, Vol. 44, pp. 841-849, 2009.
[29] R. Wang, Y. Lei, and Y. Shi, “Numerical Simulation of Transient Temperature Field During Laser Keyhole Welding of 304 Stainless Steel Sheet,” Optics and Laser Technology, Vol. 43, pp. 870-873, 2011.
[30] K. W. Kim, J. K. Lee, and H. Y. Cho, “Analysis of Pulsed Nd:YAG Laser Welding of AISI 304 Steel,” Journal of Material Processing Technology, Vol. 24, No. 11. pp. 2253-2259, 2010.
[31] Steen and M. William, Laser Materials Processing, Springer, London, 2003.
[32] H. KI, P. S. Mohanty, and J. Mazumder, “Modeling of Laser Keyhole Welding,” Metallurgical and Materials Transactions A, Vol. 33, No. 6, pp. 1817-1842, 2002.
[33] A. K. Dasgupta and J. Mazumder, “Physics of Zinc Vaporization and Plasma Absorption During CO2 Laser Welding,” Journal of Physics D: Apply Physics, Vol. 102, 2007.
[34] W. N. Liu, Y. M. Lin, and F. G. Shi, “Welding Induced Alignment Distortion in DIP LD Packages: Effect of Laser Welding Sequence,” in Proc. SPIE, San Jose, CA, Vol. 4652, pp. 128–135, 2002.
[35] Y. M. Lin, W. N. Liu, and F. G. Shi, “Laser Welding Induced Alignment Distortion in Butterfly Laser Module Packages: Effect of Welding Sequence,” IEEE Transactions Advance Packaging, Vol. 25, pp. 73–78, Feb. 2002.
[36] Y. M. Lin and F. G. Shi, “Effects of Welding Sequence on Laser Welding Induced Alignment Distortion in Butterfly Laser Diode Module Packages,” in Proc. SPIE, San Jose, CA, Vol. 4997, pp. 30–39, 2003.
[37] Y. M. Lin and F. G. Shi, “Effects of Welding Sequence on Laser Welding- Induced-Alignment-Distortion in Packaging of Butterfly Laser Diode Modules: Simulation and Experiment,” Journal of Lightwave Technology, Vol. 23, No. 2, Feb. 2005.
[38] W. H. Cheng, M. T. Sheen, G. L. Wang, S. C. Wang, and J. H. Kuang, “Fiber Alignment Shift Formation Mechanisms of Fiber-Solder-Ferrule Joints in Laser Module Packaging,” Journal of Lightwave Technology, Vol. 19, No.8, pp. 1177-1187, 2001.
[39] Y. C. Hsu, W. K. Huang, M. T. Sheen, and W. H. Cheng, “Fiber Alignment Shifts in Butterfly Packaging by Laser Welding Technique: Measurement and Finite-Element-Method Analysis,” Journal of Electronic Materials, Vol. 33, No. 1, pp. 40-47, Jan. 2004.
[40] Y. C. Hsu, Y. C. Tsai, J. H. Kuang, and W. H. Cheng, “Postweld-Shift-Induced Fiber Alignment Shifts in Laser-Welded Laser Module Packages: Experiments and Simulations,” Journal of Lightwave Technology, Vol. 23, No. 12, pp. 4287–4295, Dec. 2005.
[41] J. H. Song, Harendra N. J. Fernando, Brendan Roycroft, Brian Corbett, and Frank H. Peters, “Pratical Design of Lensed Fibers for Semiconductor Laser Packaging Using Laser Welding Technique,” Journal of Lightwave Technology, Vol. 27, No. 11, pp. 1533–1539, June 1, 2009.
[42] Y. C. Hsu, Y. C. Tsai, Y. L. Ho, M. T. Sheen, J. H. Kuang, and W. H. Cheng, “A Novel Fiber Alignment Shift Measurement and Correction Technique in Laser-Welded Laser Module Packaging,” Journal of Lightwave Technology, Vol. 23, No. 2, pp. 486–494, Feb. 2005.
[43] H. L. Pang John, D. Y. R. Chong, and T. H. Low, “Thermal Cycling Analysis of Flip-Chip Solder Joint Reliability,” IEEE Transactions Components Packaging and Technology, Vol. 24, No.4, pp. 705–712, Dec. 2001
[44] J. H. Kuang, M. T. Sheen, C. F. Chang, C. C. Chen, G. L. Wang, and W. H. Cheng, “Effect of Temperature Cycling on Joint Strength of PbSn and AuSn Solders in Laser Packages,” IEEE Transactions on Advanced Packaging, Vol. 24, No. 4, pp. 563-568, Nov. 2001.
[45] M. W. Beranek, M. Rassaian, C. H. Tang, C. L. St. John, and V. A. Loebs, “Characterization of 63Sn37Pb and 80Au20Sn Solder Sealed Optical Fiber Feedthrouths Subjected to Repetitive Thermal Cycling,” IEEE Transactions on Advanced Packaging, Vol.24, No.4, pp. 576-585, Nov. 2001.
[46] T. Zacharia, S. A. David, J. M. Vitek, and T. Debroy, “Heat Transfer During Nd:YAG Pulsed Laser Welding and its effect on Solidification Structure of Austenitic SS,” Metallurgical Transaction A, Vol. 20A, pp. 957-967, 1989.
[47] Y. B. Chen, L. Q. Li, X. S. Feng, and J. F. Fang, “ A Model of Laser-Tig Hybrid Welding Heat Source,” Chinese Journal Of Mechanical Engineering, Vol. 117, No. 4, pp. 511-514, 2004.
[48] C. W. Tan, Y. C. Chan, Bernard N. W. Leung, John Tsun, and Alex C.K. So, “Characterization of Kovar-to-Kovar Laser Welded Joins and its Mechanical Strength,” Optics and Lasers in Engineering, Vol. 43, pp.151-162, 2005.
[49] P. Martinson, S. Daneshpour, M. Kocak, S. Riekehr, and P. Staron, “Residual Stress Analysis of Laser Spot Welding of Steel Sheets,” Materials and Design, Vol. 30, pp. 3351-3359, 2009.
[50] N. Siva Shanmugam, G. Buvanashekaran, K. Sankaranarayanasamy, and S. Ramesh Kumar, “A Transient Finite Element Simulation of the Temperature and Bead Profiles of T-joint Laser Welds,” Materials and Design, Vol. 31, pp. 4528-4542, 2010.
[51] C. Liu, J. X. Zhang, and J. Niu, “Numerical and Experimental Analysis of Residual Stress in Full-Penetration Laser Beam Welding of Ti6Al4V Alloy,” Rare metal materials and Engineering, Vol. 38, No. 8, pp. 1317-1320, 2009.
[52] T. L. Teng, C. P. Fung, and P. H. Chang, “Effect of Weld Geometry and Residual Stresses on Fatigue in Butt-Welded Joints,” International Journal of Pressure Vessels and Piping, Vol. 79, pp. 467-482, 2002.
[53] D. Deng and S. Kiyoshima, “FEM Analysis of Residual Stress Distribution Near Weld Start/End Location in Thick Plates,” Computational Materials Science, Vol. 50, pp. 2459-2469, 2011.
[54] N. Okerblow, The Calculations of Deformations of Welded Metal Structures, Her Majesty’s Sationery Office, London, UK, 1958.
[55] K. Masubuchi, Analysis of Welded Structures, Pergamon Press, Oxford, UK, 1980.
[56] Y. Tanigawa, T. Akai, R. Kawamura, and N. Oka, “Transient Heat Conduction and Thermal Stress Problems of a Nonhomogeneous Plate with Temperature- Dependent Material Properties,” Journal of Thermal Stresses, Vol.19, pp. 77-102, 1996.
[57] L. J. Yang, and Z. M. Xiao, “Elestic-Plastic Modeling of the Residual Stress Caused by Welding,” Journal of Material Processing and Technology, Vol. 48, pp. 589-601, 1995.
[58] A. Chakravarti, L. M. Malik, and J. Goldak, “Prediction of Distortion and Residual Stressed in Panel Welds,” Computer Modeling of Favrication Process and Constitutive Behavior of Metals, Canadian Government Publish Centre, Ottawa, Ont., pp. 547-561, 1986.
[59] S. Fujii, N. Takahashi, S. Sakai, T. Nakabayashi, and M. Muro, “Development of 2D Simulation Model for Laser Welding,” Processings of the SPIE, Vol. 3888, 2000.
[60] M. R. Frewin and D. A. Scott, “Finite Element Model of Pulse Laser Welding,” Welding Journal, pp. 15-22, 1999.
[61] S. A. Tsirkas, P. Papanikos, and T. Kermanidis, “Numerical Simulation of the Laser Welding Process in Butt-Joint Specimens,” Journal of Materials Processing Technology, Vol. 134, pp. 59-69, 2003.
[62] G. Reinhart, B. Lenx, and F. Rick, “Finite Element Simulation for the Planning of Laser Welding Applications,” Proceedings of the 18th International Congress on Applications of Lasers and Electro-Optics, San Diego, CA, 1999.
[63] C. Carmignani, R. Mares, and G. Toselli, “Transient Finite Element Analysis of Deep Penetration Laser Welding Process in a Single Pass Butt-Welded Thick Steel Plate,” Computer Methods in Applied Mechanics and Engineering, Vol. 179, pp. 197-214, 1999.
[64] D. H. Kang, K. J. Son, and Y. S. Yang, “Analysis of Laser Weldment Distortion in the EDFA LD Pump Packaging,” Finite Elements in Analysis and design, Vol.37, pp. 749-760, 2001.
[65] D. Rosenthal, “Mathematical Theory of Heat Distribution During Welding and Cutting,” Welding Journal, Vol.20, pp. 220-234, 1941.
[66] A. K. Kyrsanidi, T. B. Kermanidis, and S. G. Pantelakis, “Numerical and Experimental Investigation of the Laser Forming Process,” Journal of Materials Processing Technology, Vol. 87, pp. 281-290, 1999.
[67] T. Zacharia, S. A. David, J. M. Vitek, and T. Debroy, “Heat Transfer During Nd:YAG Pulsed Laser Welding and its Effect on Solidification Structure of Austenitic SS,” Metallurgical transaction A, Vol. 20A, pp. 957-967, 1989.
[68] J. S. Arora and C. H. Tseng, User’s Manual for IDESIGN: Version 3.5, Optimal Design Laboratory, The University of Iowa, Iowa City, IA 52242, U. S. A., 1987.
[69] MSC. Software Corporation, MSC. MARC User’s Guide, MSC. Software, Inc., 2003.
[70] J. R. Roper, J. Vossler, and D. Osborn, “Thermal Stress and Strain Analysis in Traveling Autogenous welds,” MARC user’s Meeting in U.S.A., pp. 313-33, 1992.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code