Responsive image
博碩士論文 etd-0608113-091307 詳細資訊
Title page for etd-0608113-091307
論文名稱
Title
分子選殖及定性分析一個ethephon可誘導且參與促進甘藷葉片老化的天門冬胺酸蛋白分解酶 SPAP
Cloning and characterization of an ethephon-inducible aspartic protease SPAP and its association with promotion of leaf senescence in sweet potato
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
95
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-06-25
繳交日期
Date of Submission
2013-07-08
關鍵字
Keywords
天門冬胺酸蛋白酶、益收生長素、葉片老化、甘藷
Aspartic protease, Ethephon, Leaf senescence, Sweet potato
統計
Statistics
本論文已被瀏覽 5678 次,被下載 264
The thesis/dissertation has been browsed 5678 times, has been downloaded 264 times.
中文摘要
從甘藷老化葉片利用扣減雜交及RACE-PCR選殖得到一個全長cDNA,Blast序列比對分析與植物天門冬胺酸蛋白酶包括馬鈴薯及番茄有72%至73%的序列相似性。因此命名為甘藷天門冬胺酸蛋白酶SPAP,其open reading frame含有1,515個核苷酸 (504氨基酸),編碼的蛋白質含有DTG及DSG組成的catalytic site以及一段約100胺基酸所構成的plant specific insert (PSI)。甘藷天門冬胺酸蛋白酶SPAP基因表現從L1未展開的幼葉至L3成熟葉片逐漸增加,當葉片老化至中期及末期時其表現量也持續減少,另外L3成熟葉片亦比塊根、根及莖有較高的表現量。RT-PCR及西方墨點法分析亦顯示ethephon(益收生長素)處理的葉片也會劑量正相關的暫時性誘導甘藷天門冬胺酸蛋白酶SPAP表現量增加。Ethephon處理會誘導甘藷葉片老化以及H2O2含量增加,外加純化的天門冬胺酸蛋白酶SPAP融合蛋白可加速 ethephon 誘導的甘藷葉片老化以及H2O2含量增加的速率。利用anti-SPAP多株抗體、天門冬胺酸蛋白酶抑制劑 pepstatin A、及95℃加熱使SPAP融合蛋白失去活性等方式可拮抗SPAP融合蛋白的作用,顯著減緩其加速ethephon誘導的甘藷葉片老化以及H2O2含量增加的速率。另外單獨外加天門冬胺酸蛋白酶SPAP融合蛋白並無顯著加速黑暗處理甘藷葉片老化以及H2O2含量增加的速率。因此根據上述的實驗結果結論甘藷天門冬胺酸蛋白酶SPAP為ethephon可誘導的基因,其生理功能可能參與於ethephon誘導的甘藷葉片老化以及H2O2含量增加有關,且需與ethephon可誘導的交互作用因子(interacting components)一起協力作用。
Abstract
A full-length cDNA was isolated from sweet potato senescent leaves with PCR-selective subtractive hybridization and RACE PCR. Blast analysis showed that it exhibited high nucleotide sequence identity (ca. 72-73%) with plant aspartic proteases including potato and tomato, and was named as sweet potato aspartic protease SPAP. Its open reading frame contained 1515 nucleotides (504 amino acids), and encoded a putative aspartic protease with a catalytic site composed of DTG and DSG and a plant specific insert constituted of ca. 100 amino acids in length. Gene expression of sweet potato aspartic protease SPAP increased gradually from L1 immature leaves to L3 mature leaves, and then continuously decreased from intermediate L4 to late L5 leaf senescent stages. In addition, L3 mature leaves also exhibited higher expression level than that of storage roots, roots and stems. Ethephon treatment also caused temporary enhancement of sweet potato aspartic protease SPAP dose-dependently detected by RT-PCR and Western blot hybridization. Ethephon treatment promoted sweet potato leaf senescence and H2O2 elevation. Exogenous purified SPAP fusion protein significantly accelerated the ethephon-mediated promotion of leaf senescence and H2O2 elevation. The SPAP fusion protein-mediated effects could be remarkably antagonized by anti-SPAP antibody, aspartic protease inhibitor pepstatin A, and 950C boil treatment of the purified SPAP fusion protein, which significantly alleviated the effects of exogenous SPAP fusion protein on the acceleration on ethephon-mediated promotion of leaf senescence and H2O2 elevation. In addition, no significant variation on the promotion of leaf senescence was observed between dark treatment and treatment with exogenous SPAP fusion protein alone. These results conclude for the first time that sweet potato aspartic protease SPAP is ethephon-inducible, and likely participates in ethephon-mediated promotion of leaf senescence and H2O2 elevation. Sweet potato aspartic protease SPAP may require interacting components for effective promotion of ethephon-mediated leaf senescence and H2O2 elevation in sweet potato.
目次 Table of Contents
目錄
頁次
誌謝………………………………………………………….…………..ii
中文摘要…………………………………………………………….....iii
圖次……………………………………………………………………...x
英文摘要……………………………………………………………….iv
壹、緒論………………………………………………………………..1
甘藷………………………………………………………………..1
葉片老化…………………………………………………………..2
乙烯………………………………………………………………..3
天門冬胺酸蛋白酶(Aspartic protease)……….…..……………4
貳、實驗材料………………………………………………………….8
甘藷(Ipomoea batatas(L.)Lam)……………………………8
G14 ………………………………………………………………..8
參、實驗方法………………………………………………………….8
甘藷天門冬胺酸蛋白酶(aspartic protease)SPAP之基因選殖及定性分析…………………………………………………………..8
天門冬胺酸蛋白酶SPAP基因選殖及生物資訊學分析………....8
天門冬胺酸蛋白酶SPAP生長發育及組織專一性表現分析........9
SPAP重組表現載體構築與融合蛋白表現、純化及抗體製備…..9
不同濃度ethephon處理甘藷成熟葉片…………………………10
甘藷天門冬胺酸蛋白酶SPAP融合蛋白處理……...…………..11
外加SPAP融合蛋白處理甘藷成熟葉片……….………………11
外加SPAP融合蛋白及ethephon處理甘藷成熟葉片….………11
外加SPAP融合蛋白、anti-SPAP抗體及ethephon處理甘藷成熟
葉片………………………………………………………………11
外加失活之SPAP融合蛋白及ethephon處理甘藷成熟葉片…12
外加SPAP融合蛋白、pepstatin A及ethephon處理甘藷成熟葉
片…………………………………………………………………12
扣減雜交…………………………………………………………13
差異性cDNA選殖………………………………………………19
Rapid amplification of cDNA ends(RACE)…………………..22
SPAP融合蛋白純化……………………………………………..25
葉綠素含量測量…………………………………………………25
光合作用效率測量………………………………………………26
3,3-Diaminobenzidine(DAB)染色分析………………..……..26
H2O2含量測定…………………………………………………...26
RT-PCR…………………………………………………………..27
Total RNA extraction……………………………………………..27
Reverse transcription……………………………………………..28
PCR………………………………………………………………29
Primer 設計……………………………………………………...29
PCR 流程………………………………………………………..29
西方墨點法………………………………………………………30
肆、結果………………………………………………………………33
甘藷天門冬胺酸蛋白酶SPAP的分子選殖及生物資訊學分析.33
甘藷天門冬胺酸蛋白酶SPAP在不同葉片生長發育階段及組織專一性的表現……………………………………………………33
甘藷天門冬胺酸蛋白酶SPAP基因表現受乙烯所誘導………35
甘藷天門冬胺酸蛋白SPAP融合蛋白的誘導與純化………….36
Ethephon誘導甘藷葉片老化與劑量呈正相關…………………37
天門冬胺酸蛋白酶SPAP融合蛋白加速ethephon誘導的甘藷葉片老化速率………………………………………………………37
Anti-SPAP抗體減緩天門冬胺酸蛋白酶SPAP融合蛋白加速ethephon誘導甘藷葉片老化的作用……………………………38
外加失活的天門冬胺酸蛋白酶SPAP融合蛋白不會加速ethephon誘導甘藷葉片老化速度……………………………….39
天門冬胺酸蛋白酶抑制劑 pepstatin A減緩外加SPAP融合蛋白加速ethephon誘導中甘藷葉片老化作用………………………40
單獨外加天門冬胺酸蛋白酶SPAP融合蛋白沒有顯著增加黑暗處理下甘藷葉片老化速率………………………………………42
伍、討論……………………………………………………………….43
陸、參考文獻.…………………………………………………………48
參考文獻 References
陸、參考文獻
農業委員會台灣農家要覽增修訂再版策劃委員會. 1995.台灣農家要覽.農作篇
(三) 365.
沈哲宇,從甘藷老化葉片分子選殖mitogen-activated protein kinase cDNA及乙烯訊息傳導探討。國立中山大學 生物科學系研究所,碩士論文2011.
吳欣黛,從甘藷葉片選殖ethephon可誘導之基因與定性分析。國立中山大學 生物科學系研究所,碩士論文2010.
Adams DO, Yang SF. 1979. Ethylene biosynthesis: identification of 1-amino-
cyclo-propane-1-carboxylic acid as an intermediate in the conversion of methionine to ethylene. Proc Natl Acad Sci 76:170-74.
Andreas S, Ryan CA. 1996. Molecular cloning of a tomato leaf cDNA encoding an aspartic protease, a systemic wound response protein. Plant Mol. Biol. 31:1073-1077.
Argandoña VH, Chaman M, Cardemil L, Muñoz O, Zúñiga GE, Corcuera LJ. 2001. Ethylene production and peroxidase activity in aphid-infested barley. J. Chem. Ecol. 27:53-68.
Asuman M, Susannah G. 1999. Plant aspartic proteinases: enzymes on the way to a function. Physiol Plant 105:569-576.
Belozersky MA, Sarbakanova ST, Dunaevsky YE. 1989. Aspartic proteinase from wheat seeds: Isolation, properties and action on gliadin. Planta 177:321-326.
Bhalerao R, Keskitalo J, Sterky F, Erlandsson R, Bjorkbacka H, Birve SJ, Karlsson J, Gardestrom P, Gustafsson P, Lundeberg J, Jansson S. 2003. Gene expression in autumn leaves. Plant Physiol. 131:430-442.
Biswal UC, Scharma R. 1976. Phytochrome regulation of senescence in detached
barley leaves. Z Pflanzenphysiol 80:71-73.
Bleecker AB, Kende H. 2000. Ethylene:a gaseous signal molecule in plants. Annu Rev Cell Dev Biol 16:13-18.
Chen F, Foolad MR. 1997. Molecular organization of a gene in barley which encodes a protein similar to aspartic protease and its specific expression in nucellar cells during degeneration. Plant Mol. Biol. 35:821-831.
Chen HJ, Hou WC, Yang CY, Huang DJ, Liu JS, Lin YH. 2003. Molecular cloning of two metallothionein-like protein genes with differential expression patterns
from sweet potato (Ipomoea batatas) leaves. J. Plant Physiol. 160:547-55.
Chen HJ, Huang DJ, Hou WC, Liu JS, Lin YH. 2006. Molecular cloning
and characterization of a granulin-containing cysteine protease SPCP3 from sweet potato (Ipomoea batatas) senescent leaves. J. Plant Physiol. 163:863-876.
Chen HJ, Su CT, Lin CH, Huang GJ, Lin YH. 2010a. Expression of sweet potato cysteine protease SPCP2 altered developmental characteristics and stress responses in transgenic Arabidopsis plants. J. Plant Physiol. 167:838-847.
Chen HJ, Tsai YJ, Chen WS, Huang GJ, Huang SS, Lin YH. 2010b. Ethephon-mediated effects on leaf senescence are affected by reduced glutathione and EGTA in sweet potato detached leaves. Bot Stud 51:171-181.
Chen HJ, Lin ZW, Huang GJ, Lin YH. 2012. Cloning and characterization of a sweet potato calmodulin SPCAM that participates in ethephon-mediated leaf senescence, H2O2 elevation and senescence-associated gene expression. J. Plant Physiol. 129:529-541.
Clouse SD. 1996. Molecular genetic studies confirm the role of brassinosteroids in plant growth and development. Plant J. 10:1-8.

Cordeiro MC, Xue ZT, Pietrazak M, Pais MS, Brodelius P(1994)Isolation and characterization of a cDNA from flowers of Cynara cardunculus encoding cyprosin (an aspartic proteinase) and its use to study the organ-specific expression of cyprosin.
Plant Mol. Biol. 24:733-741.
Davies DR. 1990. The structure and function of the aspartic proteinases. Annu Rev Biophys Chem 19:189-215.
de J, Yakimova ET, Kapchina VM, Woltering EJ. 2002. A critical role for ethylene in hydrogen peroxide release during programmed cell death in tomato suspension cells. Planta 214:537-45.
Desclos M, Etienne P, Coquet L, Jouenne T, Bonnefoy J, Segura R, Reze S, Ourry A, Avice JC. 2009. A combined 15N tracing/proteomics study in Brassica napus reveals the chronology of proteomics events associated with N remobilisation during leaf senescence induced by nitrate limitation or starvation. Proteomics 9:3580-3608.
D’Hondt K, Bosch D, Damme JV, Goethals M, Vandekerckhove J, Krebbers E.1993. An aspartic proteinase present in seeds cleaves Arabidopsis 2 S albumin precursors in vitro. J. Biol. Chem. 268:20884-20891.
D’Hondt K, Stack S, Gutteridge S, Vandekerckhove J, Krebbers E, GS. 1997. Aspartic proteinase genes in the Brassicaceae Arabidopsis thaliana and Brassica napus. Plant Mol. Biol. 33:187-192.
Doi E, Shibata D, Matoba T, Yonezawa D. 1980. Characterization of
epstatin-sensitive acid protease in resting rice seeds. Agric. Biol. Chem. 44:741-747.
Domingos A, Cardoso PC, Xue ZT, Clemente A, Brodelius PE, Pais MS. 2000. Purification, cloning and autoproteolytic processing of an aspartic proteinase from Centaurea calcitrapa. Eur. J. Biochem. 267:6824-6831.
Dominique CA, Maria LTF, Yasmine ZF, Maria HCDC. 2010. An aspartic acid protease from common bean is expressed ‘on call’during water stress and early recovery. J. Plant Physiol. 167:1606-1612.
Dunaevsky YE, Sarbakanova ST, Belozersky MA. 1989. Wheat seed carboxypeptidase and joint action on gliadin of proteases from dry and germinating seeds. J. Exp. Bot. 40:1323-1329.
Dunn BM. 2002. Structure and mechanism of the pepsin-like family of aspartic peptidases. Chem. Rev. 102:4431-4458.
Guevara MG, Almeida C, Mendieta JR, Faro CJ, Veríssimo P. 2005. Molecular cloning of a potato leaf cDNA encoding an aspartic protease (StAsp) and its expression after P. infestans infection. Plant Physiol. Biochem. 43:882-889.
Grbic V, Bleecker AB. 1995. Ethylene regulates the timing of leaf senescence in Arabidopsis. Plant J. 8:595-602.
Higgins TJV. 1984. Synthesis and regulation of major proteins in seeds. Annu Rev Plant Physiol 35:191-221.
Hirose K, Taajima K, Hamajima N, Inoue M, Takezaki T, Kuroishi T, Yoshida M, Tokudome S. 1995. A large-scale, hospital-based case-control study of risk factors of breast cancer according to menopausal status. Cancer Sci. 86:146-154.
Hiraiwa N, Kondo M, Nishimura M, Hara-Nishimura I. 1997. An aspartic endopeptidase is involved in the breakdown of propeptides of storage proteins in protein-storage vacuoles of plants. Eur. J. Biochem. 246:133-141.
Huang GJ, Huang SS, Chen HJ, Chang YS, Chang SJ, Chang HY, Hsieh PC, Chang MJ, Lin YC, Lin YH. 2009. Cloning and expression of aspartic proteinase cDNA from sweet potato storage roots. Bot Stud 50:149-158.
Simoes I, Faro C. 2004. Structure and function of plant aspartic proteinases. Eur. J. Biochem. 271:2067-2075.
Jing HC, Schippers JHM, Hille J, Dijkwel PP. 2002. Arabidopsis onset of leaf death mutants identify regulatory pathway controlling leaf senescence. Plant J. 32 (1):51-63.
Jing HC, Schippers JHM, Hille J, Dijkwel PP. 2005. Ethylene-induced leaf senescence depends on related changes and OLD genes and Arabidopsis. J. Exp. Bot. 56(421):2915-2923.
Kato Y, Murakami S, Yamamoto Y, Chatani H, Kondo Y, Nakano T, Yokota A, Sato F. 2004. The DNA-binding protease, CND41, and the degradation of ribulose-1,5-bisphosphate carboxylase/oxygenase in senescent leaves of tobacco. Planta 220:97-104.
Kato Y, Yamamoto Y, Murakami S, Sato F. 2005. Post-translational regulation of CND41 protease activity in senescent tobacco leaves. Planta 222:643-651.
Koelsch G, Mares M, Metcalf P, Fusek M. 1994. Multiple functions of
pro-parts of aspartic proteinase zymogens. FEBS Lett. 343:6-10.
Koike T. 1990. Autumn coloring, photosynthetic performance and leaf development
of deciduous broad-leaved trees in relation to forest succession . Tree Physiol. 7:
21-32.
Lim P O, Kim H J, Nam, HG. 2007. Leaf senescence. Annu Rev Plant Biol 58:115-36.
Lin JF, Wu SH. 2004. Molecular events in senescing Arabidopsis leaves. Plant J. 39: 612-628.
Mae T, Ohira K. 1981. The remobilization of nitrogen related to leaf growth and s
enescence in rice plants (Oryza sativa L.). Plant Cell Physiol. 22: 1067-1074.
McGrath RB, Ecker JR. 1998. Ethylene signaling in Arabidopsis: Events from the membrane to the nucleus. Plant Physiol. Biochem. 36:103-113.
Milisavljevic MD, Timotijevic GS, Radovic SR, Konstantinovic MM, Maksimovic VR. 2008. Two types of aspartic proteinases from buckwheat seed- Gene structure and expression analysis . J. Plant Physiol. 165:983-990.
Miguel A, Manzano M, Yada RY. 2008. Expression and characterization of the recombinant aspartic proteinase A1 from Arabidopsis thaliana. Phytochemistry. 69:2439-2448.
Mortley DG, Bonsi CK, Loretan PA, Morris CE, Hill WA, Ogbuehi CR. 1991.Evaluation of sweet potato genotypes for 65 adaptability to hydroponic systems. Crop Sci. 31:845-47.
Munford RS, Sheppard PO, O’Hara PJ. 1995. Saposinlike proteins (SAPLIP) carry out diverse functions on a common backbone structure. J. Lipid Res. 36:1653-1663.
Munoz FF, Mendieta JR, Pagano MR, Paggi PR, Daleo GR, Guevara MG. 2010. The swaposin-like domain of potato aspartic protease (StAsp-PSI) exerts antimicrobial activity on plant and human pathogens. Peptides. 31:777-785.
Mutlu A, Pfeil JE, Gal S. 1998. A probarley lectin processing enzyme purified from Arabidopsis thaliana seeds. Phytochemistry. 47:1453-1459.
Mutlu A, Chen X, Reddy S, Gal S. 1999a. The aspartic proteinase of Arabidopsis thaliana is expressed in seeds and localized in the protein bodies. Seed Sci. Res. 9:75-84.
Mutlu A, Gal S. 1999b. Plant aspartic proteinases: enzymes on the way to a function. Physiol Plant 105:569-576.
Noh YS, Amasino RM. 1999. Identification of a promoter region responsible for the senescence-specific expression of SAG12. Plant Mol. Biol. 41:181-194.
Nooden LD, Leopold AC. 1988. Senescence and aging in plants. Academic
Press, San Diego(USA)499-517.
Nooden LD, Guiamet JJ, John I. 1997. Senescence mechanisms. Physiol Plant 101:746-753.
Oh SA, Lee SY, Chung IK, Lee CH, Nam HG. 1996. A senescence-associated gene of Arabidopsis thaliana is distinctively regulated during natural and artificially induced leaf senescence. Plant Mol. Biol. 30:739-754.
Phan HA, Iacuone S, Li SF, Parish RW. 2011. The MYB80 Transcription Factor Is Required for Pollen Development and the Regulation of Tapetal Programmed Cell
Death in Arabidopsis thaliana. Plant cell 23:2209-2224.
Prasad BD, Creissen G, Lamb C, Chattoo BB. 2010. Heterologous expression and characterization of recombinant OsCDR1, a rice aspartic proteinase involved in disease resistance. Protein Expr. Purif. 72:169-174.
Quirino BF, Noh YS, Himelblau E, Amasino RM. 2000. Molecular aspects of leaf senescence. Trends Plant Sci. 5:278-282.
Rawlings ND, Barrett AJ. 1995. Families of aspartic peptidases and those of unknown catalytic mechanism. Meth. Enzymol. 248:105-120.
Rodrigo I, Vera P, Conejero V. 1989. Degradation of tomato pathogenesis-related proteins by an endogenous 37 kDa aspartyl endoproteinase. Eur. J. Biochem. 184:663-669.
Rodrigo I, Vera P, Van Loon LC, Conejero V. 1991. Degradation of tobacco athogenesis-related proteins. Plant Physiol. 95:616-622.
Runeberg-Roos P, Kervinen J, Kovaleva V, Raikhel NV, Gal S. 1994. The aspartic proteinase of barley is a vacuolar enzyme that processes probarley lectin in vitro. Plant Physiol. 105:321-329.
Runeberg-Roos P, Saarma M. 1998. Phytepsin, a barley vacuolar aspartic proteinase, is highly expressed during autolysis of developing tracheary elements and sieve cells. Plant J. 15:139-145.
Sarkkinen P, Kalkkinen N, Tilgmann C, Siuro J, Kervinen J, Micola L. 1992. Aspartic proteinase from barley grains is related to mammalian lysosomal cathepsin D. Planta 186:317-323.
Stachowiak D, Wilimowska-Pelc A, Kołaczkowska M, Polanowski A, Wilusz T, Larsen LB. 1994. Aspartic proteinase from the seeds of figleaf gourd(Cucurbita ficifolia). Acta Biochim. Pol. 41:181-182.
Stenger S, Hanson DA, Teitelbaum R, Dewan P, Niazi KR, Froelich CJ, Ganz T, Thoma-Uszynski S, Melian A, Bogdan C, Porcelli SA, Bloom BR, Krensky AM, Modlin RL. 1998. An antimicrobial activity of cytolytic T cells mediated by granulysin. Science 282:121-125.
Takahashi K, Niwa H, Yokota N, Kubota K, Inoue H. 2008. Widespread tissue expression of nepenthesin-like aspartic protease genes in Arabidopsis thaliana. Plant Physiol. Biochem. 46:724-729.
Tamura T, Terauchi K, Kiyosaki T, Asakura T, Funaki J, Matsumoto I, Misaka T, Abe K. 2007. Differential expression of wheat aspartic proteinases, WAP1 and WAP2, in germinating and maturing seeds J. Plant Physiol. 164:470-477.
Tieman DM, Taylor MG, Ciardi JA, Klee HJ. 2000. The tomato ethylene receptors NR and LeETR4 are negative regulators of ethylene response and exhibit functional compensation within a multigene family. Proc. Natl. Acad. Sci. U.S.A. 97:5663-5668.
Timotijevic GS, Milisavljevic MD, Radovic SR, Konstantinovic MK, Maksimovic VR. 2010. Ubiquitous aspartic proteinase as an actor in the stress response in buckwheat. J Plant. Physiol. 167:61-68
Tormakangas K, Kervinen J, Ostman A, Teeri T.1994. Tissue-specific localization of aspartic proteinase in developing and germinating barley grains. Planta 195:116-125.
Törmäkangas K, Hadlington JL, Pimpl P, Hillmer S, Brandizzi F, Teeri TH, Denecke J. 2001. A vacuolar sorting domain may also influence the way in which proteins leave the endoplasmic reticulum. Plant cell 13:2021-2032
Vaccaro AM, Tatti M, Ciaffoni F, Salvioli R, Maras B, Barca A. 1993. Function of saposin C in the reconstitution of glucosylceramidase by phosphatidylserine liposomes. FEBS Lett. 336:159-161.
Vaccaro AM, Salvioli R, Tatti M, Ciaffoni F. 1999. Saposins and their interaction with lipids. Neurochem. Res. 24:307-314.
Verıssimo P, FARO C, MOIR AJG, Lin Y, TANG J, PIRES E. 1996. Purification, characterization and partial amino acid sequencing of two new aspartic proteinases from fresh flowers of Cynara cardunculus L. Eur. J. Biochem. 235:762-768.
Wang YT, Yang CY, Chen YT, Lin Y, Shaw JF. 2004. Characterization of senescence-associated proteases in postharvest broccoli florets. Plant Physiol. Biochem. 42:663-670.
Weaver LM, Gan S, Quirino B, Amasino RM. 1998. A comparison of the expression patterns of several senescence-associated genes in response to stress and hormone treatment. Plant Mol. Biol. 37:455-469.
Xia Y, Suzuk H, Borevitz J, Blount J, Guo Z, Patel K, Dixon RA, Lamb C.2004. An extracellular aspartic protease functions in Arabidopsis disease resistance signaling. EMBO J. 23:980-988.
Yang SF, Hoffman NE. 1984. Ethylene biosynthesis and its regukation in higher plants. Annu Rev Plant Physiol 35:155-90.
Yao X, Xiong W, Ye T, Wu Y. 2012. Overexpression of the aspartic protease ASPG1 gene confers drought avoidance in Arabidopsis. J. Exp. Bot. 23:980-988.
Yoshida Y. 1961. Nuclear control of chloroplast activity in Elodea leaf cells. Protoplasma 54:476-492.
Yoshida S. 2003. Molecular regulation of leaf senescence. Curr. Opin. Plant Biol. 6:79-84.
Zhang W, Wen CK. 2010. Preparation of ethylene gas and comparison of ethylene responses induced by ethylene, ACC, and ethephon. Plant Physiol. Biochem. 48:45-53.
Zhong G, Burns JK. 2003. Profiling ethylene-regulated gene expression in Arabidopsis thaliana by microarray analysis. Plant Mol. Biol. 53:117-131.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code