Responsive image
博碩士論文 etd-0608113-135030 詳細資訊
Title page for etd-0608113-135030
論文名稱
Title
雷射分析光譜應用奈米材料和有機半導體在細菌和生物分子分析/生物感測 分析/生物感測
Applications of Nanomaterials and Organic Semiconductors for Bacteria & Biomolecules analysis/ biosensing using Laser Analytical Spectroscopy
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
378
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-07-03
繳交日期
Date of Submission
2013-07-08
關鍵字
Keywords
English version
Chitosan, Metallodrug, Pathogenic bacteria, Magnetic nanoparticles, Matrix, Silica, Quantum dots, Furoic acid, Separation, Polythiophene, Graphene, Bovine Serum Albumin, Ceria nanoparticles, Laser analytical spectroscopy, Fluorescence, polymer dots, Non-covalent interaction, Mefenamic acid, Microextraction, Matrix assisted laser desorption/ionisation, Biosensing, Gramicidin
統計
Statistics
本論文已被瀏覽 5914 次,被下載 319
The thesis/dissertation has been browsed 5914 times, has been downloaded 319 times.
中文摘要
English version
Abstract
This thesis introduces various applications of organic and nanomaterials for detection/biosensing the biomolecules and pathogenic bacteria and their antibacterial activities. The main target of the present thesis is to apply new materials in analytical and nanobiomedicine fields. These new materials may be solving the main drawbacks of conventional matrixces of matrix assisted laser desorption/ionization mass spectrometry (MALDI-MS) in order to improve their sensitivety, detection capability and for better ionization. It was also applied for biosensing application for pathogenic bacteria and different biomolecules. In order to understand the physiological behavior and separation/biosensiong application; non-covalent interactions have been investigated among metals-drug, metallodrug-bacteria, metallodrug-protein, pathogenic bacteria-nanoparticles. Finally, some of new materials have been tested as antibacterial agents. The thesis was classified into four different parts as below:

First part introduces novel applications of organic and nanomaterials which can as matrices for matrix assisted laser desorption/ionization mass spectrometry (MALDI-MS). This part introduces new materials in order to solve limitations of conventional organic matrices such as acidity, interferences and weak ionisability. First application introduces two novel organic matrices which called “Mefenamic and Furoic acids” to work as powerful matrices for low molecular weight (0-3000Da) of various biomolecules. The new matrices show low interferences, less fragmentation and good resolution. Second application introduces new ionic liquid matrices (ILMs) for bacteria analysis. Due to the weak acidity of conventional matrices “DHB and sinapinic acid”, new series of ionic liquid matrices (ILMs) were applied to improve pathogenic bacteria signals of MALDI analysis. Third application show high and new ionization protocol based on graphene coated with porous silicates (SiO2). Analyte was ionized and desorbed from porous materials (SiO2) and was initiated by surfactant and graphene nanosheet. Data indicated high ionizability and better resolution of various analytes. The new organic materials (furoic acid, mefenamic acids, and ionic liquid) and graphene coated silica showed better ionization, low interference, and potential applicability for various biomolecules classes.
Second part characterizes the non-covalent bond among metals, drugs, proteins, quantum dots and bacteria. First application discusses the non-covalent interaction between metals and non-steroidal anti-inflammatory drug (NSAIDs) called flufenamic acid. Because conventional organic matrix destroys the non-covalent interaction in metallodrug and show interference at low molecular weight, a new method based on graphene was proposed. Metallodrug structures were proposed using graphene assisted laser desorption/ionization and confirmed using multiple analytical tools such as UV, fluorescence spectroscopy. Metallodrug-bacteria interaction was investigated using MALDI, thus was proposed for fluorescence biosensing applications. Second application monitors the non-covalent interactions between metallodrug and bovine serum albumin (BSA) using MALDI, FTIR, and fluorescence spectroscopy. Data reveal strong interaction between the protein and metallodrugs. Third application investigates the non-covalent interaction between bacteria cell membranes and chitosan which modified with quantum dots. Thermodynamic results indicate that there are hydrophobic interaction between bacteria cell membranes and chitosan backbone and it was drive entropically. Probe interaction among metals, drugs, bacteria and proteins are useful for develop drug without side effect and for biosensors applications.
Third part introduces several of nanomaterials such as graphene magnetic nanoparticles, polymer dots, and nanoceria (CeO2) for biosensing and separation purposes. First application showed multifunctional application of graphene magnetic nanoparticles modified chitosan (GMCS) based the combination between fluorescence properties of graphene and magnetic property of magnetic nanoparticles for biosensing applications. GMCS was prepared and characterized using transmission electron microscopy (TEM), Raman, UV, Fourier transform infrared (FTIR), and X-ray diffraction (XRD). GMCS was proposed for fluorescence and MALDI analysis of pathogenic bacteria (Pseudomonas aeruginosa and Staphylococcus aureus) in blood samples. Second application quantified the hydrophobic cellular biomolecules of pathogenic bacteria using polythiophene dispersed in organic solvent (choloroform, CHCl3). Third application proposes nanoceria (CeO2) modified surfactant for effective separation of pathogenic bacteria from blood samples using ultrasound enhanced surfactant-assisted dispersive liquid–liquid microextraction (UESA-DLLME). Nanomaterials (graphene magnetic nanoparticles, polymer dots, and nanoceria) showed effective separation/biosensing application for pathogenic bacteria.
Fourth part proposes metallodrug and nanomaterials for effect pathogenic bacteria treatments. Firstly, metallodrug based on metals (Cu+2, Fe+3) interact with ponstel drug were characterized using electrospray and quantum dots assisted laser desorption/ionization mass spectrometry. Data were confirmed using UV and fluorescence spectroscopy. Antibacterial activities were evaluated using plate counting and MALDI-MS. The metallodrug display antibacterial activity toward bacteria. Second application introduces graphene oxide (GO) as a nanocarrier for insoluble antibacterial called gramicidin (GD). Graphene oxide modified gramicidin (GOGD) was prepared an characterized using TEM, XRD, UV, FTIR and MALDI-MS. Antibacterial activity was measured using various analytical tools such as optical counting, optical density, fluorescence spectroscopy (2D, 3D), MALDI and transmission electron microscopy. Data revealed high antibacterial activity of GOGD over than GD and GO.
In conclusion, we successfully applied various organic materials and nanomaterials for detection/biosensing and for antibacterial activities.We introduce new organic and nanomaterials which can serve for energy receptor in order to ionize the different analytes. A new ionization method has been evaluated which consider matrix-free, cheap, high ionization efficiency, and have no interefences. Non-covalent interactions not only provide information about the side effect of the drug/metallodrg, but also important for biosensing/separation application. Various separation approaches have been used for separation and biosensing. Novel antibacterial classes were investigated based on graphene and metallodrug.
目次 Table of Contents
Title………………………………………………………………………………………………..1
Acknowlegement………………………………………………………………………...............2
Abstract..……………………………………………………………………………………….3-5
Content…………………………………………………………………………………………6-7
Chapter 1: Introduction…………………………………………………………………….....9-38

Part I: Matrix for matrix assisted laser desorption/ionization mass spectrometry……..…39
Chapter 2: Furoic and Mefenamic acids as new matrices for UV-MALDI Mass spectrometry………………………………………………………………………………....40-71
Chapter 3: Synthesis and application of ionic liquid matrices (ILMs) for effective pathogenic bacteria analysis in Matrix assisted laser desorption/ionization (MALDI-MS)…………..72-102
Chapter 4: Graphene initiates Silica@CTAB coated nanolayer (GIS-MALDI) for high ionization efficiency for matrix assisted laser desorption/ionization mass spectrometry....103-130
Part II: Chacterization of non-covalent interaction among biomolecules, metals, nanoparticles and pathogenic bacteria for biosensing/antibacterial………………………131
Chapter 5: A method to detect metal-drug complexes and their interactions with pathogenic bacteria via graphene nanosheet assist laser desorption/ionization mass spectrometry and biosensors…………………………………………………………………………………132-162
Chapter 6: Monitoring the metallodrug–protein interactions by FTIR, MALDI-MS and Fluorescence……………………………………………………………………………….163-180
Chapter 7: Characterization of the interaction between chitosan capped CdS quantum dots with pathogenic bacteria and its biosensing application………………………………………181-203
Part III: Application of Nanomaterials for Biosensing and Separtion for pathogenic bacteria………………………………………………………………………………………..204
Chapter 8: Multifunctional Graphene Magnetic Nanosheet decorated with chitosan for highly sensitive detection of pathogenic bacteria……………………………………………….205-239
Chapter 9: Quantification of total hydrophobic pathogenic lysate in single drop and their application for biosensing using polymer dots.....................................................................240-261
Chapter 10: Ceria nanocubic-ultrasonic assisted dispersive liquid-liquid microextraction coupled with matrix assisted laser desorption/ionization mass spectrometry for pathogenic bacteria analysis……………………………………………………………………………262-299
Part VI: Application of Metallodrug and Nanomaterials for biomedicine………………..300
Chapter 11: Synthesis, characterization and antibacterial activity of Metallo-Ponstel drug against pathogenic bacteria using multiple analytical techniques……………………….301-323
Chapter 12: Graphene Oxide as a nanocarrier for Gramicidin (GOGD) for high antibacterial performance………………………………………………………………………………324-360
Conclusion ……………………………………………………………………….………360-366
Gloassay…………………………………………………………………………………367-371
Author curriculum vitae (CV) …………………………………………………………372-378
參考文獻 References
Chapter 1
References:
1. Bolsho, M.A.; Kuritsy, Y.A. Laser Analytical Spectroscopy, WILEY-VCH Verlag GmbH, 2001, Chapter 22 , 728-752.
2. McLafferty, F.W. Annu. Rev. Anal. Chem. 2011, 4,1–22.
3. Karas, M.; Bachman, D.; Bahr, U.; Hillenkamp, F. (1987) Int J Mass Spectrom Ion Process 1987, 78,53–68
4. Tanaka, K.; Waki, H.; Ido, Y.; Akita, S.; Yoshida, Y.; Yoshida, T.; Matsuo, T. Rapid Commun Mass Spectrom.1988, 2,151–153
5. Castro, J.A., Koster, C.; Wilkins, C.; Cotter, R. Rapid Commun Mass Spectrom 1992, 6,239–241
6. Karas, M.; Hillenkamp, F. Anal Chem 1988,60,2299–2301
7. Mustafa, D.A.N.; Burgers, P.C.; Dekker, L.J.; Charif, H.; Titulaer, M.K.; Sillevis, Smitt, P.A.E.; Luider, T.M.; Kros, J.M. Mol Cell Proteomics.2007, 6,1147–1157
8. Domon, B.; Aebersold, R. Science. 2006, 312, 212.
9. Dekker, L.J.; Burgers, P.C.; Guzel, C.; Luider, T.M. J. Chromatogr. B.2007, 847,62–64
10. Franz, A.H.; Molinski, T.F.; Lebrilla, C.B. J Am Soc Mass Spectrom.2001, 12,1254–1261.
11. Mizuno, Y.; Sasagawa, T.; Dohmae, N.; Takio, K. Anal Chem.1999, 71,4764–4771.
12. Dey, M.; Castoro, J.A.; Wilkins, C.L. Anal Chem.1995, 67,1575–1579
13. Li, Q.B.; Li, F.X.; Jia, L.; Li, Y.; Liu, Y.C.; Yu, J.Y.; Fang, Q.; Cao, A.M. (2006) Biomacromolecules.2006, 7,2377–2387
14. Senko, M.W.; McLafferty, F.W. Annu Rev Biophys Biomol Struct 1994,23,763–785
15. Cohen, L.H.; Gusev, A.I. Anal Bioanal Chem.2002, 373,571–586
16. Strupat, K.; Karas, M.; Hillenkamp, F. Int. J. Mass Spectrom. Ion Processes.1991, 72 , 89–102
17. Beavis, R.C.; Chait, B.T. Rapid Commun. Mass Spectrom.1989, 3 (12): 436–9
18. Beavis, R. C.; Chaudhary, T.; Chait, B. T. Org. Mass Spectrom. 1992,27 , 156–8.
19. Hager, J.W. Anal Bioanal Chem.2004,378,845–850
20. Su, A.K.; Lin, C.H. Talanta 2002,68:673–678
21. Berkenkamp, S.; Kirpekar, F.; Hillenkamp, F. Science.1998, 281,260–262
22. Cohen, L.H.; Gusev, A.I. Anal Bioanal Chem.2002, 373,571–586
23. Hillenkamp, F.; Peter-Katalinic, J .MALDI MS – a practical guide to instrumentation, methods and application. Wiley-VCH, Weinheim,2007.
24. Van Kampen, J.J.A., Burgers, P.C.; De Groot, R.; Gruters, R.A., Luider, T.M. (2011) Mass Spectrom Rev.2011, 30,101–120
25. Higashi, T.; Shimada, K. Anal Bioanal Chem.2004, 378,875–882
26. Wang, H.Y.; Chu, X.; Zhao, Z.X.; He, X.S.; Guo, Y.L. J Chromatogr B,2011, 879,1166–1179
27. Fuchs, B.; Schiller, J. Eur J Lipid Sci Technol 2009,111,83–98
28. Fuchs, B.; Schiller, J. Curr Org Chem.2009, 13,1664–1681
29. Johnson, B.F.G.; McIndoe, J.S. Coord Chem Rev 2000,200:901–932
30. Montaudo, G.; Samperi, F.; Montaudo, M.S. Prog Polym Sci 2006,31:277–357
31. Crecelius, A.C.; Baumgaertel, A.; Schubert, U.S. J Mass Spectrom.2009, 44,1277–1286
32. Eelman, M.D.; Moriarty, M.M.; Fogg, D.E. Educ Adv Chem 2006,10,213–234
33. Wang, H.; Zhao, Z.; Guo, Y. Top Curr Chem. 2013, 331, 165-192.
34. Knochenmuss, R.; Zenobi, R. Chem Rev.2003, 103,441–452.
35. Knochenmuss, R. Analyst.2006, 131,966–986.
36. Bailes, J.; Vidal, L.; Ivanov, D.A.; Soloviev, M. J Nanobiotechnology.2009, 7,10.
37. Wei, J.; Buriak, J.M.; Siuzdak, G. Nature 1999,399:243–246
38. Nayak, R.; Knapp, D.R . Anal Chem.2010, 82,7772–7778.
39. Tarui, A.; Kawasaki, H.; Taiko, T.; Watanabe, T.; Yonezawa, T.; Arakawa, R. J. Nanosci Nanotechnol.2009, 9,159–164.
40. Bi, H.; Qiao, L.; Busnel, J.M.; Devaud, V.; Liu, B.; Girault, H.H. Anal Chem. 2009, 81,1177–1183.
41. Daniels, R.H.; Dikler, S.; Li, E.; Stacey, C. J Assoc Lab Automation 2008,13,314–321.
42. Yao, T.; Kawasaki, H.; Watanabe, T.; Arakawa, R. Int J Mass spectrom 2010, 291,145–151.
43. Dutta, T.K.; Harayama, S. Anal Chem.2001, 73,864–869
44. Kalberer, M.; Paulsen, D.; Sax, M.; Steinbacher, M.; Dommen, J.; Prevot, A.S.H.; Fisseha, R.; Weingartner, E.; Frankevich, V.; Zenobi, R.; Baltensperger, U. Science.2004, 303,1659–1662
45. Gnaser, H.; Savina. M.R.; Calaway, W.F.; Tripa, C.E.; Veryovkin, I.V.; Pellin, M.J . Int J Mass spectrum.2005, 245,61–67
46. Trimpin, S.; Herath, T.N.; Inutan, E.D.; Wager-Miller, J.; Kowalski, P.; Claude, E.; Walker, J.M.; Mackie, K. Anal Chem. 2009,82,359–367
47. Becker, J.S.; Dietze, H.J. Int J Mass spectrom 2000,197,1–35
48. Huang, Y.-F.; Chang, H.-T. Anal. Chem. 2006, 78, 1485−1493.
49. Torta, F.; Fusi, M.; Casari, C. S.; Bottani, C. E.; Bachi, A. J. Proteome Res. 2009, 8, 1932−1942.
50. Lee, K.-H.; Chiang, C.-K.; Lin, Z.-H.; Chang, H.-T. Rapid Commun. Mass Spectrom. 2007, 21, 2023−2030.
51. Hutchens, T. W.; Yip, T. T., New desorption strategies for the mass spectrometric analysis of macromolecules. Rapid Commun. Mass Spectrom. 1993, 7, 576-580.
52. Poon, T.C. Expert review of proteomics 2007,4 (1): 51–65.
53. Hanay, M.S.; Kelber, S.; Roukes, M.L.; Naik, A.K.; Chi, D.; Hentz, S.; Bullard, E.C.; Colinet, E.; Duraffourg, L. Nature Nanotechnology . 2012, 7, 602-608.
54. McLean, J. A.; Stumpo, K. A.; Russell, D. H. J. Am. Chem. Soc. 2005, 127, 5304-5305.
55. Jürgen, H. Gross, Mass Spectrometry, A text book, Springer Berlin Heidelberg New York, 1 edition.
56. Downard, K.; Mass Spectrometry : A Foundation Course, The Royal Society of Chemistry 2004, Cambridge , UK
57. Undenfriend, S. Development of the spectrophotofluorometer and its commercialization. Protein Sci.1995, 4,542–551.
58. Berlman, I.B. Handbook of fluorescence spectra of aromatic molecules, 2nd ed. Academic Press, New York. 1971.
59. Jablonski, A. 1935. Über den Mechanisms des Photolumineszenz von Farbstoffphosphoren, Z Phys 94:38–46.
60. Alivisatos, A.P. J Phys Chem.1996, 100,13226–13239.
61. Murphy, C.J.; Coffer, J.L. Appl Spectrosc.2002, 56,16A–27A.
62. Parak, W.J.; Gerion, D.; Pellegrino, T.; Zanchet, D.; Micheel, C.; Williams, S.C.; Boudreau, R.; Le Gros, M.A.; Larabell, C.A.; Alivisatos, A.P. Nanotechnology.2003 14:R15–R27.
63. Bawendi, M.G.; Steigerwald, M.L.; Brus, L.E. Annu Rev Phys Chem 1990,41, 477–496.
64. Weller, H. Angew Chem, Int Ed.1993, 32(1), 41–53.
65. Wolfbeis, O.S. Anal Chem.2004, 76, 3269–3284.
66. Cammann, K. Phys Chem Chem Phys.2003, 5, 5159–5168.
67. Rich, R.L.; Myszka, D.G. J Mol Recognit.2002, 15,352–376.
68. De Silva, A.P.; Fox, D.B.; Moody, T.S.; Weir, S.M. Trends Biotechnol. 2001, 19(1):29–34.
69. Badugu, R. J Fluoresc.2005, 15, 71–83.
70. Geddes, C.D.; Lakowicz, J.R., eds. 2005. Topics in fluorescence spectroscopy, Vol. 9: Advanced concepts in fluorescence sensing: macromolecular sensing. Springer-Verlag, New York.
71. Lakowicz, J.R. Principles of Fluorescence Spectroscopy, second edition, Kluwer Academic/Plenum Publishers, 1999, New York.
72. Skoog, D.A.; West, D.M.; Holler, F.J.; Crouch, S.R. Fundamentals of Analytical Chemistry, 8ed. Chapter 27, PP825-835. Brooks/Cole. a division of Thomson, Canada.
73. Wait, G.N.; Waite, L.R.; Applied cell and Molecular biology for engineers, McGraw-Hill Companies, Chapter 10, USA, 2007.
74. Yang, H.; Li, H.-P.; Jiang, X.-P. Detection of foodborne pathogens using bioconjugated nanomaterials. Microfluid. Nanofluid. 2008, 5 (5), 571–583.
75. Nayak, M.; Kotian, A.; Marathe, S.; Chakravortty, D. Biosens. Bioelectron. 2009, 25 (4), 661–667.
76. Torres-Chavolla, E.; Alocilja, E. C. Biosens. Bioelectron. 2009, 24 (11), 3175–3182.
77. Kaittanis, C.; Naser, S. A.; Perez, J. M. Nano Lett. 2007, 7 (2), 380–383.
78. Ravindranath, S. P.; Mauer, L. J.; Deb-Roy, C.; Irudayaraj, J. Anal. Chem. 2009, 81 (8), 2840–2846.
79. Zhao, Y.; Ye, M.-Q.; Chao, Q.-G.; Jia, N.-Q.; Ge, Y.; Shen, H.-B. J. Agric. Food. Chem. 2009, 57 (2), 517–524
80. Huang,Y.F.; Yan, X.P.; Wang, Y.F. Environ. Sci. Technol. 2010, 44, 7908–7913
81. Tarr, P. I.; Neill, M. A. Gastroenterol. Clin. North Am. 2001, 30, 735-751.
82. Nataro, J. P.; Kaper, J. B. Clin. Microbiol. Rev. 1998, 11, 142-201.
83. Deisingh, A. K.; Thompson, M. J. Appl. Microbiol. 2004, 96, 419-429.
84. Ivnitski, D.; Abdel-Hamid,I.; Atanasov,P.; Wilkins,E.; Biosensors for detection of pathogenic bacteria. Biosensors & Bioelectronics.1999,14, 599–624.
85. Turner, A.P.F., Cardosi, M.F., Ramsay, G., Schneider, B.H., Swain, A., 1986. Biosensors for use in the food industry: a new rapid bioactivity monitor. In: Biotechnology in the Food Industry, Online Publications, Pinner UK, pp. 97–116.
86. Tietjen, M., Fung, D.Y.C. Crit. Rev. Microb. 1995,21, 53–83.
87. Rossi, T.M., Warner, M., 1985. Bacterial identification using fluorescence spectroscopy. In: Nelson, W.H. (Ed.), Instrumental Methods for Rapid Microbiological Analysis. VCH Publishers, pp. 1–50 (Chapter 1).
88. Peters, R. P. H.; Savelkoul, P. H. M.; Vandenbroucke-Grauls, C. M. J. E. Lancet 2010, 375, 1779–1780.
89. Miller, M. B.; Tang, Y. W. Clin. Microbiol. Rev. 2009, 22, 611–633.
90. Carey, J.R.; Suslick, K.S.; Hulkower, K.I.; Imlay, J.A.; Imlay, K.R.C.; Ingison, C.K.; Ponder, J.B.; Sen, A.; Wittrig, A.E. J Am Chem Soc. 2011, 18, 7571–7576.
91. Preti, G.; Thaler, E.; Hanson, C.W.; Troy, M.; Eades , J.; Gelperin, A. J. Chromatogr. B, 2009, 877, 2011.
92. Lu, Y.; Harrington, P.B. Anal.Bioanal. Chem.2010, 397, 2959.
93. Al-khaldi, F.S.; Mossoba, M.M.; Ismail, A.A.; Fry, F.S. Foodborne pathogens and disease, 2004,1, 172-177.
94. Ho, Y.P.; Reddy, P.M. Clinical Chem. 2010, 56, 525–536
95. Lay, J.O. Mass Spectrometry Reviews 2001, 20, 172- 194
96. Biswas, S.; Rolain, J.M. J Microbiol Methods. 2013, 92(1),14-24.
97. Carbonnelle, E.; Mesquita, C.; Bille, E.; Day, N.; Dauphin, B.; Beretti, J.L.; Ferroni, A.; Gutmann, L.; Nassif, X. Clin Biochem. 2011, 44(1):104-9.

Chapter 2
[1] Abdelhamid, H.N.; Wu, H.F. Talanta, 2013, http://dx.doi.org/10.1016/j.talanta.2013.05.050.
[2] Karas, M.; Hillenkamp, F. Anal. Chem. 1988, 60, 2299.
[3] Beavis, R.C.; Chait, B.T. Rapid. Commun. Mass. Spectrom. 1989, 3, 432.
[4] Dreisewerd, K. Chem. Rev. 2003, 103, 395.
[5] Beavis, R.C.; Chaudhary, T.; Chait, B.T. Org. Mass Spectrom. 1992, 27,156-158.
[6] Strupat, K.; Karas, M.; Hillenkamp, F. Int. J. Mass Spectrom. Ion Processes. 1991, 72, 89–102.
[7] Tanaka, K.; Waki, H.; Ido, Y.; Akita, S.; Yoshida, Y.; Yoshida, T. Rapid. Commun. Mass. Spectrom. 1988, 2, 151.
[8] Armstrong, D.W.; Zhang, L.K.; He, L.; Gross, M.L. Anal. Chem. 2001, 73 , 3679.
[9] Walker, K.L.; Kahr, M.S.; Wilkins, C.L.; Xu, Z.; Moore, J.S.; J. Am. Soc. Mass Spectrom. 1994, 5, 731.
[10] Schriemer, D.C.; Li, L. Anal. Chem. 1996, 68, 2721-2725
[11] Tang, K.; Taranenko, N.I.; Allman, S.L.; Cháng, L.Y.; Chen, C.H. Rapid Commun. Mass Spectrom. 1994, 8, 727–30.
[12] Wu, K.J.; Steding, A.; Becker, C.H. Rapid Commun. Mass Spectrom. 1993, 7 , 142–6
[13] Abdelhamid, H.N.; Gopal, J.; Wu, H.F. Anal. Chim.Acta. 2013, 767, 104–111.
[14] Wu, H.F.; Gopal, J.; Abdelhamid, H.N.; Hasan, N. Proteomics. 2012, 12, 2949.
[15] Abdelhamid, H.N.; Wu, H.F. Anal. Chim. Acta. 2012, 751, 94.
[16] Wei, J.; Buriak, J.; Siuzdak, G. Nature. 1999, 399, 243.
[17] Schurenberg, M.; Dreisewerd, K.; Hillenkamp, F. Anal Chem. 1999, 71,221.
[18] Cohen, S.L.; Chait, B.T. Anal Chem. 1996, 68, 31.
[19] McLean, J.A.; Stumpo, K.A.; Russell, D.H. J. Am. Chem. Soc. 2005, 127, 5304.
[20] Lai, E.P.C.; Owega, S.; Kulczycki, R. J. Mass Spectrom. 1998, 33, 554.
[21] Huang, Y.F.; Chang, H.T. Anal. Chem. 2006, 78, 1485.
[22] Lee, K.H.; Chiang, C.K.; Lin, Z.H.; Chang, H.T. Rapid Commun.Mass. Spectrom. 2007, 21, 2023.
[23] Peterson, D.S. Mass Spectrom. Rev. 2007, 26, 19-34.
[24] Rainer, M.; Qureshi, M.N.; Bonn, G.K. Anal. Bioanal. Chem. 2010, 400, 2281-2288.
[25] Li, Y.; Shrestha, B.; Vertes, A. Anal. Chem. 2007, 79, 523-532.
[26] Lorkiewicz, P.; Yappert, M.C. Anal. Chem. 2009, 81, 6596-6603.
[27] Kinumi, T.; Saisu, T.; Takayama, M.; Niwa, H. J. Mass Spectrom. 2000, 35, 417-422.
[28] Wen, X.; Dagan, S.; Wysocki, V.H. Anal. Chem. 2007, 79, 434-444.
[29] Park, K.H.; Kim, H.J. Rapid Commun. Mass Spectrom. 2001, 15, 1494-1499.
[30] Cha, S.W.; Yeung, E.S. Anal. Chem. 2007, 79, 2373-2385.
[31] Xu, S.; Li, Y.; Zou, H.; Qiu, J.; Guo, Z.; Guo, B. Anal. Chem. 2003, 75, 6191-6195.
[32] Pan, C.; Xu, S.; Hu, L.; Su, X.; Ou, J.; Zou, H.; Guo, Z.; Zhang, Y.; B. Guo, B. J. Am. Soc. Mass Spectrom. 2005, 16, 883-892.
[33] Shiea, J.T.; Huang, J.P.; Teng, C.F.; Jeng, J.Y.; Wang, L.Y.; Chiang, L.Y. Anal. Chem. 2003, 75, 3587-3595.
[34] X. Dong, X.; Cheng, J.; Li, J.; Wang, Y. Anal. Chem. 2010, 82, 6208-6214.
[35] Lu, M.; Lai, Y.; Chen, G.; Cai, Z. Anal. Chem. 2011, 81, 3161-3169.
[36] Shroff, R.; Rulisek, L.; Doubsky, J.; Svatos, A. Proc. Natl. Acad. Sci. U.S.A. 2009, 106, 10092-10096.
[37] Jaskolla, T.W.; Lehmann, W.D.; Karas, M. Proc. Natl. Acad. Sci.U.S.A. 2008, 105, 12200-12205.
[38] Chen, S.; Xiong, S.; Chen, L.; Wang, J.; Yang, G.; Hou, J.; Nie, Z.; He, Q.; J. Liu, J.; Wang, J. Anal. Chem. 2012, 84, 10291-10297
[39] Ayorinde, F.O.; Hambright, P.; Porter, T.N.; Keith, Q.L. Rapid Commun. Mass Spectrom. 1999, 13, 2474–2479.
[40] Caprioli, R.M.; Farmer, T.B.; Gile, J. Anal. Chem. 1997, 69, 4751-4760.
[41] Reyzer, M.L.; Caprioli, R.M. Curr. Opin. Chem. Biol. 2007, 11, 29-35.
[42] Cerruti, C.D.; Benabdellah, F.; Laprevote, O.; Touboul, D.; A. Brunelle, A. Anal. Chem. 2012, 84, 2164-71.
[43] Brütting, W. Phys. Stat. Solidi A. 2004, 201, 1035.
[44] Ali, M.M.; Zahran, M.A.; Ammar, Y.A.; Mohamed, Y.A.; Seleim, A.T. Ind. J.Hetero. Chem. 1995, 4, 191.
[45] Fuchs, B.; Arnold, K.; Schiller, J. Mass spectrometry of biological molecules. In: Meyers RA, editor. Encyclopedia of analytical chemistry. Chichester: John Wiley & Sons Ltd. 2008. p. 1–39.
[46] Lorkiewicz, P.; Yappert, M.C. J. Mass. Spectrom. 2009, 44, 137–43.
[47] Hillenkamp, F.; Karas, M.; Holtkamp, D.; Klusener, P. Int. J. Mass. Spectrom. Ion. Processes. 1986, 69, 265.
[48] Kim, S.H.; Shin, C.M.; Yoo, J.E. Rapid. Commun. Mass Spectrom. 1998, 12, 701.
[49] Colomina, M.; Jimenez, P.; Turrion, C. J. Chem. Thermodyn. 1982, 14, 779.
[50] Dixit, M.; Kini, A.G.; Kulkarni, P.K. Turk J. Pharm. Sci. 2012, 9, 13.
[51] Surov, A.O.; Terekhova, I.V.; Bauer-Brandl, A.; Perlovich, G.L. Crystal Growth Des. 2009, 9, 3265.
[52] Hua, L.; Chen, J.; Ge, L.; Tan, S.N. J. Nanopart Res. 2007, 9,1133.
[53] Lin, P.C.; Tseng, M.C.; Su, A.K.; Chen, Y.J.; Lin, C.C. Anal. Chem. 2007, 79, 3401.
[54] Go´recka-Drzazga, A.; Bargiel, S.; Walczak, R.; Dziuban, J.A.; Kraj, A.; Dylag, T.; Silberring, T. J. Sens. Actuators B. 2004, 103, 206.
[55] Karas, M.; Bahr, U.; Strupat, K.; Hillenkamp, F.; Tsarbopoulos, A.; Pramanik, B.N. Anal. Chem. 1995, 67, 675.
[56] Grant, D.C.; Helleur, R.J. Rapid. Commun. Mass Spectrom. 2007, 21, 837.
[57] Dai, Y.; Whittal, R.; Li, L.; Weinberger, S. Rapid Commun. Mass Spectrom. 1996, 10, 1792.
[58] Gusbv, A.I.; Wilkinson, W.R.; Proctor, A.; Hercules, D.M. Anal. Chem. 1995, 67, 1034-1041.
[59] Rechthaler, J.; Pittenauer, E.; Schaub, T.M.; Allmaier, G. J. Am. Soc. Mass Spectrom. 2013, 24, 701-710.
[60] Hendi, A.A. Life Sci. J. 2011, 8, 554.

Chapter 3
References:
[1] Abdelhamid, H.N.; Gopal, J.; Wu, H.-F. Anal. Chim. Acta, 2013, 767, 104–111.
[2] Audi, G. Int J. Mass. Spectrom. 2006, 251, 85.
[3] Fenn, J.B.; Mann, M.; Meng, J.B.; Wong, S.F.; Whitehouse, C.M. Science. 1989, 246, 64.
[4] Tanaka, K.; Waki, H.; Ido, Y.; Akita, S.; Yoshida, Y.; Yoshida, T. Rapid. Commun. Mass. Spectrom. 1988, 2, 151.
[5] Cho, A.; Normile, D. Science. 2002, 298,527.
[6] Black, C.; Poile, C.; Langley, J.; Herniman, J. Rapid. Commun. Mass. Spectrom. 2006, 20, 1053.
[7] Kinumi, T.; Saisu, T.; Takayama, M.; Niwa, H. J. Mass. Spectrom. 2000, 35, 417.
[8] Karas, M.; Hillenkamp, F. Anal. Chem. 1988, 60, 2299.
[9] Fuchs, B.; Schiller, J. Curr. Org. Chem. 2009, 13, 1664.
[10] Schiller, J.; Sus, R.; Arnhold, J.; Fuchs, B.; Lesig, J.; Muller, M. Prog Lipid Res. 2004, 43, 449.
[11] Hillenkamp, F.; Peter-Katalinic, J. MALDI-MS . Weinheim: Wiley–VCH.2007.
[12] Knochenmuss, R.; Zenobi, R. Chem. Rev. 2003, 103, 441.
[13] Knochenmuss, R. Analyst. 2006, 131,966.
[14] Abdelhamid, H.N.; Wu, H.F. Anal. Chim. Acta. 2012, 751, 94.
[15] Wu, H.F.; Gopal, J.; Abdelhamid, H.N.; Hasan, N. Proteomics. 2012, 12, 2949.
[16] Schurenberg, M.; Dreisewerd, K.; Hillenkamp, F. Anal Chem. 1999, 71,221.
[17] John, A.; McLean, A.; Katherine, A.; Stumpo, A.; David,A.; H. Russell, H . J. Am. Chem. Soc. 2005, 127, 5304.
[18] Hua, L.; Chen, J.; Ge, L.; Tan, L.S.N.; J. Nanopart. Res. 2007, 9, 1133.
[19] Lin, P.C.; Tseng, M.C.; Su, A.K.; Chen, Y.J.; Lin, C.C. Anal. Chem. 2007, 79, 3401.
[20] Go´recka-Drzazga, A.; Bargiel, S.; Walczak, R.; Dziuban, J.A.; Kraj, A.; T. Dylag, J. Silberring, J. Sens. Actuators, B.2004, 103, 206.
[21] Lai, E.P.C.; Owega, S.; Kulczycki, R. J. Mass. Spectrom. 1998, 33, 554.
[22] Armstrong, D.W.; Zhang, L.K.; He. L.; Gross, M.L. Anal. Chem. 2001, 73, 3679.
[23] Zabet-Moghaddam, M.; Heinzle, E.; Lasaosa, M.; Tholey, A. Anal. Bioanal. Chem. 2006, 384, 215.
[24] Mank, M.; Stahl, B.; Boehm, G. Anal. Chem. 2004, 76, 2938.
[25] Carda-Broch, S.; Berthod, A.; Armstrong, D.W. Rapid Commun. Mass Spectrom. 2003, 17, 553.
[26] Zabet-Moghaddam, M.; Heinzle, E.; Tholey, A. Rapid Commun. Mass Spectrom. 2004, 18, 141.
[27] Winkler, M.; Uher, J.; Cepa, S. Anal. Chem. 1999, 71, 3416.
[28] Nilsson, C.L. Rapid Commun. Mass Spectrom. 1999, 13, 1067.
[29] Reilly, J.P. Rapid Commun. Mass Spectrom. 1998, 12, 630.
[30] Fitzgerald, M.; Parr, G.; Smith, L. Anal. Chem. 1993, 22, 3204.
[31] Ivanova, B.; Spiteller, M. Anal. Methods. 2012, 4, 2247.
[32] Lee, C.H.; Gopal, J.; Wu, H.F. Biosens. Bioelectron. 2012, 31, 77.
[33] Fukuyama, Y.; Nakaya, S.; Yamazaki, Y.; Tanaka, K. Anal. Chem. 2008, 80, 2171.
[34] Wang, H.; Wang, H.; Zhang, L.; Zhang, J.; Guo, Y. Anal. Chim. Acta 2011, 690, 1.
[35] Wang, H.; Wang, H.; Zhang, L.; Zhang, J.; Leng, J.; Cai, T.; Guo, Y. Anal. Chim. Acta 2011, 707, 100.
[36] Bitai, I.S.; Ullmer, R.; Hrebicek, T.; Rizzi, A.; Lacik, I. Rapid Commun. Mass Spectrom. 2008, 22, 2961.
[37] Li, Y.L.; Gross, M.L. J. Am. Soc. Mass Spectrom. 2004, 15, 1833.
[38] Ullmer, R.; Rizzi, A.M. J. Mass. Spectrom. 2009, 44, 1596.
[39] Giménez, E.; Benavente, F.; Barbosa, J.; Nebot, V.S. Anal Bioanal Chem.2010, 398, 357.
[40] Sekiya, S.; Taniguchi, K.; Tanaka, K. Rapid Commun. Mass Spectrom. 2012, 26, 693.
[41] Miksa, B.; Sochacki, M.; Libiszowski, J.; Duda, A.; Ciesielski, W.; Potrzebowski, M.J. Anal. Methods 2012, 4, 377.
[42] Horneffer, V.; Dreisewerd, K.; Lüdemann, H.C.; Hillenkamp, F.; Läge, M.; Strupat, M.K. Int. J. Mass. Spectrom. 1999, 187, 859.
[43] Beavis, R.C.; Chait, B.T. Rapid. Commun. Mass. Spectrom. 1989, 3, 436.
[44] Beavis, R.C.; Chait, B.T. Rapid Commun. Mass. Spectrom. 1989, 3, 432.
[45] Fuchs, B.; Arnold, K.; J. Schiller, J.; J. Mass spectrometry of biological molecules. In: Meyers RA, editor. Encyclopedia of analytical chemistry. Chichester: John Wiley & Sons Ltd. 2008. p. 1–39.
[46] Lorkiewicz, P.; Yappert, M.C. J. Mass. Spectrom. 2009, 44,137.
[47] Kim, S.H.; Shin, C.M.; Yoo, J.E. Rapid. Commun. Mass Spectrom. 1998, 12, 701.
[48] Price, D.M.; Bashir, S.; Derrick, P.R. Thermochim. Acta.1999, 167.
[49] Colomina, M.; Jimenez, P.; Turrion, C. J. Chem. Thermodynamics. 14(1982) 779-784.
[50] S. Murata, M. Sakiyama,S. Seki, J.Chem. Thermodynamics. 1982, 14,723.
[51] Bunzel, M.; Ralph, J.; Kim, H.; Lu, F.; Ralph, S.A.; Marita, J.M.; Hatfield, R.D.; R.D.; Steinhart, H. J. Agric. Food. Chem. 2003, 51,1427.
[52] Kussmann, M.; Roepstorff, P. Meth Mol Biol. 2000, 146,405.
[53] Strupat, K.; Karas, M.; Hillenkamp, F. Int. J. Mass. Spectrom. Ion. Proc. 1991, 111, 89.
[54] Ryan, K.J.; Ray, C.G. Sherris Medical Microbiology (4th ed.). McGraw Hill.2004.
[55] Dai, Y.; Whittal, R.; Li, L. Anal. Chem. 1996, 68, 2494.
[56] Tholey, A.; Heinzle, E. Anal. Bioanal. Chem. 2006, 386, 24.
[57] Baker, G.A.; Baker, S.N.; Pandey, S.; Bright, F.V. Analyst .2005,130, 800.
[58] Koel, M. Crit. Rev. Anal. Chem .2005, 35,177.
[59] Sun, P.; Armstrong, D.W. Anal.Chim. Acta.2010, 661, 1.
[60] Soukup-Hein, R.J.; Armstrong, D.W.; Warnke, M.M. Annu. Rev. Anal. Chem 2009, 2,145.
[61] Joshi, M.D.; Anderson, J.L. RSC Advances 2012, 2, 5470.
[62] Lay, J.O. Mass Spectrom. Rev. 2001, 20, 172.
[63] Nordhoff, E.; Ingendoh, A.; Cramer, R.; Overberg, A.; Stahl, B.; Karas, M.; F. Hillenkamp, F.; Crain, P.F. Rapid. Commun. Mass. Spectrom. 1992, 6, 771.
[64] Jackson, S.N.; Wang, H.Y. Anal Chem. 2005, 77, 4523.
[65] Morello, J.A.; Granato, P.A.; Mizer, H.E. Laboratory Manual and workbook in Microbiology, Applications to patient Care, 7edition, The McGraw-Hill Companies, 2003, pp 15.
[66] Meriaux, K.; Franck, J.; Wisztorski, M.; Salzet, M.; Fournier, M. J. proteomics. 2010, 73, 1204.
[67] Wilkes, J.S.; Levisky, J.A.; Wilson, R.A.; C.L. Hussey. Inorg. Chem. 1982, 21, 1263.
[68] Huddleston, J.G.; Willauer, H.D.; Swatloski, R.P.; Visser, A.E.; Rogers, R.D. Chem. Commun.1998,1765.
[69] Armstrong, D.W.; He, L.; Liu, Y.S. Anal. Chem. 1999, 71, 3873.
[70] Berthod, A.; He, L.; Armstrong, D.W. Chromatographia. 2000, 53, 63.
[71] Linnell, R.; J. Org. Chem. 1960, 25, 290.
[72] Pearson, R.; Williams, G.; Forrest, V. J.Am.Chem.Soc.1953, 75, 3073.
[73] Lemaire, R.; Tabet, J.C.; Ducoroy, P.; Hendra, J.B.; Salzet, M.; Fournier, I. Anal. Chem 2006, 78, 809.
[74] Chang, Y.L.; Lee, Y.C.; Yang, W.B.; Chen, C.H. J. Mass. Spectrom.2011, 46, 367.
[75] Crank, J.A.; Armstrong, D.W. J. Am. Soc. Mass Spectrom.2009, 20, 1790.
[76] Calvano, C.D.; Carulli, S.; Palmisano, F. Rapid Commun. Mass Spectrom. 2009, 23, 1659.
[77] Giménez, E.; Benavente, F.; Barbosa, J.; Nebot, V.S. Anal Bioanal Chem.2010, 398, 357.
[78] Bungert, D.; Bastian, S.; Heckmann-Pohl, D.M.; Giffhorn, F.; Heinzle, E.; Tholey, A. Biotechnol. Lett. 2004, 26, 1025.

Chapter 4
References:
1. Tanaka, K.; Waki, H.; Ido, Y.; Akita, S.; Yoshida, Y.; Yoshida, T. Rapid Commun. Mass Spectrom. 1988, 2, 151–153.
2. Strupat, K.; Karas, M.; Hillenkamp, F. Int. J. Mass Spectrom. Ion Processes 1991,72, 89–102.
3. Beavis, R.C.; Chait, B.T. Rapid Commun. Mass Spectrom.1989, 3, 436–9.
4. Park, K.H.; Kim, H.J. Rapid Commun. Mass Spectrom. 2001, 15, 1494.
5. Yu, H.; Lopez, E.; Young, S.W.; Luo, J.; Tian, H.; P. Cao, P. Anal. Biochem. 2006, 354, 182.
6. Budimir, N.; Blais, J.C.; Fournier, F.; J. C. Tabet, J.C. J. Mass Spectrom. 2007, 42, 42.
7. Budimir, N.; Blais, J.C.; Fournier, F.; Tabet, J.C. Rapid Commun. Mass Spectrom. 2006, 20,680.
8. Zhang, Q.C.; Zou, H.F.; Guo, Z.; Zhang, Q.; Chen, X.M.; Ni, J.Y. Rapid Commun. Mass Spectrom. 2001, 15, 217.
9. Zou, H.F.; Zhang, Q.C.; Guo, Z.; Guo, B.C.; Zhang, Q.; Chen, X. M. Angew.Chem. Int. Ed. 2002, 41, 646.
10. Lewis, W.G.; Shen, Z.X.; Finn, M.G.; G. Siuzdak, G. Int. J. Mass Spectrom. 2003, 226, 107.
11. Wei, J.; Buriak, J.M.; Siuzdak, G. Nature 1999, 399, 243.
12. Hua, Y.M.; Dagan, S.; Wickramasekara, S.; Boday, D.J.; Wysocki, V.H.; J. Mass Spectrom. 2010, 45, 1394.
13. Shrivas, K.; Wu, H.F. J. Mass Spectrom. 2010, 45, 1452.
14. Kruse, R. A.; Li, X. L.; Bohn, P. W.; Sweedler, J. V. Anal. Chem. 2001, 73, 3639–3645.
15. Chen, Y.C.; Shiea, J.; Sunner, J. J. Chromatogr. A 1998, 826, 77.
16. Sunner, J.; Dratz, E.; Chen, Y.C. Anal. Chem. 1995, 67, 4335.
17. Xu, S.; Li, Y.; Zou, H.; Qiu, J.; Guo, Z.; Guo, B. Anal. Chem. 2003, 75, 6191.
18. Pan, C.; Xu, S.; Hu, L.; Su, X.; Ou,J.; Zou, H.; Guo, Z.; Zhang, Y.; Guo, B. J. Am. Soc. Mass Spectrom. 2005, 16, 883.
19. Law, K.P.; Larkin, J.R. Anal. Bioanal.2011, 399, 2597–2622.
20. Black, C.; Poile, C.; Langley, J.; Herniman, J. Rapid Commun. Mass Spectrom.2006, 20,1053–1060.
21. Xu, S.Y.; Li, Y.F.; Zou, H.F.; Qiu, J.S.; Guo, Z.; Guo, B.C. Anal. Chem.2003,75, 6191–6195.
22. Tang, H.W.; Ng, K.M.; Lu, W.; Che, C.M. Anal.Chem.2009, 81, 4720–4729.
23. Dong, X.; Cheng, J.; Li, J.; Y. Wang, Y. Anal. Chem.2010, 82, 6208–6214.
24. Wu, J.Y.; Chen, Y.C. J. Mass Spect.2002, 37, 85–90.
25. Piret, G.; Drobecq, H.; Coffinier, Y.; Melnyk, O.; Boukherroub, R. Langmuir 2010, 26, 1354–1361.
26. Cuiffi, J.D.; Hayes, D.J.; Fonash, S.J.; Brown, K.N.; Jones, A.D. Anal. Chem.2001, 73,1292–1295.
27. Tsao, C.W.; Kumar, P.; Liu, J.K.; Devoe, L. Anal. Chem.2008, 80 , 2973–2981.
28. Walker, B.N.; Stolee, J.A.; Pickel, D.L.; Retterer, S.T.; Vertes, A. J.Phys. Chem. C 2010,114, 4835–4840.
29. Finkel, N.H.; Prevo, B.G.; Velev, O.D.; He, L. Anal. Chem.2005, 77, 1088–1095.
30. Alimpiev, S.; Nikiforv, S.; Karavanskii, V. T. Minton, T.; Sunner, J. J.Chem.Phy.2008, 128, 14711–14719.
31. Northen, T.R.; Yanes, O.; Northen, M.T.; Marrinucci, D.; Uritboonthai, W.; Apon, J.; Golledge, S.L.; Nordstrom, A.; Siuzdak, G. Nature 2007,449, 1033–1036.
32. Feuerstein, I.; Najam-ul-Haq, M.; Rainer, M.; Trojer, L.; Bakry, R.; Aprilita, N.H.; Stecher, G.; Huck, C.W.; Bonn, G.K.; Klocker, H.; Bartsch, G.; Guttman, A. J. Am. Soc. Mass Spectrom 2006,17,1203–1208.
33. Shariatgorji, M.; Amini, N.; Ilag, L.L. J. Nanopart. Res. 2009, 11, 1509–1512.
34. Sherrod, S.D.; Diaz, A.J.; Russell, W.K.; Cremer, P.S.; Russell, D.H. Anal. Chem.2008, 80, 6796–6799.
35. Huang, Y.F.; Chang, H.T. Anal. Chem.2007, 79, 4852–4859.
36. Kawasaki, H.; Yonezawa, T.; Watanabe, T.; Arakawa, R. J. Phys.Chem. C.2007, 111, 16278–16283.
37. Chiang, C.K.; Yang, Z.; Lin, Y.W.; Chen, W.T.; Lin, H.J.; Chang, H.T. Anal.Chem.2010, 82 , 4543–4550.
38. Niklew, M.L.; Hochkirch, U.; Melikyan, A.; Moritz, T.; Kurzawski, S.; Schlter, S.; Ebner, I.; Linscheid, M.W. Anal. Chem.2010, 82, 1047.
39. Taira, S.; Kitajima, K.; Katayanagi, H.; Ichiishi, E.; Ichiyanagi, Y. Sci. Tech. Adv. Mater. 2009, 10, 34602.
40. Kailasa, S.K.; Wu, H.F. Anal. Bioanal.Chem. 2010, 396, 1115–1125.
41. Shrivas, K.; Kailasa, S.K.; Wu, H.F. Proteomics.2009, 9, 2656–2667.
42. Shastri, L.A.; Kailasa, S.K.; Wu, H.F. Rapid Commun. Mass Spectrom 2009, 2, 2247.
43. Gholipour, Y.; Giudicessi, S.L.; Nonami, H.; Erra-Balsells, R. Anal.Chem.2010, 82, 5518–5526.
44. Zhu, Z.J.; Rotello, V.M.; Vachet, R.W. Analyst, 2009, 134, 2183–2188.
45. Arakawa, R.; Kawasaki, H. Anal. Sc.2010, 26, 1229–1240.
46. Chen, W.Y.; Chen, Y.C. Anal. Bioanal.Chem.2006, 699–704.
47. Chen, C.T.; Chen, Y.C. Anal. Chem. 2005, 77, 5912–5919.
48. Kawasaki, H.; Akira, T.; Watanabe, T.; Nozaki, K.; Yonezawa, T.; Arakawa, R. Anal. Bioanal. Chem. 2009, 395, 1423–1431.
49. Peterson, D. S. Mass Spectrom. Rev. 2007, 26, 19.
50. Chiang, C. K.; Chen, W. T.; Chang, H. T. Chem. Soc. Rev. 2011, 40, 1269.
51. Kuzema, P. A. J. Anal. Chem. 2011, 66, 1227.
52. Greving, M. P.; Patti, G. J.; Siuzdak, G. Anal. Chem. 2011, 83, 2.
53. Pilolli, R.; Palmisano, F.; Cioffi, N. Anal. Bioanal. Chem. 2012, 402, 601.
54. Wu, H.F.; Gopal, J.; Abdelhamid, H.N.; Hasan, N.; Proteomics. 2012, 12, 2949–2961.
55. Wyatt, M.F.; Ding, S.; Stein, B.K.; Brenton, A.G.; Daniels, R.H. J.Am. Soc. Mass. Spect.2010, 21, 1256–1259.
56. Woldegiorgis, A.; Kieseritzky, F.V.; Dahlstedt, E.; Hellberg, J.; Brinck, T.; Roeraade, J. Rapid Commun. Mass Spect. 2004, 18, 841–852.
57. Lin, Y.S.; Chen, Y.C. Anal.Chem.2002, 74, 5793-5798.
58. Zenobi, R. Chimia 1997, 51, 801-803.
59. Zhan, Q.; Wright, S. J.; Zenobi, R. J. Am. Soc. Mass Spectrom. 1997, 8, 525-531.
60. Hrubowchak, D. M.; Ervin, M. H.; Winograd, N. Anal. Chem. 1991, 63, 1947-1953.
61. Guo, Z.; Zhang, Q.; Zou, H.; Guo, B.; Jianyi N, Anal. Chem. 2002, 74, 1637-1641.
62. Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; D. Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; A. A. Firsov, A.A. Science 2004, 306, 666.
63. Tang, L.A.; Wang, J.; Loh, K.P. J. Am. Chem. Soc. 2010, 132, 10976.
64. Zhou, X.; Wei, Y.; He, Q.; Boey, F.; Zhang, Q.; H. Zhang, H. Chem.Commun. 2010, 46, 6974.
65. Zhang, J.; Dong, X.L.; Cheng, J.S.; Li, J.H.; Y.S. Wang, Y.S. J. Am. Soc. Mass Spectrom. 2011, 22, 1294.
66. Abdelhamid, H.N.; Wu, H.F. Anal. Chim. Acta, 2012, 751, 94– 104.
67. Liu, Y.; Liu, J.; Yin, P.; Gao, M.; Deng, C.; Zhang, X. J. Mass. Spectrom. 2011, 46, 804–815.
68. Liu, Y.; Liu, J.; Deng, C.; Zhang, X. Rapid Commun. Mass Spectrom. 2011, 25, 3223–3234
69. Ai, L.; Tang, L.; Wang, J.; Loh, K.P. J. Am. Chem. Soc. 2010, 132, 10976–10977
70. Liu, Q.; Shi, J.; Jiang, G. Trends Anal. Chem. 2012, 37, 1-11.
71. Rader, H.J.; Rouhanipour, A.; Talarico, A.M.; Samor, V.P.; Mullen, K. Nature mater 2006,5 ,276-279.
72. Lee, Y.F.; Chang, K.H.; Hu, C.C.; Lee, Y.H. J. Mater. Chem. 2011, 21,14008.
73. Hummers, W.S.; Offeman, R.E. J. Am. Chem. Soc. 1958, 80, 1339.
74. Yang , S.B.; Feng , X.L.; Wang , L.; Tang , K.; Maier, J.; Müllen, K.; Angew. Chem. Int. Ed. 2010, 49, 4795.
75. Liang, C.-W.; Chang, P.J.; Lin, Y.J.; Lee, Y.T.; Ni, C.K.; Anal. Chem. 2012, 84, 3493-3499
76. M.L. Vestal, Chem. Rev. 2001,101, 361.
77. Knochenmuss, R.; Zenobi, R. Chem. Rev. 2003, 103, 441-452.
78. Northen, T.R.; Yanes, O.; Northen, M.T.; Marrinucci, D.; Uritboonthai, W.; Apon, J.; Golledge, S.L.; Nordström, A.; Siuzdak, G.; Nature 2007,449,1033–1036.
79. Liu, Q.; Shi, J.; Sun, J.; Wang, T.; Zeng, L.; Jiang, G. Angew.Chem.Int.Ed. 2011, 50, 5913
80. Liu, J.W.; Zhang, Q.; Chen, X.W.; Wang, J.H.; Chem.-Eur.J., 2011,17, 4864.
81. Liu, Q.; Cheng, J.S.; Li, G.; Gao, D.; Jiang, G. Chem.Commun, 2012, 48, 1874-1876.
82. Lium, X.; Zhang, H.; Yu, G.; Ma, Y.; Guo, Y.; Liu, Y.; Wu, X.; Meng, L. J. Mater. Chem. A.2013, 1, 1875-1884.

Chapter 5
References
[1] Abdelhamid, H.N.; Wu, H.F. Anal. Chim. Acta, 2012, 751, 94.
[2] Abignente, E.; De Caprariis, P. Anal. Profi. Drug Substan. 1982, 11, 313.
[3] Sato, J.; Owada, E.; Ito, K.; Niida, Y.; Wakamatsu, A.; Umetsu, M. J. Chromatogr. 1989, 493, 239.
[4] Niopas, I.; Georgarakis, M. J. Liq. Chromatogr. 1995, 18, 2675.
[5] Aly, F.A.; Al-Tamimi, S.A.; Alwarthan, A. Anal. Chim. Acta. 2000, 416, 87.
[6] Ioannou, P.C.; Rusakova, N.V.; Andrikopoulou, D.A.; Glynou, K.M.; Tzompanaki, G.M. Analyst. 1998, 123, 2839.
[7] Aboul Khier, M.; El-Sadek, M.; Baraka, M. Analyst. 1987, 112, 1399.
[8] Albero, M.I.; Sanchez-pedreno, C.; Garcia, M.S. J.Pharm.Biomed.Anal. 1995, 19, 1113.
[9] Andrews, P.C.; Ferrero, R.L.; Junk, P.C.; Kumar, I.; Luu, Q.; Nguyena, K.; Taylor, K. Dalton Trans. 2010, 39, 2861.
[10] Kawamori, T.; Rao, C.V.; Seibert, K.; Reddy, B.S. Cancer Res. 1998, 58, 409.
[11] Tucker, H.M.; Rydel, R.E.; Wright, S.; Estus, S. J. Neurochem. 1998, 71, 506.
[12] Joo, Y.; Kim, H.S.; Woo, R.S.; Park, C.H.; Shin, K.Y.; Lee, J.P.; Chang, K.A.; Kim, S.; Suh, Y.H. Mol Pharmacol. 2006, 69, 76.
[13] Asanuma, M.; Nishibayashi-Asanuma, S.; Miyazaki, I.; Kohno, M.; Ogawa, N. J. Neurochem. 2001, 76, 1895.
[14] Vujačić, A.; Bugarčić, Z.; Schiller, J.; Vasić, V.; Petković. Polyhedron. 2009, 28, 2905.
[15] Hillenkamp, F.; Peter-Katalinić, J. MALDI MS A practical guide to instrumentation, methods and applications. Wiley InterScience, Weinheim, Wiley-VCH, 2007.
[16] Beavis, R.C.; Chait, B.T. Anal. Chem.1990, 62, 1836.
[17] Ke, T.; Kailasa, S.; Wu, H.F.; Nawaz, M. J. Sep. Sci. 2010, 33, 3400.
[18] Wu, H.F.; Chun, F.T. Rapid Commun. Mass Spectrom. 2011, 25, 1779.
[19] Shrivas, K.; Agrawal, K.; Wu, H.W. Analyst. 2011, 136, 2852.
[20] Dong, X.; Cheng, J.; Li, J. Wang, Y. Anal. Chem. 2010, 82, 6208.
[21] Liu, Y.; Liu, J.Y.; Deng, C.H.; Zhang, X.M. Rapid Commun. Mass Spectrom. 2011, 25, 3223.
[22] Hummers, W.S.; Offeman, R.E. J. Am. Chem. Soc. 1958, 80, 1339.
[23] Chang, H.X.; Tang, L.H.; Wang, Y.; Jiang, J.H.; Li, J.H. Anal. Chem. 2010, 82, 2341.
[24] Choi, E.Y.; Han, T.H.; Hong, J.H.; Kim, J.E.; Lee, S.H.; Kim, H.W.; Kim, S.O.J. J. Mater. Chem. 2010, 20, 1907.
[25] Geng, Y.; Wang, S.J.; Kim, J.K. J. Colloid Interface Sci. 2009, 336, 592.
[26] Sabry, S.M. Anal. Chim. Acta.1998, 367, 41.
[27] Lin, P.C.; Tseng, M.C.; Su, A.K.; Chen, Y.J.; Lin, C.C. Anal. Chem. 2007, 79, 3401.
[28] Edmond de, H.; Vincent, I.S. Mass spectrometry: principles and applications. – 3rd ed. John Wiley & Sons Ltd, pp 79.
[29] Singh, V.; Joung, D.; Zhai, L.; Das, S.; Khondaker, S.I.; Seal, S. Prog. Mater. Sci. 2011, 56, 1178.
[30] Stankovich, S.; Piner, R.D.; Chen, X.Q.; Wu, N.Q.; Nguyen, S.T.; Ruoff, R.S. J. Mater. Chem. 2006, 16, 155.
[31] Bai, H.; Xu, Y.; Zhao, L.; Hou, Y. Chem. Commun. 2009, 1667.
[32] Geng, J.; Jung, H.T. J. Phys. Chem. C. 2010, 114, 8227.
[33] Wojcik, A.; Kamat, P.V. ACS Nano. 2010, 4, 6697.
[34] Li, F.; Bao, Y.; Chai, J.; Zhang, Q.; Han, D.; Niu, L. Langmuir. 2010, 26, 12314.
[35] Jaworska, E.; Lewandowski, W.; Mieczkowski, J.; Maksymiuk, K.; Michalska, A. Analyst. 2012, 137, 1895.
[36] Balasanmugam, K.; Day, R.; Hercules, D. Inorg. Chem. 1985, 24, 4477.
[37] Dell, H.D.; Kutschbach, B.; Fresenius, B. Z. Anal. Chem. 1972, 262, 356.
[38] Lakowicx, J.R.; principle of Fluorescence spectroscopy, third ed, Spring science & Business Media, New York, 2006.


Chapter 6
References
1. Arkin, M.R.; Wells, J.A. Nat. Rev. Drug. Discov. 2004, 3, 301-317.
2. Fukui, S.; Feizi, T.; Galustian, C.; Lawson, A.M.; Chai, W. Nat. Biotechnol.2002, 20, 1011 – 1017.
3. Bovet, C.; Moras, D.; Ruff, M.; Eiler, S.; Zenobi, R.; Granger, F.; Ryan Wenzel, R.; Nazabal, A. Anal. Chem. 2008, 80, 7833–7839.
4. Chen, W.-T.; Chiang, C.-K.; Lee, C.-H.; Chang, H.-T. Anal. Chem 2012, 84, 1924–1930.
5. Boeri Erba, E.; Barylyuk, K.; Yang, Y.; Zenobi, R. Anal. Chem. 2012, 83, 9251-9259.
6. Bich, C.; Maedler, S.; Chiesa, K.; DeGiacomo, F.; Bogliotti, N.; Zenobi, R. Anal. Chem 2010, 82, 172–179
7. Aboul Khier, A.; El-Sadek, M.; Baraka, M. Analyst, 1987, 112, 1399-1403.
8. Albero, M.I.; Sanchez-pedreno, C.; Garcia, M.S.; J.Pharm.Biomed.Anal. 1995, 19, 1113-117.
9. Andrews, P.C.; Ferrero, R.L.; Junk, P.C.; Kumar, I.; Luu, Q.; Nguyena, K.; James W. Taylor, J.W. Dalton Trans. 2010, 39, 2861–2868.
10. Weder, J.E.; Dillon, C.T.; Hambley, T.W.; Kennedy, B.J.; Lay, P.A.; Biffin, J.R.; Regtop, H.L.; Davies, N.M. Coord. Chem. Rev.2002, 232, 95-126.
11. Kawamori, T.; Rao, C.V.; Seibert, K.; Reddy, B.S. Cancer Res. 1998, 58, 409-412.
12. Tucker, H.M.; Rydel, R.E.; Wright, S.; Estus, S. J. Neurochem, 1998, 71, 506-516.
13. Joo, Y.; Kim, H.S.; Woo, R.S.; Park, C.H.; Shin, K.Y.; Lee, J.P.; Chang, K.A.; Kim, S.; Suh, Y.H. Mol Pharmacol. 2006, 69,76–84,
14. Asanuma, M.; Nishibayashi-Asanuma, S.; Miyazaki, I.; Kohno, M.; Ogawa,N.; J. Neurochem. 2001,76, 1895–1904.
15. Abdelhamid, H.N.; Wu, H.-F. Anal. Chim. Acta. 2012,751, 94– 104.
16. Timerbaev, A.R.; Hartinger, C.G.; Aleksenko, S.S.; Keppler, B.K. Chem Rev. 2006, 106,2224-2248.
17. Wu, H.-F.; Gopal, J.; Abdelhamid, H.N.; Nazim Hasan, N. Proteomics. 2012, 12, 2949–2961
18. Ke, Y.; Kailasa, S.K.; Wu, H.-F.; Chen, Z.-Y. Talanta 2010, 83, 178–184.
19. Jacky, S. W.; A. Farah, A.A.; Chen, F.; Helmy, A.S. ACS nano, 2011, 53823–3830.
20. Hu, Y. J.; Liu, Y.; Wang, J. B. J. Pharm.Biomed. Anal. 2004, 36, 915−919.
21. Vivian, J.T.; Callis, P.R. Biophys. J. 2001, 80, 2093–109.
22. Carter, D.C.; Ho, J.X. Adv. Protein Chem.1994, 45,152-153.
23. Petkovic´, M.; Kamcˇeva, T. Metallomics, 2011, 3, 550–565.
24. Fan, X.; Beavis, R.C. Org. Mass Spectrom. 1993, 28, 1424.
25. Glocker, M.O., Bauer, S.H.J., Kast, J. J. Mass Spectrom.1996, 31, 1221–7.
26. Cohen, L.R.H., Strupat, K.; Hillenkamp, F. J. Am. Soc. Mass Spectrom.1997, 8, 1046–52.
27. Bolbach, G. Curr. Pharm. Des. 2005, 11, 2535–57.
28. Zehl, M.; Allmaier, G. Anal. Chem. 2005, 77, 103–10.
29. Viles, J.H. Coord. Chem. Rev.2012, 256, 2271-2284.



Chapter 7
References:
1. Alivisatos, P. A. J. Phys. Chem. 1996, 100, 13226–13239.
2. Che, J.; Wang, X.; Xiao, Y.; Wu, X.; Zhou, L.; Yuan, W. Nanotechnology 2007, 18, 135706.
3. Alsharif, N. H.; Berger, C. E. M.; Varanasi, S. S.; Chao, Y.; Horrocks, B. R.; Datta, H. K. Small 2009, 5, 221.
4. Zou, J.; Kauzlarich, S. M. J. Cluster Sci. 2008, 19, 341.
5. Warner, J. H.; Tilley, R. D. Nanotechnology 2006, 17, 3745.
6. Nirmal, M.; Dabbousi, B. O.; Bawendi, M. G.; Macklin, J. J.; Trautman, J. K.; Harris, T. D.; Brus, L. E. Nature 1996, 383, 802.
7. Jamieson, T.; Bakhshi, R.; Petrova, D.; Pocock, R.; Imani, M.; A.M. Seifalian, A.M. Biomaterials. 2007, 28, 4717.
8. Luo, X.; Morrin, A.; Killard, A. J.; Smyth, M. R. Electroanalysis 2006, 18, 319.
9. Shi, J.; Zhu, Y.; Zhang, X.; Baeyens, W. R. G.; Garcia-Campana, A. M. Trends Anal. Chem. 2004, 23, 351.
10. Willner, I.; Willner, B.; Katz, E. Bioelectrochemistry 2007, 70, 2-11.
11. Willner, I.; Baron, R.; Willner, B. Biosens. Bioelectron. 2007, 22, 1841- 1852
12. Brus, L. E. J. Chem. Phys. 1983, 79, 5566-5571.
13. Wang, Z. L. Characterization of Nanophase Materials, 1st ed.; Wiley-VCH Verlag GmbH: Weinheim, 2000.
14. Hagfeldt, A.; Gratzel, M. Chem. Rev. 1995, 95, 49-68.
15. Burda, C.; Green, T. C.; Link, S.; El-Sayed, M. A. J. Phys. Chem. B 1999, 103, 1783-1788.
16. Landes, C.; Burda, C.; Braun, M.; El-Sayed, M. A. J. Phys. Chem. B 2001, 105, 2981-2986.
17. Suchetti, C. A.; Lema, R. H.; Hamity, M. J. Photochem. Photobiol. A 2005,169, 1-8.
18. Hasselbarth, A.; Eychmueller, A.; Weller, H. Chem. Phys. Lett. 1993, 203, 271-276.
19. Ivnitski, D.; Abdel-Hamid,I.; Atanasov,P.; Wilkins, E. Biosens.Bioelectr .1999,14 , 599–624.
20. Turner, A.P.F., Cardosi, M.F., Ramsay, G., Schneider, B.H., Swain, A., 1986. Biosensors for use in the food industry: a new rapid bioactivity monitor. In: Biotechnology in the Food Industry, Online Publications, Pinner UK, pp. 97–116.
21. Tietjen, M., Fung, D.Y.C. Crit. Rev. Microb. 1995, 21, 53–83.
22. Lakowicx, J.R.; principle of Fluorescence spectroscopy, third ed, Spring science & Business Media, New York, 2006.
23. Rossi, T.M., Warner, M., 1985. Bacterial identification using fluorescence spectroscopy. In: Nelson, W.H. (Ed.), Instrumental Methods for Rapid Microbiological Analysis. VCH Publishers, pp. 1–50 (Chapter 1).
24. Harlow, E.; Lane, D. Using Antibodies: A Laboratory Manual; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY, 1999.
25. Bruchez, M., Moronne, M.; Gin, P.; Weiss, S.; Alivisatos, A. P. Science 1998, 281, 2013.
26. Leatherdale, C. A.; Woo, W.-K.; Mikulec, F. V.; Bawendi, M. G. J. Phys. Chem. B 2002, 106, 7619.
27. Yu, W. W.; Qu, L.; Guo, W.; Peng, X. Chem. Mater. 2003, 15, 2854-2860.
28. Striolo, A.; Ward, J.; Prausnitz, J. M.; Parak, W. J.; Zanchet, D.; Gerion, D.; Milliron, D.; Alivisatos, A. P. J. Phys.Chem. B 2002, 106, 5500.
29. Schmelz, O.; Mews, A.; Basche, T.; Herrmann, A.; Mullen, K. Langmuir 2001, 17, 2861-2865.
30. Chan, W. C. W.; Nie, S. Science 1998, 281, 2016.
31. Dubertret, B.; Skourides, P.; Norris, D. J.; Noireaux, V.; Brivanlou, A. H.; Libchaber. Science 2002, 298, 1759.
32. Pathak, S.; Choi, S.-K.; Arnheim, N.; Thompson, M. E. J. Am. Chem. Soc.2001, 123, 4103.
33. Winter, J. O.; Liu, T. Y.; Korgel, B. A.; Schmidt, C. E. Adv. Mater. 2001, 13, 1673.
34. Rosenthal, S. J.; Tomlinson, I.; Adkins, E. M.; Schroeter, S.; Adams, S.;Swafford, L.; McBride, J.; Wang, Y.; DeFelice, L. J.; Blakely, R. D. J. Am.Chem. Soc. 2002, 124, 4586-4594.
35. Ishii, D.; Kinbara, K.; Ishida, Y.; Ishii, N.; Okochi, M.; Yohda, M.; Aida, T. Nature 2003, 423, 628-632.
36. Wang, S.; Mamedova, N.; Kotov, N. A.; Chen, W.; Studer, J. Nano Lett. 2002, 2, 817-822.
37. Dahan, M.; Le vi, S.; Luccardini, C.; Rostaing, P.; Riveau, B.; Triller, Science 2003, 302, 442-445.
38. Gao, J.; Li, L.; Ho, P.L.; Mak, G.C.; Gu, H.; Xu, B. Adv Mater 2006, 18, 3145.
39. Ryan, S.; Kell, A.J.; Van Faassen, H.; Tay, L.L.; Simard, B.; MacKenzie, R.; Bioconjugate. Chem 2009, 20, 1966.
40. Xue, X.; Pan, I.; Xie, H.; Wang, J.; Zhang, S. Talanta 2009,77, 1808-1813.
41. Dwarakanatha, S., Brunob, J.G., Shastrya, A., Phillipsb, T., Johnc, A., Kumarc, A., Stephenson, L.D. Biochem. Biophys. Res. Commun.2004, 325,739–743
42. Yang, L., Li,Y. Analyst.2006, 131, 394–401.
43. Cox, W.G.; Singer, V.L. Biotechniques.2004, 36, 114.
44. Abdelhamid, H.N., Wu, H.-F. Anal.Chim.Acta. 2012, 751, 94– 104.
45. Wu, H.-F., Gopal, J. Abdelhamid, H.N., Hasan, N. Proteomics. 2012, 12, 2949–2961.
46. Jayakumar, R.; Menon D.; Manzoor, K.; Nair, S.V.; Tamura, H. Carbohydrate Polymers.2010,82 , 227–232.
47. Lai. S.; Chang. X.; Fu, C. Microchim Acta. 2009 ,165, 39–44.
48. Kea, Y.; Kailasa, S.K.; Wu, H.-F.; Chen, Z.-Y. Talanta 2010, 83, 178–184.
49. Li. Z.; Du. Y.M.; Zhang, Z.L. React. Funct .Polym.2003, 55, 35.
50. Abdelhamid, H.N., Gopal, J.; Wu, H.F. Anal.Chim.Acta.2013,767, 104–111.
51. Yu, W. W.; Peng, X. Angew. Chem., Int. Ed. 2002, 41, 2368.
52. Kolhe. P.; Kannan. R.M. Biomacromolecules ,2003, 4,173.
53. Chen, Y.F.; Rosenzweig, Z. Nano.Lett.2002, 2,1299.
54. Murray, C.B.; Norris, D. J.; M.G. Bawendi, J.Am.Chem.Soc.1993,115,8706
55. Hines, M.A.; Guyot-Sionnest, P. J.Phys. Chem. 1996,100,468
56. Chan, W. C. W. ; Maxwell, D. J. ; Gao, X. H. ; Bailey, R. E. ; Han.; M. Y. ; Nie, S. M. Curr. Opin. Biotech., 2002, 13, 40–46.
57. O’Brien, P.; Cummins,S.S.; Darcy, D.; Dearden,A.; Ombaretta,M.; Pickett, N.L.; Ryley, S.; Sutherland, A.J. Chem.Commun.2003,20,2532.
58. Tan, W.B.; Huang, N.; Y. Zhang, J. Colloid Interface Sci.2007, 310,464–470.
59. Hardman,R. Environ. Health. Perspect. 2006, 114, 165-172.
60. Hoshino. A.; Hanaki. K.; Suzuki. K.;Yamamoto. K. Biochem Biophys Res Commun .2004, 314,46–53.
61. Derfus, A.M., Chan, W.C.W. , Bhatia, S.N. Nano Lett.2004, 4,11-14
62. Gedda, G.; Gopal, J, Wu, H.F. Rapid Commun Mass Spectrom; 2012, 30; 26, 1609-16
63. Hahn, M.A., Tabb, J.S., Krauss, T.D. Anal. Chem. 2005, 77, 4861-4869.
64. Kloepfer, J. A., Mielke, R. E.,Wong, M. S., Nealson, K. H., Stucky, G., Nadeau, J. L. Appl. Environ. Microb. 2003, 69, 4205.
65. Boatman, E.M.; Lisensky, G.C.; Nordell, K.J.; Safer, A. J. Chem. Educ. 2005, 82 ,1697.
66. Li, H.; Li-Qun Wu,L.-Q. Bentley, W.E. Ghodssi, R.; Rubloff, G.W.; Culver, J.N.; Payne,G.P. Biomacromolecules, 2005, 6 ,2881.
67. Rinaudo, M.; Pavlov, G.; Desbrieres, J. Polymer 1999, 40, 7029-7032.
68. Sorlier, P.; Denuziere, A.; Viton, C.; Domard, A. Biomacromolecules. 2001, 2, 765-772.
69. Strand, S. P.; Tommeraas, K.; Varum, K. M.; Ostgaard, K. Biomacromolecules 2001, 2, 1310-1314.
70. Anthonsen, M. W.; Smidsrod, O. Carbohydr. Polym. 1995, 26, 303-305.
71. Varum, K. M.; Ottoy, M. H.; Smidsrod, O. Carbohydr. Polym.1994, 25, 65-70.
72. Gopal, J.; Abdelhamid, H.N., Hua, P.Y.; Wu, H.F. J. Mater. Chem. B, 2013, 1, 2463-2475.

Chapter 8
References:
1. Abdelhamid, H.N.; Wu, H.F. J. Mater. Chem. B, 2013, DOI: 10.1039/C3TB20413H
2. Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V. Science. 2004, 306, 666-669.
3. Jiang, H.I. Small. 2011, 7, 2413-2427.
4. Guo, S.J.; Dong, S.J. Chem. Soc. Rev. 2011, 40, 2644-2672.
5. Stankovich, S.; Dikin, D.A.; Piner, R.D.; Kohlhaas, K.A.; Kleinhammes, A.; Wu, Y. Carbon. 2007,45,1558-1565.
6. Loh, K.P.; Bao, Q.; Eda, G.; Chhowalla, M. Nature. 2010,2,1015-1024.
7. Feng, L.Z.; Liu, Z. Nanomedicine. 2011,6,317-324.
8. Liu, Z.; Robinson, J.T.; Tabakman, S. M.; Yang, K.; Dai, H. Mater. Today, 2011, 14, 316-323.
9. S.M. Mater. Today. 2011, 14,316-323.
10. Shen, H.; Zhang, L.; Liu, M.; Zhang, Z. Theranostics. 2012, 2,283-294.
11. Zhang, Y.; Nayak, T.R.; Hong, H.; Cai, W. Nanoscale. 2012, 4, 3833-3842.
12. Kuila, T.; Bose, S.; Khanra, P.; Mishra, A.K.; Kim, N.H.; Lee, J.H. Biosens. Bioelectron. 2011, 26, 4637-2648.
13. Wang, Y.; Li, Z.; Wang, J.; Li , J.; Lin, Y. Trends Biotechnol. 2011, 29, 205–212.
14. Liu, Y.; Dong, X.; Chen, P. Chem Soc Rev. 2012, 41, 2283-2307.
15. Pumera, M. Mater.Today, 2011, 14, 308-315.
16. Shao, Y.; Wang, J.; Wu, H.; Liu, J.; Aksay, I.A.; Lin, Y. Electroanalysis. 2010, 22, 1027 – 1036.
17. Mao, S.; Lu, G.; Yu, K.; Bo, Z.; Chen, J. Adv Mater. 2010, 22, 3521-3526.
18. Li, F.; Huang, Y.; Yang, Q.; Zhong, Z.; Li, D.; Wang, L.; Nanoscale. 2010, 2, 1021-1026.
19. Lu, C.H.; Yang, H.H.; Zhu, C.L.; Chen, X.; Chen, G.N. Angew. Chem. 2009, 121, 4879-4881.
20. Alwarappan, S.; Liu, C.; A. Kumar, A.; Li, C.Z. J. Phys. Chem. C. 2009, 113, 8853-8857.
21. Alwarappan, S.; Erdem, A.; Liu, C.; Li, C.Z.I J. Phys. Chem. C. 2010, 114, 12920–12924
22. Alwarappan, S.; Boyapalle, S.; Kumar, A.; Li, C.Z.; Mohapatra, S. J. Phys. Chem. C. 2012, 116, 6556-6559.
23. Alwarappan, S.; Singh, S.R.; Pillai, S.; Kumar, A.; Mohapatra, S. Anal. Lett. 2012, 45, 746–753.
24. Balapanuru, J.; Yang, J.X.; Xiao, S.; Bao, Q.; Jahan, M.; Polavarapu, L.; Wei, J.; Xu, Q.H.; Loh, K.P. Angew. Chem. 2010, 122, 6699 –6703
25. Alwarappan, S.; Cissell, K.; Dixit, S.; Li, C.Z.; Mohapatra, S. J Electroanal. Chem 2012, 686 , 69–72
26. Peng, C.; Hu, W.; Zhou, Y.; Fan, C.; Huang, Q. Small 2010, 6, 1686-1692.
27. Chen, M.L.; Liu, J.W.; Hu, B.; Wang, J.H. Analyst 2011,136, 4277-4283.
28. Guo, C.; Book-Newell, B.; Irudayaraj, J. Chem Commun 2011, 47, 12658-12660.
29. Hu, S.H.; Chen, Y.W.; Hung, W.T.; Chen, I.W.; Chen, S.Y. Adv Mater 2012, 24, 1748-1754.
30. Yang, X.; Tu, Y.; L. Li, Shang, S.; Tao, X.M. ACS Appl Mater Interfaces. 2010, 2, 1707-1713.
31. Bao, H.; Pan, Y.; Ping, Y.; Sahoo, N.G.; Wu, T.; Li, J. Small. 2011, 7, 1569–1578.
32. Fan, H.; Wang, L.; Zhao, K.; Li, N.; Shi, Z.; Ge, Z. Biomacromolecules. 2010, 11, 2345–2351.
33. Fan, L.; Luo, C.; Li, X.; Lu, F.; Qiu, H.; Sun, M. J Hazard Mater. 2012, 215, 272-279.
34. Liang, Y.Y.; Zhang, L.M. Biomacromolecules. 2007, 8, 1480–1486.
35. Mohanty, N.; Berry, V. Nano Lett. 2008, 8, 4469-4476.
36. (a) Braine, H.G.; Kickler, T.S.; Charache, P.; Ness, P.M.; Davis, J.; C. Reichart, C.; Fuller, A.K.; Transfusion. 1986, 26,391-393. (b) Wagner, S.J.; Friedman, L.I.; Dodd, R.Y.; Clin Microbiol Rev. 1994,7, 290-302. (c) Anderson, K.C.; Lew, M.A.; Gorgone, C.; Martel, J.; Leamy, C.B.; Sullivan, B. Am J Med. 1986, 81,405-411.
37. Lazcka, O.; Del Campob, F.J.; Mu˜noz, F.X. Biosens Bioelectron. 2007, 22, 1205-1217.
38. Levi, K.; Smedley, J.; Towner, K.J. Clin Microbiol Infect. 2003, 9, 754-758.
39. Ivnitski, D.; Abdel-Hamid, I.; Atanasov, P.; Wilkins, E. Biosens. Bioelectron. 1999, 14, 599–624.
40. Michalet, X.; Pinaud, F.F.; Bentolila, L.A.; Tsay, J.M.; Doose, S.; Li, J.J. Science. 2005, 307, 538-544.
41. Gu, H.; Ho, P.L.; Tsang, K.W.; Wang, L.; Xu, B.; J. Am. Chem. Soc. 2003, 125, 15702-15703.
42. Kell, A.J.; Stewart, G.; Ryan, S.; Peytavi, R.; Boissinot, M.; Huletsky, A.; ACS Nano. 2008, 2, 1777-1788.
43. Gao, J.; Li, L.; Ho, L.; Mak, G.C.; Gu, H.; Xu, B. Adv Mater. 2006, 18, 3145-3148.
44. El-Boubbou, K.; Gruden, C.; Huang, X. J. Am. Chem. Soc 2007, 129, 13392-13393.
45. Ryan, S.; Kell, A.J.; Van Faassen, H.; Tay, L.L.; Simard, B.; MacKenzie, R. Bioconjugate. Chem. 2009, 20, 1966-1974.
46. Bromberg, L.; Chang, F.P.; Alvarez-Lorenzo, C.; Magarinos, B.; Concheiro, A.; Hatton, T.A. Langmuir. 2010, 26, 8829-8835.
47. Xue, X.; Pan, I.; Xie, H.; Wang, J.; Zhang, S. Talanta. 2009,77,1808-1813.
48. Turner, A.P.F. Biosensors, McGraw-Hill Yearbook of Science & Technology 2000. McGraw-Hill, New York; 1999.pp39-42.
49. Yang, X.Y.; Zhang, X.Y.; Ma, Y.F.; Huang, Y.; Wang, Y.S.; Chen, Y.S. J. Mater. Chem. 2009, 19, 2710-2714.
50. Cong, H.P.; He, J.J.; Lu, Y.; Yu, S.H. Small. 2010, 6,169-173.
51. Liu, Q.F.; Ren, W.C.; Chen, Z.G.; Liu, B.L.; Yu, B.; Li, F. Carbon. 2008,46,1417-1723.
52. Szabo, T.; Bakandritsos, A.; Tzitzios, V.; Devlin, E.; Petridis, D.; Dekany, I. J Phys Chem B. 2008, 112, 14461-14469.
53. He, F.; Fan, J.; Ma, D.; Zhang, L.; Leung, C.; Chan, H.L. Carbon. 2010, 48, 3 1 3 9-3144.
54. Zhao, G.; Song, S.; Wang, C.; Wu, Q.; Wang, Z. Anal Chim. Acta. 2011, 708,155-159.
55. Liu, Q.; Shi, J.; Jiang, G. Trends. Anal. Chem. 2012, 37, 1-8.
56. Liu, K.; Zhang, J.J.; Cheng, F.F.; T.T. Zheng, T.T.; Wang, C.; Zhu, J.J. J. Mater. Chem. 2011, 21, 12034-12040.
57. Chang, L.; Chen, S.; Jin, P.; Li, X. J. Colloid. Interface. Sci. 2012, 388, 9-14.
58. Gollavelli, G.; Ling, Y.C. Biomaterials. 2012, 33, 2532-2545.
59. Gopal, J.; Abdelhamid, H.N.; Hua, P.Y.; Wu, H.F. J. Mater. Chem. B, 2013, 1, 2463-2475.
60. Hummers, W.S.; Offeman, R.E. J. Am. Chem. Soc. 1958, 80, 1339-1339.
61. Abdelhamid, H.N.; Wu, H.F. Anal. Chim. Acta. 2012,751, 94-104.
62. Dorniani, D.; Zobir, M.; Hussein, B.; Kura, A.U.; Fakurazi, S.; Shaari, A.H.; Z. Ahmad, Z. Int. J. Nanomedicine. 2012,7, 5745–5756
63. Yang, X.; Zhang, X.; Ma, Y.; Huang, Y.; Wang, Y.; Chen, Y. J. Mater. Chem. 2009, 19, 2710–2714.
64. Gopal, J.; Lee, C.H.; Wu, H.F. J. Proteomics. 2012, 75, 2972-2982.
65. Claydon, M.A.; Davey, S.N.; Edwards-Jones, V.; Gordon, D.B. Nat. Biotechnol. 1996, 14, 1584-1586.
66. Fenselau, C.; Ryzhov, V.; Ho, Y.P.; Demirev, P.A. Anal. Chem. 1999, 71, 2732-2738.
67. Abdelhamid, H.N.; Gopal, J.; Wu, H.F. Anal.Chim.Acta. 2013, 767, 104–111.
68. Wu, H.F.; Gopal, J.; Abdelhamid, H.N.; Hasan, N. Proteomics 2012, 12, 2949-2961.
69. Abdelhamid, H.N.; Wu, H.F. Submitted.
70. Dong, X.; Cheng, J.; Li, J.; Wang, Y. Anal. Chem. 2010, 82, 6208-6214.
71. Y. Liu, J.Y. Liu, C.H. Deng, X.M. Zhang, Rapid. Commun. Mass. Spectrom. 2010,25,3223-3334.
72. Xu, W.P.; Zhang, L.C.; Li, J.P.; Lu, Y.; Li, H.H.; Ma, Y.N. J. Mater. Chem. 2011, 21, 4593-4597.
73. Odaci, D.; Timur, S.; Telefoncu, A. Sens. Actuators. B. 2008, 134, 89-94.
74. Fan, H.L.; Wang, L.L.; Zhao, K.K.; Li, N.; Shi, Z.J.; Ge, Z.G. Biomacromolecules. 2010, 11, 2345-2351.
75. Nayak, T.R.; Andersen, H.; Makam, V.S.; Khaw, C.; Bae, S.; Xu, X. ACS. Nano. 2011, 5, 4670-4678.
76. Hu, W.; Peng, C.; Luo, W.; Lv, M.; Li, X.; Li, D. ACS. Nano. 2010, 4, 4317-4323.
77. Mondal, T.; Bhowmick, A.K.; Krishnamoorti, R. J. Mater. Chem. 2012, 22, 22481.
78. Akhavan, O.; Ghaderi, E. ACS. Nano. 2010, 4, 5731-5736.
79. Lim, H.N.; Huang, N.M.; Loo, C.H. J. Non-Cryst. Solids. 2012, 358, 525-530.

Chapter 9
References
1. Wu, C.; Bull, B.; Szymanski, C.; Christensen, K.; McNeill, J.; ACS Nano 2008, 2, 2415 – 2423.
2. Pecher, J.; Mecking, S.; Chem. Rev. 2010, 110, 6260.
3. Kaeser, A.; Schenning, A. P. Adv. Mater. 2010, 22, 2985.
4. Moon, J.H.; McDaniel, W.; MacLean, P.; Hancock, L.E. Angew. Chem. 2007, 119, 8371
5. Pu, K.Y.; Li, K.; Shi, J.B.; Liu, B.; Chem. Mater. 2009, 21, 3816.
6. Liu, B.; Bazan, G. C. Chem. Mater. 2004, 16, 4467-4476.
7. Achyuthan, K. E; Bergstedt, T. S.; Chen, L.; Jones, R. M.; Kumaraswamy, S.; Kushon, S. A.; Ley, K. D.; Lu, L.; McBranch, D.; Mukundan, H.; Rininsland, F.; Shi, X.; Xia, W.; Whitten, D. G. J. Mater. Chem. 2005, 15, 2648–2656.
8. Thomas, S. W.; Joly, G. D.; Swager, T. M. Chem. Rev. 2007, 107, 1339–1386.
9. Ho, H.-A.; Najari, A.; Leclerc, M. Acc. Chem. Res. 2008, 41, 168–178.
10. Liu, Y.; Ogawa, K.; Schanze, K. S. J. Photochem. Photobiol. C 2009, 10, 173–190.
11. Duan, X.; Liu, L.; Feng, F.; Wang, S. Acc. Chem. Res. 2010, 43, 260–270.
12. Feng, X.; Liu, L.; Wang, S.; Zhu, D. Chem. Soc. Rev. 2010, 39, 2411–2419.
13. Li, K.; Liu, B. Polym. Chem. 2011, 1, 252–259.
14. Liang, J.; Li, K.; Liu, B. Chem. Sci. 2013, 4, 1377-1394.
15. Li, C.; Shi,G. ACS Appl. Mater. Interfaces. 2013, 5, 4503-4510.
16. Lange, U.; Roznyatovskaya, N.V.; Mirsky, V.M. Anal. Chim. Acta 2008, 614, 1–26.
17. Yao , Z.; Huang, B.; Hu, X.; Zhang, L.; Li, D.; Guo, M.; Zhang, X.; Yuan, H.; Wu, H.C. 2013, 138, 1649-1652.
18. Bagheri, H.; Ayazi, Z.; Naderi, M.; Anal.Chim.Acta.2013,767 , 1–13
19. Hu, C.; He, M.; Chen, B.; Hu, B.; J. Chromatogr.A.2013,1275, 25–31
20. Li, X.; Li, C.; Chen, J.; Li, C.; Sun, C.; J. Chromatogr. A.2008,7, 1198–1199
21. Tahmasebi, E.; Yamini, Y.; Moradi, M.; Esrafili, A. Anal. Chim. Acta. 2013, doi:10.1016/j.aca.2013.01.043.
22. Buszewski, B.; Olszowy, P.; Szultka, M.; Jezewska, A. Talanta 2012, 93,117–121.
23. Allen, R.; Bao, Z.; Fuller, G.G.; Nanotechnology 2013, 24, 15709-15718.
24. Adhikari, M.D.; Goswami, S.; Panda, B.R.; Chattopadhyay, A.; Ramesh, A. Adv. Healthcare Mater. 2012, 2, 599-606.
25. Kengne-Momo, R.P.; Pilard, J.F.; Lagarde, F.; Durand, M.J.; Daniel, Ph.; G. Thouand, G. Biointerphases, 2012, 7, 67.
26. Wang, B.; Yuan, H.; Zhu, C.; Yang, Q.; Lv, F.; Liu, L.; Wang, S. Sci Rep. 2012;2,766.
27. Ho, H.A.; Boissinot, M.; Bergeron, M.G.; Corbeil, G.; Dore, K.; Boudreau, D.; Leclerc, M.; Angew. Chem., Int. Ed., 2002, 41, 1548.
28. Ho, H.A.; Bera-Aberem, M.; Leclerc, M.; Chem.–Eur. J., 2005, 11, 1718.
29. Li, C.; Numata, M.; Takeuchi, M.; Shinkai, S.; Angew. Chem., Int. Ed., 2005, 44, 6371
30. Yao, Z.Y.; Bai, H.; Li, C.; Shi, G.Q. Chem. Commun., 2010, 46, 5094
31. Yao, Z.Y.; Bai, H.; Li, C.; Shi, G.Q. Chem. Commun., 2011, 47, 7431.
32. Canhoto, O.; Magan, N.; Sens. Actuators B 2005, 106, 3.
33. Canhoto, O.; Pinzari, F.; Fanelli, C.; Magan, N. Int. Biodeterior.Biodegrad. 2004, 54, 303.
34. Catarina Bastos, A.; Magan, N. Sens. Actuators B. 2006, 116,151.
35. Hamilton, S.; Hepher, M.J.; Sommerville, J. Sens. Actuators B 2006, 113, 989.
36. Magan, N.; Pavlou, A.; Chrysanthakis, I. Sens. Actuators B 2001, 72, 28.
37. Pavlou, A.K.; Magan, N.; Jones, J.M.; Brown, J.; Klatser, P.; Turner, A.P.F. Biosens. Bioelectron. 2004, 20, 538.
38. Panigrahi, S.; Balasubramanian, S.; Gu, H.; Logue, C.; Marchello, M.; LWT Food Sci. Technol. 2006, 39,135.
39. Dimitrakopoulos, C.D.; Malenfant, P.R.L. Adv. Mater. 2002 , 14 , 99 – 117
40. Anthony, J.E. Chem. Rev. 2006 , 106 , 5028 – 5048 ;
41. Murphy, A.R.; Frechet, J.M.J. Chem. Rev. 2007 , 107 , 1066 – 1096 ;
42. Zaumseil, J.; Sirringhaus, H. Chem. Rev. 2007 , 107 , 1296 – 1323
43. Reese, C.; Bao, Z. Materials Today 2007 , 10, 20 – 27 ;
44. Allard, S.; Forster, M.; Souharce, B.; Thiem, H.; Scherf, U. Angew. Chem., Int. Ed. 2008 , 47, 4070 – 4098
45. Ong, B.S.; Wu, Y.; Li, Y.; Liu, P.; Pan, H.; Chem.-Eur. J. 2008, 14, 4766 – 4778 .
46. Dong, S.; Zhang, H.; Yang, L.; Bai, M.; Yao, Y.; Chen, H.; Gan, L.; Yang , L.; Jiang , H.; Hou, S.; Wan, L.; Guo, X. Adv. Mater. 2012, 24, 5576–5580
47. Plante, M.P.; Bérubé, E.; Bissonnette, L.; Bergeron, M.G.; Leclerc, M. ACS Appl. Mater. Interfaces, 2013, 5,4544-8.
48. Morello, J.A.; Granato, P.A.; Mizer, H.E.; Laboratory Manual and Workbook in Microbiology Applications to Patient Care, 7th Edition, The McGraw−Hill Companies, 2003, PP54.
49. Abdelhamid, H.N.; Wu, H.-F. Anal.Chim.Acta, 2012, 751, 94– 104.
50. Ballav, N.; Biswas, M. Synth. Met. 2004, 142,309.
51. Frens, G. Nature Phys.Sci., 1973, 24, 20.
52. Gopal, J.; Abdelhamid, H.N. Hua, P.Y. Wu, H.F. J. Mater. Chem. B, 2013, 1, 2463-2475.
53. Wawrik, B.; Harriman, B.H. J. Microbiol Methods.2010, 80,262–266
54. Rittmeyer, S.P.; Groß, A. Beilstein J. Nanotechnol. 2012, 3, 909–919
55. Ma, C.-Q.; Mena-Osteritz, E.; Debaerdemaeker, T.; Wienk, M. M.; Janssen, R. A. J.; Bäuerle, P. Angew. Chem., Int. Ed. 2007, 46, 1679–1683.
56. Mishra, A.; Bäuerle, P. Angew. Chem., Int. Ed. 2012, 51, 2020–2067.
57. Lacaze, J.; Stobo, L. A.; Turrell, E. A.; Quilliam, M. A. J. Chromatogr., A 2007, 1145,51-57.
58. Weidenmaier, C.; Peschel, A. Nat. Rev. Microbiol. 2008, 6, 276.
59. Abdelhamid, H.N.; Gopal, J.; Wu, H.F. Anal.Chim.Acta.2013.767, 104–111.
60. Wu, H.F.; Gopal, J.; Abdelhamid, H.N.; Hasan, N. Proteomics. 2012, 12, 2949–2961.
61. Lee, T.H.; Chang, J.S.; Wang, H.Y.; Anal. Chem., 2013, 85 (4), 2155–2160.
62. Abdelhamid, H.N.; Wu, H.F. J.Mater.Chem.B. 2013, DOI: 10.1039/C3TB20413H.


Chapter 10
References
1. Karas, M.; Hillenkamp, F. Anal. Chem. 1988, 60, 2299.
2. Tanaka, K.; Waki, H.; Ido, Y.; Akita, S.; Yoshida, Y. Rapid Commun. Mass Spectrom.1988, 2,151.
3. Abdelhamid, H.N.; Gopal, J.; Wu, H.F. Anal.Chim.Acta. 2013, 767, 104.
4. Fenselau, C.; Ryzhov, V.; Ho, Y.P.; Demirev, P.A. Anal. Chem. 1999, 71, 2732.
5. Ho, Y.P.; Reddy, P.M. Clin. Chem.2010, 4, 525.
6. Fenselau, C.; Demirev, P.A. Mass Spectrom. Rev. 2011, 20, 157.
7. Arthur, C.L.; Pawliszyn, J. Anal. Chem. 1990, 62, 2145.
8. Junk, G.A.; Richard, J. Anal. Chem. 1988, 60, 451.
9. Liu, S.; Dasgupta, P.K. Anal. Chem. 1995, 67, 2042.
10. Jeannot, M.A.; Cantwell, F.F. Anal. Chem. 1996, 68, 2236.
11. Rezaee, M.; Assadi, Y.; Hosseini, M.R.M.; Aghaee, E.; Ahmadi, F.; Berijani, S. J. Chromatogr A. 2006, 31, 1.
12. Ahmad, F.; Wu, H.F. Analyst. 2011, 136, 4020.
13. Kowiak, A.Z.G.; Kowiak, T.G. Trac-trend. Anal. Chem.2011, 30, 2011.
14. Wu, Q.H.; Chang, Q.Y.; Wu, C.X.; Rao, H.; Zeng, X.; Wang, C.; Wang, Z. J. Chromatogr. A. 2010, 1217, 1773.
15. Morteza, M.; Yadollah, Y.; Ali, E.; Shahram, S. Talanta. 2010, 82, 1864.
16. Liang, P.; Liu, G.; Wang, F.; Wang, W. J. Chromatogr. B. 2013, 926, 62.
17. Regueiro, J.; Iompart, M.L.; Garcia-Jares, C.; Garcia-Monteagudo, J.C.; Cela, R. J. Chromatogr. A. 2008, 27, 1190.
18. Saraji, M.; Bidgoli, A.A.H. Anal. Bioanal. Chem. 2010, 397, 3107.

19. Sudhir, P.R.; Wu, H.F.; Zhou, Z.C. Anal. Chem. 2005, 77, 7380.
20. Shrivas, K.; Wu, H.F. Anal. Chem. 2008, 80, 2583.
21. Kailasa, S.K.; Wu, H.F. Talanta. 2010, 83, 527.
22. Lucena, R.; Simonet, B.M.; Cárdenas, S.; Valcárcel, M. J. Chromatogr. A. 2011, 1218, 620.
23. Sarafraz-Yazdi, A.; Amiri, A. Trends Anal. Chem. 2010, 29, 1.
24. Wang, Y.Y.; Zhao, G.Y.; Chang, Q.Y.; Zang, X.H.; Wang, C.H.; Wang, Z. Chin. J. Anal. Chem. 2010, 38, 1517.
25. Nuhu, A.A.; Basheer, C.; Saad, B. J.Chromatogr. B. 2011, 879, 1180.
26. Kataoka, H. Anal. Bioanal. Chem. 2010, 396, 339.
27. Herrera-Herrera, A.V.; Asensio-Ramos, M.; Hernandez-Borges, J.; Rodriguez Delgado, M.A. Trends Anal. Chem. 2010, 29, 728.
28. Anthemidis, A.N.; Ioannou, K.I.G. Talanta. 2009, 80, 413.
29. Mahugo-Santana, C.; Sosa-Ferrera, Z.; Torres-Padron, M.E.; Santana-Rodriguez, J.J. Trends Anal. Chem. 2011, 30,731.
30. Aguilera-Herrador, E.; Lucena, R.; Cardenas, S.; Valcarcel, M. Trends Anal. Chem. 2010, 29, 602.
31. Yazdi, A.S. Trends. Anal. Chem. 2010, 30, 918.
32. Rezaee, M.; Yamini, Y.; Faraji, M. J. Chromatogr. A. 2010, 1217, 2342.
33. Lee, J.; Lee, H.K.; Rasmussen, K.E.; Pedersen-Bjergaard, S. Anal.Chim.Acta. 2008, 624, 253.
34. Stalikas, C.; Fiamegos, Y.; Sakkas, V.; Albanis, T. J. Chromatogr. A.2009, 1216, 175.
35. Andruch, V.; Kocúrová, L.; Balogh, I.S.; Škrlíková, J. Microchem. J. 2011, doi: 10.1016/j.microc.2011.10.006.
36. Pena-Pereira, F.; Lavilla, I.; Bendicho, C. Trends Anal. Chem. 2010, 29, 617.
37. Gaurav, A.K.; Malik, A.K.; Tewary, D.K.; Singh, B. Anal.Chim.Acta. 2008, 610, 1.
38. Wardencki, W.; Michulec, M.; Curyło, J. Int. J. Food Sci. Technol. 2004, 39, 703.
39. Ouyang, G.; Pawliszyn, J. Anal.Chim.Acta. 2008, 627, 184.
40. Dadfarnia, S.; Mohammad, A.; Shabani, H. Anal. Chim. Acta. 2010, 658,107.
41. Ojeda, C.B.; Rojas, F.S. Chromatographia. 2009, 69, 1149.
42. Xu, L.; Basheer, C.; Lee, H.K. J. Chromatogr. A. 2007, 1152, 184.
43. Kocúrová, L.; Balogh, I.S.; Šandrejová, J.; Andrucha, V. Microchem. J. 2012, 102, 11.
44. Jain, A.; Verma, K.K. Anal.Chim.Acta. 2011, 706, 37.
45. Pakade, Y.B.; Tewary, D.K. J. Sep. Sci. 2010, 33, 3683.
46. Pena-Pereira, F.; Lavilla, I.; Bendicho, C. Spectrochimica. Acta. B.2009, 64, 1.
47. Lord, H.; Pawliszyn, J. J. Chromatogr. A. 2000, 885, 153.
48. Ulrich, S. J. Chromatogr. A. 2000, 902,167.
49. Theodoridis, G.; Koster, E.H.M.; Jong, G.J. J.Chromatogr. B.2000, 745, 49.
50. Ganjali, M.R.; Sobhi, H.R.; Farahani, H.; Norouzi, P.; Dinarvand, R.; Kashtiaray, A. J. Chromatogr. A. 2010, 1217, 2337.
51. Rasmussen, K.E.; Pedersen-Bjergaard, S. J. Chromatogr. A. 2008, 1184, 1132.
52. Rzigalinski, B.A.; Bailey, D.; Chow, I.; Kuiry, S.C.; Patil, S.; Merchant, S. Faseb.J. 2003, 17, 606.
53. Patil, S.; Sandberg, A.; Heckert, E.; Self, W.; Sudipt, S. Biomaterials. 28 (2007) 4600.
54. Yang, Z.; Zhou, K.; Liu, X.; Tian, Q.; Deyi Lu, D.; Yang, S. Nanotechnology.2007, 18, 1856.
55. Morello, J.A.; Granato, P.A.; H.E. Mizer, Laboratory Manual and Workbook in Microbiology Applications to Patient Care, 7th Edition, The McGraw−Hill Companies, 2003, PP54.
56. Abdelhamid, H.N.; Wu, H.F. Anal.Chim.Acta. 2012, 751, 94.
57. Dickson, J.S.; Koohmaraie, M. Appl. Environ. Microbiol. 1989, 55,832.
58. Guo, Z.; Zhang, Q.; Zou, H.; Guo, B.; Ni, J. Anal. Chem. 2002, 74, 1637.
59. He, Y.; Lee, H.K. Anal. Chem. 1997, 69, 4634.
60. Wu, H.F.; Gopal, J.; Abdelhamid, H.N.; Hasan, N. Proteomics. 2012, 12, 2949.
61. Gopal, J.; Abdelhamid, H.N.; Hua, P.Y.; Wu, H.F. J. Mater. Chem. B. 2013, 1, 2463-2475.
62. Ahmad, F.; Wu, H.F. Microchimica Acta. 2013, 5, 485.
63. Preti, G.; Thaler, E.; Hanson, C.W.; Troy, M.; Eades, J.; Gelperin, A. J. Chromatogr. B. 2009, 877, 2011.
64. Lu, Y.; Harrington, P.B. Anal.Bioanal. Chem. 2010, 397, 2959.

65. Goupry, S.; Rochut, N.; Robins, R.J.; Gentil, E. J. Agric. Food Chem. 2000, 48, 2222.

Chapter 11
References:
1. Brittain, H.G. Analytical Profiles of Drug Substances and Excipients. Academic Press, New York, 2002, pp.179-211.
2. Brooks, P.M.; Day, R.O.; N. Engl. J. Med. 1991, 324, 1716.
3. Reynolds, J.E.F.; Parfitt, K.; Parsons, A.V.; Sweetman, S.C. The Extra Pharmacopoeia, 30Th ed, London, 1993, pp.15-23.
4. Anderson, A.B.M.; Haynes, P.J.; Guillebaud, J.; Turnbull, A.C. Lancet. 1976, 1, 7746.
5. Fraser, I.S.; Pearse, C.; Shearmann, R.P.; Elliott, P.M.; McIpveen, J.; Mokham, R.; Obstet.Gynecol.1981, 58, 54351.
6. Haynes, P.J.; Flint, A.P.F.; Hodgson, H.; Anderson, B.M.; Fray, F.; Turnbull, A.C. Int J Gynaecol Obstet.1980, 17, 56772.
7. Aboul Khier, A.; El-Sadek, M.; Baraka, M. Analyst.1987, 112, 1399.
8. Khuhawar, M.Y.; Jehanhir, T.M.; Ring, F.M.A. J.Chem.Soc.Pak.2001, 4, 23.
9. Gouda, A.A.; Kotb El-Sayed, M.I.; Amin, A.S.; El Sheikh, R.; Arabian J. Chem.2011.in press.
10. Urbanska, S.A.; Bojarowica, H. J. Pharm. Biomed.Anal.1986, 4, 4475.
11. Smolinske, S.C.; Hall, A.H.; Vandenberg, S.A.; Spoerke, D.G.; McBride, P.V. Drug Safty. 1990, 5, 252.
12. Kawamori, T.; Rao, C.V.; Seibert, K.; Reddy, B.S. Cancer Res.1998, 58, 409.
13. Tucker, H.M.; Rydel, R.E.; Wright, S.; Estus, S. J. Neurochem.1998, 71, 506.
14. Joo, Y.; Kim, H.S.; Woo, R.S.; Park, C.H.; Shin, K.Y.; Lee, J.P.; Chang, K.A.; Kim, S.; Suh, Y.H. Mol. Pharmacol.2006, 69, 76.
15. Asanuma, M.; Nishibayashi-Asanuma, S.; Miyazaki, I.; Kohno, M.; Ogawa, N. J. Neurochem.2001, 76, 1895.
16. Woo, D.H.; Han, I.S.; Jung, G. Life Sci.2004, 75, 2439.
17. Demertzi, D.K.; Dokorou, V.; Ciunik, Z.; Kourkoumelis, N.; Demertzis, M.A. Appl Organomet Chem.2002, 16, 360.
18. Bojarowicz, H.; Kokot, Z.; Surdykowski, A. J.Pharm.Biomed.Anal.1996, 15,339.
19. Topacli, A.; Ide, S. J.Parmacent.Biomed.Anal. 1999, 1, 975.
20. Dhanaraj, V.; Vijayan, M. Acta Crystallogr.Sect.B. 1988, 44, 406.
21. Brzyska, W.; Ozga, W. Pol. J. Chem.1993, 67, 619.
22. Torre, M.H.; Kremer, E.; Baran, E.; J. Acta Farm. 1999, 18, 245.
23. Dendrinou-Samara, C.; Tsotsou, G.; Raptopoulou, C.P.; Kortsaris, A.D.; D.P. Kyriakidis, D.P. J. Inorg. Biochem.1998, 71, 171.
24. Sudhir, P.; Wu , H.F.; Zhou, Z.C. Rapid Commun. Mass Spectrom.2005, 19, 209.
25. Sudhir, P.; Wu, H.F.; Zhou, Z.C. Rapid Commun. Mass Spectrom.2005, 19,1517.
26. Greenaway, F.T.; Riviere, E.; J.J. Girerd, J.J X. Labouze, G. Morgant, B. Viossat, J.C. Daran, M. N. Roch Arveiller , H. Dung, J. Inorg. Biochem.1999, 76,19.
27. Moncol, J.; Kalinakova, B.; Svorec, J.; Kleinova, M.; Koman, M.; Hudecova, D.; Melnik, M.; Mazur , M.; Valko, M. Inorg. Chim.Acta.2004, 357, 3211.
28. Kovala-Demertzi, D.; Hadjipavlou-Litina, D.; Staninska, A.; Primikiri, A.; Kotoglou, C.; Demertzis, A.M. J. Enzyme Inhib. Med. Chem.2009, 24, 742.
29. Abdelhamid, H.N.; Wu, H.F. Anal. Chim. Acta.2012, 751, 94.
30. Petkovic´, M.; Kamcˇeva, T. Metallomics.2011, 3, 550.
31. Claereboudt, J.; de Spiegeleer, Bruijn, B.E.; R. Gijbels, Claeys, M. J. Pharm. Biomed. Anal .1989, 7, 1599.
32. Beavis, R.C.; Chait, B.T. Anal. Chem.1990, 62, 1836.
33. Ross, A.; Ikonomou, M.; Thompson, J.; Orians, K. Anal. Chem.1998, 70, 2225.
34. Matsumoto, A.; Fukumoto, T.; Adachi, H.; Watarai, H. Anal. Chim. Acta.1999, 390, 193.
35. Poon, G.K.; Bisset, G.G.; Prakash, M. J. Am. Soc. Mass Spectrom.1993, 4, 588.
36. Sun, X.; Tsang, C.N.; Sun, H. Metallomics.2009, 1, 25.
37. Wu, H.F.; Gopal, J.; Abdelhamid, H.N.; Hasan, N. Proteomics.2012, 12, 2949.
38. Kea, Y.; Kailasa, S.K.; Wu, H.F.; Chen, Z.Y. Talanta.2010, 83,178.
39. Yu, W.W.; Peng, X. Angew. Chem., Int. Ed.2002, 41, 2368.
40. Alivisatos, P.A. J. Phys. Chem.1996, 100, 13226.
41. Edriss, M.; Razzahi, N.; Madjidi, B. Turk. J. Chem. 2008, 32, 505.
42. Dutta, S.; Padhye, S.; McKee, V. Inorg. Chem. Commun.2004, 7, 1071.
43. Vujacic, A.; Bugarcic, Z.; Schiller, J.; Vasic, V.; Petkovic , M. Polyhedron 2009, 28, 2905.



Chapter 12
References:
[1] Moran, A.; Israela, B.; Meital, Z. J. Biomed. Mater. Res., Part A. 2007, 83, 10–19.
[2] Ramstedt, M.; Cheng, N.; Azzaroni, O.; Mossialos, D.; Mathieu, H. J.; Huck, W. T. S. Langmuir. 2007, 23, 3314–3321.
[3] Allison, B. C.; Applegate, B. M.; Youngblood, J. P. Biomacromolecules. 2007, 8, 2995–2999.
[4] Stewart, P. S.; Costerton, J. W. Lancet. 2001, 358, 135–138.
[5] Kumar, A.; Vemula, P. K.; Ajayan, P. M.; John, G. Nat. Mater. 2008, 7, 236–241.
[6] Bao, Q.; Zhang, D.; Qi, P.J. Colloid Interface Sci. 2011, 360, 463–470.
[7] Wei, C.; Lin, W. Y.; Zainal, Z.; Williams, N. E.; Zhu, K.; Kruzic, A. P.; Smith, R. L.; Rajeshwar, K. Environ. Sci. Technol. 2002, 28, 934–938
[8] Zhang, H.J.; Chen, C.H. Environ. Sci. Technol. 2009, 43, 2905-2910.
[9] Ruparelia, J.P.; Chatteriee, A.K.; Duttagupta, S.P.; Mukherji, S. Acta. Biomater. 2008,
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code