Responsive image
博碩士論文 etd-0608114-134204 詳細資訊
Title page for etd-0608114-134204
論文名稱
Title
聚萘二甲酸乙二醇酯的結晶行為及熱裂解行為
Crystallization and Thermal Degradation Behaviors of Poly(ethylene naphthalate)
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
105
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-06-19
繳交日期
Date of Submission
2014-07-08
關鍵字
Keywords
聚萘二甲酸乙二醇酯、熔融行為、結晶行為、球晶型態、熱裂解、球晶成長速率
crystallization, morphology, thermal degradation, melting, growth rate, poly(ethylene naphthalate)
統計
Statistics
本論文已被瀏覽 5705 次,被下載 1060
The thesis/dissertation has been browsed 5705 times, has been downloaded 1060 times.
中文摘要
本研究主要是使用不同的儀器鑑定poly(ethylene naphthalate)之結晶行為以及熱裂解行為。研究分為三部份,第一部分以等溫結晶實驗為主,利用微差式掃描熱卡儀(DSC)在190~250 °C等溫結晶之後,透過高分子結晶動力學,藉由Avrami方程式來探討結晶行為;在偏光顯微鏡實驗(PLM)中,分別觀察α-form的球晶型態為負光性波紋狀成長而β-form為正光性放射狀生長,並在210 °C量測到最快的球晶成長速率為1.29×10-2 μm/sec。在廣角X光繞射分析中,鑑定出α-form結晶的溫度區域為226 °C以下而β-form為227 °C以上;熔融行為部分,藉由DSC鑑定出α-form為熔融-再結晶-再熔融行為、β-form為雙形態熔融行為,並由Hoffman-Weeks線性外插法來求得α-form的平衡熔點為286.2 °C而β-form為295.5 °C。第二部分以非等溫結晶實驗為主,利用DSC以0.1、0.5、1、3、5 C/min之冷卻條件來觀察α-form與β-form之間的關係,透過高分子結晶動力學,利用modified Avrami、Ozawa、Mo方程式來分析α-form與β-form的結晶行為之差異;利用PLM以3 °C/min冷卻速率下觀察球晶成長速率隨溫度的變化,實驗歷時40分鐘。得到連續性非鐘形的球晶成長速率。藉由分峰可以分別獲得α-form與β-form之球晶成長速率,之後進一步作區型轉移分析,α-form之TII→III為228 °C、β-form之TII→III為246 °C,之後計算Kissinger之結晶活化能,α-form為127.8 kJ/mol、β-form為220.9 kJ/mol。
第三部分,藉由熱重分析儀(TGA)在氮氣環境及1、3、5、10 °C/min升溫速率下探討PEN之熱穩定性,使用熱裂解動力學Friedman、Ozawa方程式分析熱裂解之活化能,並由nth-order以及Autocatalysis nth-order機制繪製的擬合曲線,模擬熱裂解行為,所得之熱裂解活化能為194 kJ/mol。之後使用熱重分析儀-紅外線光譜儀,在氮氣環境及5 °C/min升溫速率下,探討熱裂解產物主要有CO2和醛類,分解途徑先經由β-hydrogen鍵斷裂後再經由α-hydrogen鍵進行斷裂,分解的主要產物可能包含乙二醛、2-萘甲醛、乙烯酮、2,6-萘二甲醛、2,6-萘二甲酸。
Abstract
In this study, the crystallization and thermal degradation behaviors of poly(ethylene naphthalate) (PEN) were investigated using different instruments. This study contains three parts. In the first part, isothermal crystallization experiments were performed from 190 to 250°C by differential scanning calorimeter (DSC). The crystallization kinetics was analyzed via Avrami equation. The micrographs obtained from polarized light microscope (PLM) showed that α-form crystals were banded spherulites with negative birefringence and β-form crystals were fribril spherulites with positive birefringence. The maximum growth rate was 1.29×10-2 μm/sec at 210°C. Wide angle X-ray diffraction (WAXD) patterns display -form when crystallized below 226°C and β-form formed above 227°C. The melting behavior after isothermal crystallization was investigated by DSC. -form crystals presented melting-recrystallization-remelting behavior and β-form crystals showed dual morphology. Equilibrium melting temperatures were obtained by Hoffman-Weeks linear plots: -form gave 286.2°C, and β-form yielded 295.5°C. The second part focused on the non-isothermal crystallization of PEN. DSC was conducted at a cooling rate of 0.1, 0.5, 1, 3, or 5°C/min. Nonisothermal crystallization kinetics of α- and β-form crystals were analyzed and compared using modified Avrami, Ozawa, and Mo equations. PLM was performed at a cooling rate of 3°C/min that lasted 40 min. Continuously isothermal growth rates of crystals were obtained with a non-bell shape. This non-bell curve was deconvoluted into two curves that correspond to the growth rates of α- and β-form crystals, separately. Regime analysis was then applied to these two curves. TII→III was found around 228°C for α-form crystals and 246°C for β-form crystals. Kissinger equation was used to evaluate the effective activation energy. The value was 127.8 kJ/mol for -form crystal and 220.9 kJ/mol for β-form crystal.
The third part was to study the thermal stability of PEN under nitrogen at heating rates of 1, 3, 5, and 10°C/min via thermogravimetric analyzer (TGA). The model-free methods of Friedman and Ozawa equations were adopted to evaluate the activation energy of thermal degradation in each period of mass loss. The average activation energy, 194 kJ/mol, was then used to fit the mass loss using the nth-order and autocatalysis nth-order model-fitting mechanisms. Additionally, TGA-FTIR under nitrogen was used to monitor the thermal degradation products of PEN at 5ºC/min. FTIR spectra revealed that the major gas products had CO2 and aldehydes, and β- hydrogen scission occurred before α-hydrogen bond scission. Thermal degradation products may contain ethanedial, 2-naphthaldehyde, ethenone, 2,6-naphthalene dicarboxaldehyde and 2,6-naphthalene dicarboxylic acid.
目次 Table of Contents
目錄
論文審定書 i
致謝 ii
摘要 iii
ABSTRACT v
目錄 vii
圖目錄 x
表目錄 xiv
第一章 序論 1
1.1 簡介 1
1.2 研究目的 3
1.3 實驗流程圖 4
第二章 文獻回顧 5
2.1 聚萘二甲酸乙二醇酯的結晶結構 5
2.2 高分子之結晶動力學 5
2.2.1 Avrami方程式 6
2.2.2 Ozawa方程式 7
2.2.3 Mo方程式 7
2.2.4 多重熔融峰之行為 8
2.2.5 平衡熔點 9
2.2.6 區型轉移分析與結晶成長速率 10
2.3 偏光顯微鏡 11
2.3.1 非等溫結晶成長速率分析 13
2.4 高分子之結晶活化能 13
第三章 實驗 15
3.1 實驗材料 15
3.2 實驗儀器與設備 16
3.3 樣品製備及分析 17
3.3.1 玻璃轉移溫度、熔融溫度與分子量的量測 17
3.3.2 結晶動力學與熔融行為 17
3.3.2.1 等溫結晶動力學分析 17
3.3.2.2 非等溫結晶動力學分析 17
3.3.2.3 熔融行為觀察 18
3.3.3 結晶形態與成長速率分析試片製作 18
3.3.3.1 等溫結晶 18
3.3.3.2 非等溫結晶 19
3.3.4 熱穩定性質 19
3.3.5 廣角X光繞射量測 19
3.3.6 小角度X光散射量測 19
第四章 結果與討論 20
4.1 玻璃轉移溫度(Tg)、熔融溫度(Tm)與分子量的量測 20
4.2 等溫結晶動力學分析 20
4.3 等溫結晶之結晶形態 21
4.4 等溫結晶之球晶成長速率 21
4.5 等溫結晶之廣角X光繞射分析 22
4.6 等溫結晶之小角X光散射分析 22
4.7 等溫結晶之熔融行為 23
4.8 等溫結晶之平衡熔點 24
4.9 非等溫結晶動力學分析 24
4.9.1 Avrami Model分析 24
4.9.2 Ozawa Model分析 25
4.9.3 Mo Model分析 25
4.10 非等溫結晶之結晶形態 26
4.11 非等溫結晶之球晶成長速率 26
4.12 區型轉移分析 27
4.13 非等溫結晶之廣角X光繞射分析 27
4.14 非等溫結晶之熔融行為 28
4.15 非等溫結晶之活化能分析 28
4.16 熱裂解動力學分析 29
4.16.1 Friedman Model分析 29
4.16.2 Ozawa Model分析 29
4.16.3 nth order以及Autocatalysis nth order分析 30
4.17 生命週期和疲勞溫度 30
4.18 熱裂解之紅外線光譜分析 30
第五章 結論 33
參考文獻 84
參考文獻 References
1. DuPont Teijin Films, TDFJ 2007.
2. Belana, J.; Pujal, M.; Colomer, P.; Montserrat, S. Cold crystallization effect on α and β amorphous poly(ethylene terephthalate) relaxations by thermally stimulated discharge currents. Polymer 1988, 29, 1738-1744.
3. Liu, R. Y. F.; Schiraldi, D. A.; Hiltner, A.; Baer, E. Oxygen‐barrier properties of cold‐drawn polyesters. J. Polym. Sci., Part B: Polym. Phys. 2002, 40, 862-877.
4. Buchner, S.; Wiswe, D.; Zachmann, H. G. Kinetics of crystallization and melting behaviour of poly(ethylene naphthalene-2,6-dicarboxylate). Polymer 1989, 30, 480-488.
5. Nakamae, K.; Nishino, T.; Tada, K.; Kanamoto, T.; Ito, M. Elastic modulus of the crystalline regions of poly(ethylene 2,6-naphthalate). Polymer 1993, 34, 3322-3324.
6. Schoukens, G.; Verschuere, M. Shrinkage behaviour of uniaxially drawn poly (ethylene naphthalate) films. Polymer 1999, 40, 3753-3761.
7. McGonigle, E. A.; Liggat, J. J.; Pethrick, R. A.; Jenkins, S. D.; Daly, J. H.; Hayward, D. Permeability of N2, Ar, He, O2, and CO2 through as‐extruded amorphous and biaxially oriented polyester films: Dependence on chain mobility. J. Polym. Sci., Part B: Polym. Phys. 2004, 42, 2916-2929.
8. Laskarakis, A.; Logothetidis, S. Study of the electronic and vibrational properties of poly(ethylene terephthalate) and poly(ethylene naphthalate) films. J. Appl. Phys. 2007, 101, 053503-053503.
9. Lee, K. M.; Wu, S. J.; Chen, C. Y.; Wu, C. G.; Ikegami, M.; Miyoshi, K.; Ho, K. C. Efficient and stable plastic dye-sensitized solar cells based on a high light-harvesting ruthenium sensitizer. J. Mater. Chem. 2009, 19, 5009-5015.
10. Cook, J. G.; Huggill, H. P. W.; Lowe, A. R. Polyester Fibers. Br. Patent 1946, GB604073.
11. Gao, X.; Jin, M.; Bu, H. Crystallization of poly(ethylene 2,6‐naphthalate) containing additives. J. Polym. Sci., Part B: Polym. Phys. 2000, 38, 3285-3288.
12. Zhang, H.; Ward, I. M. Kinetics of hydrolytic degradation of poly(ethylene naphthalene-2,6-dicarboxylate). Macromolecules 1995, 28, 7622-7629.
13. Schoukens, G. Relationship between stress and orientation induced structures during uniaxial drawing of poly(ethylene 2,6-naphthalate). Polymer 1999, 40, 5637-5645.
14. Zheng, L. J.; Qi, J. G.; Zhang, Q. H.; Zhou, W. F.; Liu, D. Crystal morphology and isothermal crystallization kinetics of short carbon fiber/poly(ethylene 2,6‐naphthalate) composites. J. Appl. Polym. Sci. 2008, 108, 650-658.
15. Kim, S. H.; Ahn, S. H.; & Hirai, T. Crystallization kinetics and nucleation activity of silica nanoparticle-filled poly(ethylene 2,6-naphthalate). Polymer 2003, 44, 5625-5634.
16. Kimura, F.; Kimura, T.; Sugisaki, A.; Komatsu, M.; Sata, H.; Ito, E. FTIR spectroscopic study on crystallization process of poly(ethylene 2,6‐naphthalate). J. Polym. Sci., Part B: Polym. Phys. 1997, 35, 2741-2747.
17. Zhang, Y.; Mukoyama, S.; Hu, Y.; Yan, C.; Ozaki, Y.; Takahashi, I. Thermal behavior and molecular orientation of poly(ethylene 2,6-naphthalate) in thin films. Macromolecules 2007, 40, 4009-4015.
18. Díaz‐Celorio, E.; Franco, L.; Puiggali, J. Nonisothermal crystallization behavior of a biodegradable segmented copolymer constituted by glycolide and trimethylene carbonate units. J. Appl. Polym. Sci. 2011, 119, 1548-1559.
19. Lee, W. D.; Yoo, E. S.; Im, S. S. Crystallization behavior and morphology of poly(ethylene 2,6-naphthalate). Polymer 2003, 44, 6617-6625.
20. Papageorgiou, G. Z.; Achilias, D. S.; Karayannidis, G. P. Estimation of thermal transitions in poly(ethylene naphthalate): experiments and modeling using isoconversional methods. Polymer 2010, 51, 2565-2575.
21. Hu, Y. S.; Rogunova, M.; Schiraldi, D. A.; Hiltner, A.; Baer, E. Crystallization kinetics and crystalline morphology of poly(ethylene naphthalate) and poly (ethylene terephthalate‐co‐bibenzoate). J. Appl. Polym. Sci. 2002, 86, 98-115.
22. Woo, E.; Huang, D. H.; Wu, M. C. Effects of residual nuclei on crystals and equilibrium melting points of dual crystals in poly(ethylene 2,6‐naphthalene‐dicarboxylate). Macromol. Chem. Phys. 2004, 205, 1644-1650.
23. Chung, C. T.; Chen, M. Spherulite growth rate of poly(ether ether ketone) (PEEK). Polym. Prepr. 1992, 33, 420-421.
24. Chen, M.; Chung, C. T. Analysis of crystallization kinetics of poly(ether ether ketone) by a nonisothermal method. J. Polym. Sci., Part B: Polym. Phys. 1998, 36, 2393-2399.
25. Lu, H. Y.; Lu, S. F.; Chen, M.; Yang, C. S.; Chen, C. H.; Tsai, C. J. Characterization, crystallization kinetics, and melting behavior of poly (ethylene succinate) copolyester containing 10 mol% butylene succinate. J. Polym. Sci., Part B: Polym. Phys. 2008, 46, 2431-2442.
26. Tsai, C. J.; Chen, M.; Lu, H. Y.; Chang, W. C.; Chen, C. H. Crystal growth rates and master curves of poly(ethylene succinate) and its copolyesters using a nonisothermal method. J. Polym. Sci., Part B: Polym. Phys. 2010, 48, 932-939.
27. Lu, J. S.; Chen, M.; Lu, S. F.; Chen, C. H. Nonisothermal crystallization kinetics of novel biodegradable poly(butylene succinate-co-2-methyl-1, 3-propylene succinate)s. J. Polym. Res. 2011, 18, 1527-1537.
28. Di Lorenzo, M. L. Determination of spherulite growth rates of poly (L-lactic acid) using combined isothermal and non-isothermal procedures. Polymer 2001, 42, 9441-9446.
29. Di Lorenzo, M. L. Crystallization behavior of poly(L-lactic acid). Eur. Polym. J. 2005, 41, 569-575.
30. Di Lorenzo, M. L.; Cimmino, S.; Silvestre, C. Nonisothermal crystallization of isotactic polypropylene blended with poly(α‐pinene). I. Bulk crystallization. J. Appl. Polym. Sci. 2001, 82, 358-367.
31. Sun, Y. S.; Woo, E. M. Relationships between polymorphic crystals and multiple melting peaks in crystalline syndiotactic polystyrene. Macromolecules 1999, 32, 7836-7844.
32. Lee, S. W.; Cakmak, M. Growth habits and kinetics of crystallization of poly(ethylene 2,6-naphthalate) under isothermal and nonisothermal conditions. J Macromol Sci., Part B: Polym. Phys. 1998, B37, 501-526.
33. Vasanthan, N.; Salem, D. R. Structural and conformational characterization of poly(ethylene 2,6-naphthalate) by infrared spectroscopy. Macromolecules 1999, 32, 6319-6325.
34. Hamley, I.W. Introduction to Soft Matter. Wiley, New York City 2000, p.103
35. Avrami, M. Kinetics of phase change. II transformation-time relation forrandom distribution of nuclei. J. Chem. Phys. 1939, 8, 212-224.
36. Avrami, M. Granulation, phase change and microstructure. J. Chem. Phys. 1941, 9, 177-184.
37. Ozawa, T. Kinetics of non-isothermal crystallization. Polymer 1971, 37, 568–575.
38. Liu, T. X.; Mo, Z. S.; Wang, S. G.; Zhang, H. F. Nonisothermal melt and cold crystallization kinetics of poly(aryl ether ether ketone ketone). Polym. Eng. Sci. 1997, 37, 568–575.
39. Lee, Y.; Porter, R. S. Double-melting behavior of poly(ether ether ketone). Macromolecules 1987, 20, 1336-1341.
40. Lee, Y.; Porter, R. S.; Lin, J. S. On the double-melting behavior of poly(ether ether ketone). Macromolecules 1989, 22, 1756-1760.
41. Bassett, D. C.; Olley, R. H.; Al Raheil, I. A. M. On crystallization phenomena in PEEK. Polymer 1988, 29, 1745-1754.
42. Janimak, J. J.; Cheng, S. Z.; Zhang, A.; Hsieh, E. T. Isotacticity effect on crystallization and melting in polypropylene fractions: 3. Overall crystallization and melting behaviour. Polymer 1992, 33, 728-735.
43. Hoffman, J. D.; Weeks, J. J. Melting process and the equilibrium melting temperature of polychlorotrifluoroethylene. J. Res. Nat. Bur. Stand. 1962, 66, 13-28.
44. Hoffman, J. D.; Miller, R. L. Kinetic of crystallization from the melt and chain folding in polyethylene fractions revisited: theory and experiment. Polymer 1997, 38, 3151-3212.
45. Hoffman JD, Davis G.T and Lauritzen JI Jr. Treatise on Solid State Chemistry, Vol. 3, Crystalline and Noncrystalline Solids, Hannay, N. B. Ed., Plenum, New York, 1976, Chap. 7.
46. Hoffman, J.D.; Miller, RL. Kinetics of crystallization from the melt and chain
folding in polyethylene fractions revisited: theory and experiment. Polymer
1997, 38, 3151-3212.
47. Gedde, U.W. Polymer Physics, Chapman & Hall, London 1996.
48. Nesse, W. D. Introduction to optical mineralogy. Oxford University Press, New York 1991, 456.
49. Kissinger, H.E. Reaction kinetics in differential thermal analysis. Anal. Chem. 1957, 29, 1702-1706.
50. Vyazovkin, S.; Sbirrazzuoil, Isoconversional analysis of calorimetric data on nonisothermal crystallization of a polymer melt. J. Phys. Chem. B 2003, 107, 882-888.
51. Vyazovkin, S. Isoconversional analysis of the nonisothermal crystallization of a polymer melt. Macromol. Rapid Commun. 2002, 23, 771-775.
52. Vyazovkin, S.; Sbirrazzuoil, N. Isoconversional approach to evaluating the hoffman–lauritzen parameters (U* and Kg) from the overall rates of nonisothermal crystallization. Macromol. Rapid Commun. 2004, 25, 733-738.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code