Responsive image
博碩士論文 etd-0608114-171034 詳細資訊
Title page for etd-0608114-171034
論文名稱
Title
紅螢烯摻雜於有機高分子太陽能電池主動層改善功率轉換效率之特性研究
Improved Power-Conversion Efficiency in Active Layer of Organic Solar Cells using Rubrene-Doped
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
64
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-06-21
繳交日期
Date of Submission
2014-07-08
關鍵字
Keywords
有機太陽能電池、紅螢烯、功率轉換效率
Rubrene, power conversion efficiency, Organic solar cell
統計
Statistics
本論文已被瀏覽 5710 次,被下載 56
The thesis/dissertation has been browsed 5710 times, has been downloaded 56 times.
中文摘要
在此研究中,探討太陽能電池與鋁/有機物/PEDOT:PSS/氧化銦錫之在0.25cm2玻璃基板結構,首先研究有機太陽能電池在主動層P3HT (Poly(3-hexylthiophene-2,5-diyl))為不同厚度影響之特性、之後混合不同主動層P3HT:PC60BM比例,最後將P3HT和P3HT:PC60BM分別摻雜紅螢烯Rubrene於不同重量百分濃度之特性研究。
首先改變主動層P3HT (Poly(3-hexylthiophene-2,5-diyl)) 厚度為 60、 70、 80、 130、 210 nm 之特性,發現當主動層厚度約80nm實驗結果顯示單層有機太陽能電池之開路電壓為0.825V、短路電流密度為4E-4 mA,並且,能量轉換效率為3.7E-5%為最佳特性,呈現出來的結果得知隨著主動層厚度之增加,元件主動層會有較佳的光子吸收度,在電極上之電荷收集能力較差。
之後測量在大氣環境下將主動層P3HT:PC60BM依1:0、1:0.5和1:1比例發現當比例為1:1時候示開路電壓0.31V短路電流密度為2.61E-3mA能量轉換效率為1.64E-4為最佳特性,因混入PC60BM可以增加激子的接觸面,電子電動解離機率上升,使更多電荷被電極收集。
最後測量在大氣環境下將主動層P3HT和P3HT:PC60BM 摻雜1.5%、3.5% 和5%的紅螢烯之有機太陽能,效率分別提升1.66和2.15倍,因在薄膜量測中顯示出當摻雜紅螢烯吸收率提升,使太陽能電池能吸收到更多的光子,產生較多激子,使電子電洞對更容易被電極收集,當P3HT且摻雜3.5%的紅螢烯,在大氣質量AM1.5G且光照度100mW/cm2有最佳之開路電壓為0.62 V、短路電流密度(short-circuit current)為7.64E-4mA及能量轉換效率為8.5E-5%。
Abstract
In this study, Organic solar cells with the Al/P3HT/PEDOT:PSS/ITO structure on glass substrate was investigated and examined the performance of the polymer solar cells by changing 60, 70 and 80nm thickness of the P3HT active layer. This device had better absorbance in the active layer and poor charges collect in the electrode with increase thickness of active layer were observed. It is found that the best properties that the single layer organic solar cell with open-circuit voltage 0.825 V, short-circuit current density 4E-4 mA and power conversion efficiency of 3.7E-5% was achieved under illumination 100 mW/cm2.
When the thickness of P3HT active layer is about 80 nm and the fabrication and measurement of organic solar cells (OSCs) with the P3HT and P3HTPC60BM doped with 3.5wt% Rubrene under ambient conditions, have much better power conversion efficiency (PCE) than the one without Rubrene with 1.66 times and 2.15 times. The OSCs doped with Rubrene have opportunity to increase absorbance to promote more light absorption, thereby improving the performance of solar cells. Finally it is found that best properties that the OSCs with open-circuit voltage (Voc) 0.62 V, short-circuit current density (Jsc) 7.64E-4mA and power conversion efficiency of 8.5-5% was achieved under the air mass 1.5 global (AM 1.5G) illumination of 100 mW/cm2.
目次 Table of Contents
目錄
致謝 iii
摘要 iv
Abstract v
目錄 vi
圖目錄 x
表目錄 xiii
第一章 概序 1
1.1研究動機 1
1.2文獻回顧 1
1.2.1太陽能電池發展世代 1
1.2.2高分子太陽能電池結構的演進 4
1.2.3高分子共軛結構 5
1.3研究目的 6
1.4研究方法與論文架構 8
第二章 基礎理論 9
2.1 實驗理論 9
2.1.1材料設計 (Material structure): 9
2.1.2主動層形態 (Morphology) : 9
2.1.3元件結構 (Device design): 10
2.2高分子太陽能電池工作原理 10
2.2.1 入射光子的吸收(ηΑ): 10
2.2.2 激子擴散和漂移(ηED): 11
2.2.3 電荷分離(ηCT) 11
2.2.4. 電荷收集(ηCC) : 11
2.3高分子太陽能電池效率分析 11
2.4串並聯電阻的影響 15
2.5 太陽能元件量測 (Characteristics of solar devices): 16
2.5 儀器理論 18
2.5.1 製程儀器 18
2.5.1.1超音波震洗機 18
2.5.1.2磁石攪拌器(Hot plate) 19
2.5.1.4電子束蒸鍍(E-beam evaporator) 21
2.5.2 量測儀器 23
2.5.2.1紫外光/可見光光譜儀(UV-Vis) 23
2.5.2.2太陽光譜模擬量測系統(Solar simulator system) 24
第三章 實驗流程 27
3-1 實驗架構 27
3-2 實驗材料 28
3.3藥品的配製 28
3.3.1 PEDOT:PSS 28
3.3.2 P3HT : PC60BM : Rubrene 29
3.4 實驗步驟 29
3.4.1玻璃基版清洗. 29
3.4.2 圖形化太陽能電池 30
3.4.3 P3HT/Glass 30
3.4.4 Al/P3HT/PEDOT:PSS/ITO/Glass 30
3.4.5 Al/P3HT:PC60BM/PEDOT:PSS/ITO/Glass 31
3.4.6 Al/P3HT:Rubrene/PEDOT:PSS/ITO/Glass 31
3.4.7 Al/P3HT:PC60BM:Rubrene/PEDOT:PSS/ITO/Glass 31
第四章 結果與討論 32
4.1 薄膜量測 32
4.1.1 P3HT/Glass 32
4.1.2 P3HT:Rubrene/Glass 34
4.1.3 P3HT:PC60BM/Glass 35
4.1.4 P3HT:PC60BM:Rubrene/Glass 36
4.2 元件量測 37
4.2.1 Al/P3HT/PEDOT:PSS/ITO/Glass 37
4.2.2 Al/P3HT:Rubrene/PEDOT:PSS/ITO/Glass 40
4.2.3 Al/P3HT:PC60BM/PEDOT:PSS/ITO/Glass 41
4.2.4 Al/P3HT:PC60BM:Rubrene/PEDOT:PSS/ITO/Glass 42
第五章 總結 44
參考文獻 45
Published 51
參考文獻 References
參考文獻
[1] E. Bequerel, “Recherches sur les effets de la radiation chimique de la lumière solaire, au moyen descourants électriques, ”. C.R. Acad. Sci. vol 9, pp.145–149. Feb.1839
[2] S. Zh. Karazhanov, “Impurity photovoltaic effect in indium-doped silicon solar cells, “ J. Appl. Phys, vol. 89, pp. 4030, Jan. 2001.
[3] M. J. Keevers and M. A. Green, “Efficiency improvements of silicon solar cells by the impurity photovoltaic effect,” J. Appl. Phys, vol. 75, pp. 4022, Nov. 1994.
[4] C. Fritts, “On the Fritts selenium cell and batteries, “ Van Nostrands Engineering Magazine, vol. 32, pp. 388–395, Mar, 1885.
[5] Martin A. Green1, Keith Emery, Yoshihiro Hishikawa, Wilhelm Warta and Ewan D. Dunlop“ Solar cell efficiency tables (version 39)” Progress in Photovoltaics, vol. 20, pp. 12-20, Jan. 2012.
[6] J. Meier1, R. Flückiger1, H. Keppner1 and A. Shah “Complete microcrystalline p‐i‐n solar cell—Crystalline or amorphous cell behavior?,” Appl. Phys. Lett, vol. 65,pp. 860, Jun. 1994..
[7] F. Takashi, K. Hayato, Y. Tsutomu, T. Yu and U. Yukiharu, “Photographic surveying of minority carrier diffusion length in polycrystalline silicon solar cells by electroluminescence,” Appl. Phys. Lett, vol. 65, pp. 2621088, Jun. 2005.
[8] H. Yoshihiro, F. Kouha, O. Kouji, K. Yoshio, N. Shuichi and O. Hiroaki, “New types of high efficiency solar cells based on a‐Si,” Appl. Phys. Lett, vol. 43, pp. 644, Jul. 1983.
[9] H. Jianhua, G. Roy. Gordon, “Textured fluorine-doped ZnO films by atmospheric pressure chemical vapor deposition and their use in amorphous silicon solar cells” Solar Cells, vol. 30, no. 5, pp. 437-450, Mar. 1991.
[10] A. Romeo, M. Terheggen, D. Abou-Ras, D. L. Ba¨tzner, F.-J. Haug, M. Ka¨lin, D. Rudmann1 and A. N. Tiwari, “Development of Thin-film Cu(In,Ga)Se2 and CdTe Solar Cells, “ Prog. Photovolt: Res. Appl, pp.527, Oct. 2004
[11] A.G. Aberle, “Thin-film solar cells, Thin Solid Films, “ vol. 517, pp. 4706–4710, Mar. 2009.
[12] A.G. Aberle (Ed.), Special Issue “Recent Advances in Solar Cells”, Advances in OptoElectronics, vol. 2007, Hindawi Publishing Corp., Egypt. May.2007.
[13] A. Luque, S. Hegedus (Eds.), Handbook of Photovoltaic Science and Engineering, Wiley, UK. Jan. 2003.
[14] A.L. Fahrenbruch, R.H. Bube, Fundamentals of Solar Cells, Academic Press, USA. Jan 1983.
[15] D. E. Carlson, G. Lin and G. Ganguly,“Temperature dependence of amorphous silicon solar cell pv parameters, “ vol.7011064. pp.707-712. Sep.2000.
[16] P. Lechner, H. Schade,” Photovoltaic thin-film technology based on hydrogenated amorphous silicon,” Prog. Photovolt, vol.10, pp.85–97. Jan.2002,
[17] D. L. Staebler, and C. R. Wronski,”Reversible conductivity changes in discharge-produced amorphous Si,” Appl. Phys. Lett., Vol. 31, pp. 292-294, May.1977.
[18] W. Pengg, Z. Shaik, Zakeeruddin1, Jacques, Moser1, Mohammad, Nazeeruddin, Takashi Sekiguchi2 & Michael Grätzel,” A stable quasi-solid-state dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte," Nature Materials, vol. 2, pp.402 – 407. Jul.2003
[19] B. ORegan,. M. Grätze,” A low cost, high efficiency solar cell based on dye-sensitized colloidal TiO2 films.” Nature, vol.353, pp.737−740. Oct.1991
[20] A. Hagfeldt, M. Grätzel, “Molecular photovoltaics.Accounts,” Chem. Res, vol.33, pp.269−277, Feb.2000.
[21] K. Suzuki,et al, “Application of carbon nanotubes to counter electrodes of dye-sensitized solar cells,” Chem. Lett, vol.32, pp. 28−29. Apr. 2003.
[22] S. Haque, et al, ”Parameters influencing charge recombination kinetics in dye-sensitized nanocrystalline titanium dioxide films,” J. Phys. Chem, vol104, pp.538–547, Dec. 2000
[23] G. Michael, O. Brian, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films,” Nature, vol.353 (24), pp737 - 740. Oct. 1991
[24] K. Deepak, Z. Birger, “ITO-free laminated concept for flexible organic solar cells,“ Solar Energy Materials & Solar Cells, vol. 120, pp.449–453. Set. 2014
[25] L. H. Slooff, et al, “Determining the internal quantum efficiency of highly efficient polymer solar cells through optical modeling.” Appl. Phys. Lett. 90, 1435061. May. 2007
[26] A. C. Mayer, S. R. Scully, B. E. Hardin, M. W. Rowell, M. D. McGehee, ”Polymer-based solar cells.” Mater. vol,10,pp. 28–33. Nov. 2007
[27] R. Schilinsky, C. Waldauf, C.J. Brabec, “Recombination and loss analysis in polythiophene based bulk heterojunction photodetectors, “Appl. Phys. Lett, vol81, pp.3885–3887, sep.2002.
[28] G. Dennler, et al. “Angle dependence of external and internal quantum efficiencies in bulk-heterojunction organic solar cells, “J. Appl. Phys, vol.102, pp.0545161. sep. 2006.
[29] D. Vacar, E. S. Maniloff, D.W. McBranch, A. J. Heeger, “Charge-transfer range for photoexcitations in conjugated polymer/fullerene bilayers and blends.Phys, “ Rev. vol. 56, pp.4573–4577 Aug.1997
[30] S. Gunes, H. Neugebauer, N. S. Sariciftci,“Conjugated polymer-based organic solar cells, “ Chem. Rev, vol. 107, pp.1324–1338. sep. 2007
[31] L. Gang, Z. Rui and Y. Yang Yang, “Polymer solar cells,” Nature Photonics, pp. 153-161, Feb. 2012.
[32] A. K. Ghosh and T. Feng, Merocyanine organic solar cells, J. Appl. Phys, vol.49, pp. 5982–5989. Dec.1978
[33] E. S. Paul, R. Arvydas and D. W. Ifor, “Exciton Diffusion Measurements in Poly(3-hexylthiophene),” Adv. Mater., vol.20, pp.3516–3520. Jul.2008
[34] T. Zhang, E. Birgersson, et al. “Analysis of a device model for organic pseudo-bilayer solar cells,” Journal of Applied Physics, pp. 1-9, Oct. 2012.
[35] H. Hoppe et al,” Organic solar cells: An overview,” J. Mater. Res., Vol. 19, pp.7. Mar.2004
[36] C. Yen Ju, Y. Sheng Hsiung and H. Chain-Shu, “Synthesis of conjugated polymers for organic solar cell applications,” Chem. Rev, pp. 5868-5923, May. 2009.
[37] S. H. Park, A. Roy, S. Beaupre, N. Coates, J. S. Moon, Bulk heterojunction solar cells with internal quantum efficiency approaching 100%, Nature Photonics, Vol. 6, pp.69. Apr.2009.
[38] S. K. M. Jo¨nssona, J. Birgersonb, X. Crispinb, G. Greczynskib, W. Osikowiczb, W. Denier van der Gonc, W.R. Salaneck, M. Fahlman, The effects of solvents on the morphology and sheet resistance in poly(3,4-ethylenedioxythiophene)–polystyrenesulfonic acid (PEDOT–PSS) films, Synthetic Metals, vol.139, pp.1–10. Nov. 2003.
[39] J. Hwang , F. Amy, A. Kahn,” Spectroscopic study on sputtered PEDOT PSS: Role of surface PSS layer,” Organic Electronics, vol.7, pp.387–396, Jun.2006
[40] G. Greczynski, Th. Kugler, M. Keil, W. Osikowicz, M. Fahlman, W.R. Salaneck, Photoelectron spectroscopy of thin films of PEDOT–PSS, Journal of Electron Spectroscopy and Related Phenomena, vol.121, pp. 1–17. May. 2001.
[41] K. Junwoo, K.Jung Su, K. Sun Woo Kwak, Y Jong Su, J. Yunseok, ”Effects of the Al cathode evaporation rate on the performance of organic solar cells,” Appl. Phys. Lett, vol101, pp.213304. Nov. 2012
[42] A. G. Brian,” Excitonic Solar Cells,” J. Phys. Chem. B, vol. 107, pp.4688-4698. May. 2003
[43] Yu, G.; Gao, J.; Hummelen, J. C.; Wudl, F.; Heeger, “Organic Transistors: Two-Dimensional Transport and Improved Electrical Characteristics,” Science, vol 268, pp.270. Apr.1995
[44] J. Halls, C. A. Walsh, N. C. Greenham; E. A. Marseglia; R. H. Friend, S. C. Moratti; Holmes, “Efficient photodiodes from interpenetrating polymer networks, “ Nature 376, , 498-500. Aug.1995
[45] A. Hagfeldt; “Gra¨tzel, M. Acc, Molecular Photovoltaics, “ Chem. Res. vol33, pp.269-277. June.2000,
[46] W. Liu, M. F. Li, S. J. Chua, Y. H. Zhang and K. Uchida, “GaN exciton photovoltaic spectra at room temperature, “ Appl. Phys. Lett, vol, 71, pp.2511. Aug.1997
[47] G. Yu, G. Wang, H. Ishikawa, M. Umeno, T. Soga, T. Egawa, J. Watanabe and T. Jimbo, Optical properties of wurtzite structure GaN on sapphire around fundamental absorption edge (0.78–4.77 eV) by spectroscopic ellipsometry and the optical transmission method, Appl. Phys. Lett, vol.70, pp. 3209. May.1997.
[48] L. G. SCHULZ, “The Optical Constants of Silver, Gold, Copper, and Aluminum. The Absorption Coefficient, “JOSA, vol. 44, pp. 357-362. May. 1954.
[49] J. Ballach, R. Hitzenberger, E. Schultz, W. Jaeschke, “ Development of an improved optical transmission technique for black carbon (BC) analysis, “ Atmospheric Environment, vol35(12), pp. 2089–2100. Oct. 2001
[50] B. A. Bodhaine, Aerosol, “ absorption measurements at Barrow, Mauna Loa and the south pole, “ Journal of Geophysical Research, vol100(D5), pp.8967–8975. May. 1995.
[51] T. C. Bond, T. L. Anderson, D. Campbell, “ Calibration and intercomparison of 7lter-based measurements of visible light absorption by aerosols, “ Aerosol Science and Technology, vol. 30(6), pp.582–600 June 1999.
[52] D. H; “ Frequency dependence of ultrasonic cleaning, “ Ultrasonics, Mcqueen, vol 24 273-280, May1986.
[53] W. Leonard. Schwartz, R. Valery Roy. “ Theoretical and numerical results for spin coating of viscous liquids, “ Physics of Fluids, vol.16, pp.569. Jan. 2004.
[54] D. Meyerhofer, ‘‘Characteristics of resist films produced by spinning,’’ J.Appl. Phys. 49, 3993 -1978, Aug. 2008
[55] P. Birnie, R. N. Vogt, M. N. Orr, ‘‘Coating uniformityand device applicability of spin coated sol-gel pzt films,’’ Microelectron.Eng. vol.29, pp.189-1982. May.1995
[56] A. L. Morton, R. E. Marrs, J. R. Henderson, D. A. Knapp and Marilyn B Schneider. “The Electron Beam Ion Trap: A New Instrument for Atomic Physics Measurements, “ Phys. Scr, pp.157. May1988.
[57] M. Schnaiter et al. “ UV-VIS-NIRspectral optical properties of sootand soot-containing aerosols ,“ Aerosol Science, vol.34. pp.1421 – 1444. May.2003.
[58] .W. MARTIN, R. HANS, “SERIES RESISTANCE EFFECTS ON SOLAR CELL MEASUREMENTS,” Advanced Energy Conversion. vol. 3, pp. 455-479. May. 1963.
[59] John H. Scofield, ” Effects of Series Resistance and Inductance on Solar Cell Admittance Measurements,” Solar Energy Materials and Solar Cells,” vol. 37 (2), pp.217-233 May.1995
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code