Responsive image
博碩士論文 etd-0608114-181619 詳細資訊
Title page for etd-0608114-181619
論文名稱
Title
用不同厚度和材料的可撓性基板與鋪有奈米球基板之有機太陽能電池研究
Study of Organic Solar Cell with Nanospheres Substrate and Flexible Substrates of Different Materials and Thickness
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
57
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-06-21
繳交日期
Date of Submission
2014-07-08
關鍵字
Keywords
銦錫氧化物、有機太陽能電池、功率轉換效率
Indium tin oxide (ITO), Organic solar-cell, Power conversion efficiency
統計
Statistics
本論文已被瀏覽 5684 次,被下載 0
The thesis/dissertation has been browsed 5684 times, has been downloaded 0 times.
中文摘要
本篇論文探討鋁/ (poly-(3-hexylthiophene)(簡稱P3HT)/ Poly(3,4-ethylenedioxythiophene):poly(styrene sulfonic acid)(簡稱PEDOT: PSS) / Indium Tin Oxide銦錫氧化物/基板之有機太陽能電池的光電特性。用PET薄膜、鐵氟龍薄膜、矽酸鹽玻璃和低硼矽酸鹽玻璃的基板在大氣環境下去製作與量測有機太陽能電池光電特性。透過紫外-可見光光譜儀量測不同材料基板的穿透率並計算其吸收係數和分析基板表面的親水性與疏水性的差異,進而去探討有機太陽能電池的效率。其中最好的效率為使用低硼酸鹽玻璃基板的有機太陽能電池,在每100mW/cm2光照度AM 1.5G之下,量測結果其開路電壓0.78V、短路電流密度1.35E-3mA、填充因子0.13和功率轉換效率為1.34E-4%。其效率比矽酸鹽玻璃基板的有機太陽能電池提高四倍。而另一部分去探討,在矽酸鹽玻璃基板表面上鋪上奈米球,比較與未鋪有奈米球玻璃基板之效率,再濺鍍上不同厚度的ITO層,其中當ITO為125nm時,可見光最強波段在560nm時,穿透率為最高,使得表現出有機太陽能電池功率轉換效率為最高。在每100mW/cm2光照度AM 1.5G之下,量測結果其開路電壓0.45V、短路電流3.54E-3mA、填充因子0.22和功率轉換效率為3.48E-4%。其效率比矽酸鹽玻璃基板的有機太陽能電池提高十倍。
Abstract
In this paper, to investigate organic solar cells optical characteristics of Al / P3HT / PEDOT: PSS / Indium tin oxide (ITO)/ substrate with different substrates. PET film, Teflon film, silicate glass, and low borosilicate glass were fabricated under ambient conditions and measured optical characteristics of organic cell. Using UV-Vis spectrometer measurements with different amount of transmissions of substrate material and the absorption coefficient calculated, and different the hydrophilic and hydrophobic between surface of substrates, and thus to influence the efficiency of organic solar cell. The most effective efficacy of organic solar-cell on borosilicate substrate with parameters was improved, which yields an open-circuit voltage of 0.78V, a short-circuit current density of 1.35E-03mA, a fill factor of 0.13 and a power conversion efficiency of 1.34E-04% under the AM 1.5G illumination of 100 mW/cm2. Its efficiency increased up to quadruple than organic solar-cell on silicate substrate. While the other part to explore, compared efficient with between nanospheres on silicate glass substrate and unpaved nanospheres silicate glass substrate. Sputtered different ITO thickness and when ITO thickness is 125nm, the strongest band in the visible 560nm, have the best transmissions. Such organic solar cells showing the highest power conversion efficiency, which yields an open-circuit voltage of 0.45V, a short-circuit current of 3.54E-03mA, a fill factor of 0.22 and a power conversion efficiency of 3.48E-04% under the AM 1.5G illumination of 100 mW/cm2. Its efficiency increased up to decuple than organic solar-cell on silicate substrate.
目次 Table of Contents
致謝 i
摘要 ii
Abstract iii
目錄 iv
圖次 vii
表次 ix
第一章 概序 1
1-1太陽能發展世代 1
1-1-1有機太陽能電池發展 1
1-1-2可撓性基板有機太陽能電池發展 3
1-2研究動機 3
1-3論文架構 5
第二章 理論 6
2-1太陽能電池基本原理 6
2-2太陽能電池基本參數 9
2-3高分子太陽能電池元件理論 11
2-4 實驗設備理論 13
2-4-1 製作流程和儀器 13
2-4-2 量測儀器 20
第三章 實驗流程與材料介紹 24
3-1 實驗架構 24
3-2 實驗材料 25
3-3 有機高分子製作 25
3-3-1 電洞傳輸層(PEDOT:PSS) 25
3-4 實驗步驟 26
3-4-1 可撓性基板清洗: 26
3-4-2 量測可撓性基板的穿透率 26
3-4-3 量測不同厚度ITO之片電阻值 27
3-4-4 旋轉塗佈電洞傳輸層 27
3-4-5 旋轉塗佈主動層 27
3-4-6 電子束蒸鍍鋁當陰極 27
第四章 有機太陽能電池在不同的可撓性基板結果與討論 28
4-1可撓性基板穿透率 28
4-2 吸收係數的計算 29
4-3 有機太陽能電池的IV特性曲線與功率 30
第五章 有機太陽能電池用奈米球玻璃基板結果與討論 32
5-1 奈米球玻璃基板 32
5-2 不同厚度ITO薄膜的太陽能電池特性 34
5-2-1不同厚度ITO薄膜的穿透率 34
5-2-2不同厚度ITO薄膜的片電阻數值 34
5-3 奈米球有機太陽能電池I-V特性曲線與功率 35
5-4 實驗結果探討 37
第六章 結論 38
參考文獻 39
Published 45
參考文獻 References
[1] Z. Jianhua, W. Aihua, Martin A. Green and Francesca Ferrazza, “19.8% efficient honeycomb textured multicrystalline and 24.4% monocrystalline silicon solar cells,” Journal of Applied Physics, vol. 73, no. 14, pp. 1991-1993, Jul. 1998.
[2] J. Meier1, R. Flückiger1, H. Keppner1 and A. Shah “Complete microcrystalline p‐i‐n solar cell—Crystalline or amorphous cell behavior?,” Appl. Phys. Lett., vol. 65, no. 7, pp. 860-862, Jun. 1994.
[3] F. Takashi, K. Hayato, Y. Tsutomu, T. Yu and U. Yukiharu, “Photographic surveying of minority carrier diffusion length in polycrystalline silicon solar cells by electroluminescence,” Appl. Phys. Lett., vol. 65, no. 26, pp. 262108-262109, Jun. 2005.
[4] S. W. Rynders, A. Scheeline and P. W. Bohn, “Structure evolution in a‐SiC:H films prepared from tetramethylsilane,” Journal of Applied Physics, vol. 69, no. 5, pp. 2951-2960, Mar. 1991.
[5] T. Sginagawa. M. Izaki. “Structure-controlled ZnO/Cu2O inorganic solar cells by electrodeposition,” IEEE Conference on Nanotechology, pp. 347-350, Aug. 2011.
[6] I. Anderson, E. Breeze, A. J., Olson, J. D., Yang, L., Sahoo, Y., Carter, S. A., “All-inorganic spin-cast nanoparticle solar cell with nonselective electrodes,” Applied Physics Letters, vol. 94, no. 6, pp. 1-3, Feb. 2009.
[7] J. Sakai, E. Fujinake, T. Nishimori, N. Ito, J. Adachi, S. Nagano, K. Murakami, “High efficiency organic solar cells by screen printing method,” Photovoltaic Specialists Conference, pp. 125-128, Jan. 2005.
[8] J. C. Bernede, L. Cattin, M. Morsli, and Y. Berredjem, “Ultra-thin metal layer passivation of the transparent conductive anode in organic solar cell,” Solar Energy Materials and Solar Cells, vol. 92, no. 11, pp. 1508-1515, Nov. 2008.
[9] H. John, “Xerography-A single idea transforms a company.” IEEE Transactions on Engineering Management, vol. EM-15, no. 2, pp. 80-83, Jun. 1968.
[10] C. W. Wang, S. A. Vanslyke, C. H. Chen, “Electroluminescence of doped organic thin films,” Journal of Applied Physics, vol. 65, no. 9, pp. 3610-3616, Jan. 1989.
[11] Brian A. Gregg, “Excitonic solar cells,” Jounnal of Physica Chemistry B, pp. 4688-4698, May. 2003.
[12] G. Yu, J. Gao, J. Hummelen, C. Wudl, F. Heeger, “Organic transistors: two-dimensional transport and improved electrical characteristics,” Science, pp. 270-271, Feb. 1995.
[13] J. Halls, M. Walsh, C. A. Greenham, N. C., Marseglia, E. A. Friend, R. H. Moratti, S. C. Holmes, ”Efficient photodiodes from interpenetrating polymer networks,” Nature, pp.498-500, Aug. 2002.
[14] M. Bulent Basol, K. Kapur Vijay, Craig R. Leidholm and Arvind Halani, “Flexible and light weight copper indium diselenide solar cells,” Photovoltaic Specialists Conference, pp. 157-162, May. 1996.
[15] A. Geoffrey Landis, G. Sheila Bailey, J. Dennis Flood, “Advances in thin film solar cells for lightweight space PV power”, Space Power 8, pp. 31-50, Feb. 1989.
[16] D.J.Flood, ”Future mission opportunities and requirements for advanced space PV energy conversion technology,” Tech. Digest 5th International PV Solar Energy Conference, pp. 551-556, Jan. 1990.
[17] G. A Landis and A. F Hepp, “Thin film PV: status and application to space power,” Proc. 26th Intersociety Energy Conversion Engineering Conference, pp. 256-261, Feb. 1991.
[18] R.M. Burgess, W.S. Chen, W.E. Devaney, D.H. Doyle, N.P. Kim, B.J. Stanbery, “Electron and proton radiation effects on GaAs and CulnSe2 thin film solar cells,” IEEE on Photovoltaic Specialists Conference, pp. 909-912, Sep. 1988.
[19] J. Tringe, J. Nocerino, R. Tallon, W. Kemp, W. Shafarman, D. Marvin, “Ionizing radiation effects in copper indium gallium diselenide thin-film solar cells,” Journal of Applied Physics, vol. 91, no. 1, pp. 516-518, Jan. 2002.
[20] B. M. Basol, V. K. Kapur, A. Minnick, A. Halani, C. R. Leidholm, “Status of Flexible CIS Research at ISET,” Photovoltaic Research and Technology Conference, pp. 101-106, Sep. 1994.
[21] M. Binghe, R. Jinzhong, D. Jinjun, and Y. Weizheng, “Flexible thermal sensor array on PI film substrate for underwater applications,” International Conference on Micro Electro Mechanical Systems, pp. 679-682, Jan. 2010.
[22] P. Nicolas, Cheremisinoff, Handbook of Engineering Polymeric Materials, Marcel Dekker, Inc, 1997.
[23] M. G. Brian O'Regan. “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films,” Nature, vol. 353, no. 24, pp. 737-740, Oct. 1991.
[24] D. Kaduwa, B. Zimmermann, U. Würfel, “ITO-free laminated concept for flexible organic solar cells,” Solar Energy Materials and Solar Cells, pp. 449–453, Jan. 2014.
[25] A. C. Mayer, S. R. Scully, B. E. Hardin, M. W. Rowell, M. D. McGehee, “Polymer-based solar cells,” Materials Today, pp. 28–33, Nov. 2007.
[26] R. Schilinsky, C. Waldauf, C. J. Brabec, “Recombination and loss analysis in polythiophene based bulk heterojunction photodetectors.” Applied Physics Letters, vol. 81, no. 20, pp. 3885–3887, Nov. 2002.
[27] D. Vacar, E. S. Maniloff, D. W. McBranch, A. J. Heeger, “Charge-transfer range for photoexcitations in conjugated polymer/fullerene bilayers and blends,” Physical Review B, pp. 4573–4577, Aug. 1997.
[28] 施敏,伍國珏,半導體元件物理學,2009.
[29] S. Gunes, H. Neugebauer, N. S. Sariciftci, “Conjugated polymer-based organic solar cells,” Chemical Reviews, pp. 1324–1338, Apr. 2007
[30] 翁敏航,楊茹媛,管鴻,晁成虎,太陽能電池-原理、元件、材料、製程與檢測技術,2011.
[31] L. B. Freund, Subra Suresh, Thin Film Marerials: stress, defect formation, and surface evolution, Cambridge University Press, 2003.
[32] L. Gang, Z. Rui and Y. Yang, “Polymer solar cells,” Nature Photonics, pp. 153-161, Feb. 2012.
[33] C. F. Zhang, S. W. Tong, C. Y. Jiang, E. T. Kang, D. S. H. Chan, and C. X. Zhu, “Efficient multilayer organic solar cells using the optical interference peak,” Appl. Phys. Lett., vol. 93, no. 4, pp. 1-3, Aug. 2008.
[34] C. Y. Ju, Y. S. Hsiung and H. C. Shu, “Synthesis of conjugated polymers for organic solar cell applications,” Chem. Rev., pp. 5868-5923, May. 2009.
[35] A. K. Ghosh and T. Feng, “Merocyanine organic solar cells,” Journal of Applied Physics, pp. 5982–5989, Aug. 1978.
[36] P. S. Heum, R. Anshuman, B. Serge, C. Shinuk, C. Nelson, M. J. Sun, “Bulk heterojunction solar cells with internal quantum efficiency approaching 100%,” Nature Photonics, pp.297-302, Apr. 2009.
[37] L. Gang, Z. Rui and Y. Yang, “Polymer solar cells,” Nature Photonics, pp. 153-161, Feb. 2012.
[38] H. Hoppe, N. S. Sariciftci, “Organic solar cells: An overview,” Journal of Materials Research, vol. 19, no. 07, pp.1924-1945, Mar. 2004.
[39] C. Y. Ju, Y. S. Hsiung and H. C. Shu, “Synthesis of conjugated polymers for organic solar cell applications,” Chemical Reviews, pp. 5868–5923, Sep. 2009.
[40] E. Paul, Shaw, R. Arvydas and D. W. Samuel, “Exciton diffusion measurements in poly(3-hexylthiophene),” Advanced Materials, vol. 20, no. 18, pp. 3516–3520, Jul. 2008.
[41] S.K.M. Jo¨nssona,*, J. Birgersonb, X. Crispinb, G. Greczynskib, W. Osikowiczb, W. Denier van der Gonc, W.R. Salaneck, M. Fahlman, “The effects of solvents on the morphology and sheet resistance in poly(3,4-ethylenedioxythiophene)–polystyrenesulfonic acid (PEDOT–PSS) films,” Synthetic Metals, vol. 139, no. 1, pp. 1-10, Aug. 2003..
[42] H. Jaehyung, A. Fabrice, K. Antoine, “Spectroscopic study on sputtered PEDOT PSS: Role of surface PSS layer,” Organic Electronics 7, vol. 7, no. 5, pp. 387–396, Oct. 2006.
[43] G. Greczynski, Th. Kugler, M. Keil, W. Osikowicz, M. Fahlman, W.R. Salaneck, “Photoelectron spectroscopy of thin films of PEDOT–PSS,” Journal of Electron Spectroscopy and Related Phenomena, vol. 121, no. 1-3,pp. 1-17, Dec. 2001.
[44] W. Liu, M. F. Li, S. J. Chua, Y. H. Zhang and K. Uchida, “GaN exciton photovoltaic spectra at room temperature,” Applied Physics Letters, vol. 71, no. 17, pp. 2511, Aug. 1997.
[45] G. Yu, G. Wang, H. Ishikawa, M. Umeno, T. Soga, T. Egawa, J. Watanabe and T. Jimbo, “Optical properties of wurtzite structure GaN on sapphire around fundamental absorption edge (0.78–4.77 eV) by spectroscopic ellipsometry and the optical transmission method,” Applied Physics Letters, vol. 70, no. 24, pp. 3209. Apr. 1977.
[46] L. G. SCHULZ, “The Optical Constants of Silver, Gold, Copper, and Aluminum.. The Absorption C oefficient,” Journal of Optical Society, vol. 44, no. 5, pp. 357-362, May. 1954.
[47] J. Ballach, R. Hitzenberger, E. Schultz, W. Jaeschke, “Development of an improved optical transmission technique for black carbon (BC) analysis,” Atmospheric Environment, vol. 35, no. 12, pp. 2089–2100, Apr. 2001.
[48] B. A. Bodhaine, “Aerosol absorption measurements at Barrow, Mauna Loa and the south pole, ” Journal of Geophysical Research, vo.100, no. D5, pp. 8967–8975, May. 1995.
[49] T. Zhang, E. Birgersson, K. Ananthanarayanan, H. Y. Chian, L.N.S.A. Thummalakunta and J. Luther, “Analysis of a device model for organic pseudo-bilayer solar cells,” Journal of Applied Physics, pp. 1-9, Oct. 2012.
[50] L. Riegger, M. M. Mielnik, D. Mark, W. Streule, M. Clad, R. Zengerle, P. Koltay, “Teflon-carbon black as new material for the hydrophobic patterning of polymer labs-on-a-chip,” Actuators and Microsystems Conference on Solid-Sate Sensors, pp. 2026-2029, Jun. 2009.
[51] W. C. Tu, Y. T. Chang, C. H. Yang, D. J. Yeh, C. l. Ho, C. Y. Hsueh, and S. C. Lee, “Hydrogenated amorphous silicon solar cell on glass substrate patterned by hexagonal nanocyclinder array” Applied Physics Letters, pp. 1-3, Nov. 2010.
[52] W. C. Tu, Y. T. Chang, H. P. Wang, C. H. Yang, C. T. Huang, J. H. He, S. C. Lee, “Improved light scattering and surface Plasmon tuning in amorphous silicon solar cells by double-wall carbon nanotubes” Elsevier, Solar Energy Materials & Solar Cells, pp. 200-203, Jan. 2012.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.218.61.16
論文開放下載的時間是 校外不公開

Your IP address is 18.218.61.16
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code