Responsive image
博碩士論文 etd-0608114-185052 詳細資訊
Title page for etd-0608114-185052
論文名稱
Title
有機發光二極體主動層摻雜紅螢烯之光電特性研究
Electrical-Optical Characteristics of Organic Light-Emitting Diodes with Rubrene- Doped Active Layer
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
71
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-06-24
繳交日期
Date of Submission
2014-07-09
關鍵字
Keywords
高分子、有機發光二極體、聚乙烯咔唑、紅螢烯、旋轉塗佈
Rubrene, PVK, polymer, organic light-emitting device, spin-coated
統計
Statistics
本論文已被瀏覽 5626 次,被下載 21
The thesis/dissertation has been browsed 5626 times, has been downloaded 21 times.
中文摘要
本論文主要研究有機發光二極體元件之發光層PVK: Rubrene進行材料性質的分析,進而製成有機發光元件 (元件大小為0.25 cm2),並量測光電特性。研究主要分為五個部分:(1) 客體材料Rubrene摻雜濃度、(2) 發光層厚度、(3) 元件電流理論擬合、(4) 發光層烘烤溫度、(5) 視角對應光強度變化,探討不同影響因子對於元件光電特性之影響。
客體材料摻雜濃度會影響元件發光效率,故設計元件結構為:ITO (125 nm)/ PEDOT: PSS (65 nm)/ PVK: x wt% Rubrene (65 nm)/ Al (100 nm),其中摻雜5 wt% Rubrene的發光層有最佳光電特性:T=91%、Vth=10.4V、Lmax=0.14 cd/m2。
發光層的厚度影響了自由載子的傳輸與復合行為,所以研究元件結構為:ITO (125 nm)/ PEDOT: PSS (65 nm)/ PVK: 5 wt% Rubrene (y nm)/ Al (100 nm),發現厚度為65 nm的發光層有最佳光電特性:Vth=10.6V、Lmax=0.27 cd/m2;並且分析其電流理論,發現電壓在臨界電壓10.6V以前,其電流-電壓曲線利用公式擬合得到I ~ V,得知元件滿足電流遵守歐姆傳導;電壓在臨界電壓10.6V以後,電流-電壓曲線利用公式擬合得到I ~ V^2,得知元件的電流遵守空間電荷限制電流。
另外,探討烘烤溫度對元件的影響,因此利用元件結構為:ITO (125 nm)/ PEDOT: PSS (65 nm)/ PVK: 5 wt% Rubrene (65 nm)/ Al (100 nm) 改變烘烤溫度,觀察到發光層烘烤溫度100℃有最佳光電特性:T=95.5%、Vth=8.8V、Lmax=0.18 cd/m2。
最後,由角度對應光強度變化的結果,發現元件並不會在某特定角度出現較高的光強度,因此推論此元件結構不具備共振腔之光學特性。
Abstract
In this study, the active layer of organic light-emitting devices (OLEDs) of PVK: Rubrene are analyzed material properties and measured OLEDs electrical-optical characteristics. OLEDs structures are ITO (125 nm)/ PEDOT: PSS (65 nm)/ PVK: x wt% Rubrene (y nm)/ Al (100 nm). Each device area is 0.25 cm2.
Because of the quenching effect, the active layer of OLEDs doped with 0, 5, 10, 15 wt% Rubrene are investigated. The OLED of the active layer doping with 5 wt% Rubrene has the best electrical-optical characteristics: the transmittance is 91%, the threshold voltage is 10.4V, and the maximum luminous intensity is 0.14 cd/m2.
The thickness of the active layer will affect the mobility of carriers and recombination. OLEDs of the active layer with thickness 42, 65,101 nm are designed. The OLED of the thickness of the active layer is 65 nm has the best electrical-optical characteristics: the threshold voltage is 10.6V, and the maximum luminous intensity is 0.27 cd/m2.
To discuss the influence of baking temperature on OLED of the active layer, OLEDs with the active layer baking at 60, 80, 100, 120℃ are proposed. The OLED of the active layer baking at 100℃ has the best electrical-optical characteristics: the transmittance is 95.5%, the threshold voltage is 8.8V, and the maximum luminous intensity is 0.18 cd/m2. And the luminous intensity does not increase at a specific angle, so that it does not have the micro-cavity in the OLED.
目次 Table of Contents
論文審定書 i
致謝 ii
中文摘要 iii
Abstract iv
目錄 v
圖目錄 viii
表目錄 xi
第一章、緒論 1
1.1 有機電致發光之發展歷史 1
1.1.1 有機發光二極體 (OLED) 之簡介 1
1.1.2 高分子電激發光二極體 (PLED) 之簡介 4
1.1.3 OLED與PLED之比較 6
1.2 元件結構 8
1.2.1 單層元件結構 8
1.2.2 多層元件結構 8
1.3 研究動機 11
1.4 論文大綱 11
第二章、理論基礎 13
2.1 發光原理與機制 13
2.1.1 發光原理 13
2.1.2 發光機制 13
2.2 有機材料的介紹 15
2.2.1 電洞注入與電洞傳輸材料 16
2.2.2 電子傳輸材料與發光層主體材料 19
2.2.3 電極材料 21
2.3 載子的注入與傳輸 21
2.3.1 電荷注入 21
2.3.2 電荷傳導 24
2.4 內、外部量子效率 29
第三章、實驗流程 30
3.1 實驗架構 30
3.2 實驗材料 30
3.3 溶液的配製 31
3.3.1 PEDOT: PSS材料 31
3.3.2 PVK: Rubrene材料 31
3.4 實驗步驟 31
3.4.1 基板清洗 31
3.4.2 濺鍍ITO當陽極 32
3.4.3 旋轉塗佈有機溶液 32
3.4.4 蒸鍍陰極 32
3.5 儀器設備 33
3.5.1 製程儀器 33
3.5.2 量測儀器 37
第四章、實驗結果與討論 40
4.1 PVK摻雜不同Rubrene濃度 40
4.1.1 PVK: x wt% Rubrene薄膜分析 40
4.1.2 PVK: x wt% Rubrene元件分析 41
4.2 改變發光層厚度 43
4.3 電流理論擬合分析 45
4.4 改變發光層烘烤溫度 46
4.4.1 發光層的烘烤溫度之薄膜分析 46
4.4.2 發光層的烘烤溫度之元件分析 47
4.4 視角對應光強度分析 49
第五章、結論 51
參考文獻 52
Published 59
參考文獻 References
[1] A. Bernanose, M. Conet, and P. Vouauzx, “A new method of emission of light by certain organic compounds,” J. Chem. Phys., vol. 50, pp. 64, 1953.
[2] E. F. Gurnee, and F. R. Teoste, “Organic electroluminescent phosphors,” U.S. Patent 3 171 862, Mar. 9, 1965.
[3] M. Pope, H. P. Kallmann, and P. J. Magnante, “Electroluminescence in Organic Crystals,” J. Chem. Phys., vol. 38, no. 8, pp. 2042, Jan. 1963.
[4] W. Helfrich, and W. G. Schneider, “Recombination radiation in Anthracene crystals,” Phys. Rev. Lett., vol. 14, no. 7, pp. 229-231, Feb. 1965.
[5] D. F. Williams, and M. Schadt, “A simple organic electroluminescent diode,” Proceedings IEEE, vol. 58, no. 3, pp. 476, Mar. 1970.
[6] P. S. Vincett, and G. G. Roberts, “Electrical and photoelectrical transport properties of Langmuir-Blodgett films and a discussion of possible device applications,” Thin Solid Films, vol. 98, no. 1, pp. 135-171, May 1980.
[7] P. S. Vincett, W. A. Barlow, R. A. Hann, and G. G. Roberts, “Electrical conduction and low voltage blue electroluminescence in vacuum-deposited organic films,” Thin Solid Films, vol. 94, no. 2, pp. 171-183, Aug. 1982.
[8] C. W. Tang, and S. A. VanSlyke, “Organic electroluminescent diodes,” Appl. Phys. Lett., vol. 51, no. 12, pp. 913-915, Jul. 1987.
[9] S. A. VanSlyke, C. W. Tang, and L. C. Robert, “Electroluminescent device with organic luminescent medium,” U.S. Patent 4 720 432, Jan. 19, 1988.
[10] H. Shirakawa, E. J. Louis, A. G. MacDiarmid, C. K. Chiang, and A. J. Heeger, “Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)x,” J. Chem. Soc., Chem. Commun., no. 16, pp. 578-580, May 1977.
[11] J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, and A. B. Holmes, “Light-emitting diodes based on conjugated polymers,” Nature, vol. 347, pp. 539-541, Sep. 1990.
[12] N. C. Greenham, S. C. Moratti, D. D. C. Bradley, R. H. Friend, and A. B. Holmes, “Efficient light-emitting diodes based on polymers with high electron affinities,” Nature, vol. 365, pp. 628-630, Oct. 1993.
[13] R. H. Friend, J. H. Burroughes, and D. D. Bradley, “The semiconductor between contactors,” U.S. Patent 5 247 190, Sep. 21, 1993.
[14] D. Braun, A. J. Heeger, “Visible light emission from semiconducting polymer diodes,” Appl. Phys. Lett., vol. 58, no. 18, pp. 1982-1984, Feb. 1991.
[15] G. Gustafsson, Y. Cao, G. M. Treacy, F. Klavetter, N. Colaneri, and A. J. Heeger, “Flexible light-emitting diodes made from soluble conducting polymers,” Nature, vol. 357, pp. 477-479, Jun. 1992.
[16] Y. Ohmori, M. Uchida, K. Muro, and K. YoShino, “Visible-light electroluminescent diodes utilizing poly(3-alkylthiophene),” Jpn. J. Appl. Phys., vol. 30, no. 11B, pp. L1938-1940, Sep. 1991.
[17] Y. Ohmori, M. Uchida, K. Muro, and K. YoShino, “Blue electroluminescent diodes utilizing poly(alkylfluorene),” Jpn. J. Appl. Phys., vol. 30, no. 11B, pp. L1941-1943, Nov. 1991.
[18] C. Adachi, T. Tsutsui, and S. Saito, “Organic electroluminescent device having a hole conductor as an emitting layer,” Appl. Phys. Lett., vol. 55, no. 15, pp. 1489-1491, Jul. 1989.
[19] M. Era, C. Adachi, T. Tsutsui, and S. Saito, “Double-heterostructure electroluminescent device with cyanine-dye bimolecular layer as an emitter,” Chem. Phys. Lett., vol. 178, no. 5-6, pp. 488-490, Apr. 1991.
[20] J. Kido, C. Ohtaki, K. Hongawa, K. Okuyama, and K. Nagai, “1,2,4-triazole derivative as an electron transport layer in organic electroluminescent devices,” Jpn. J. Appl. Phys., vol. 32, no. 7A, pp. L917-920, Jul. 1993.
[21] J. Kido, M. Kohda, K. Okuyama, and K. Nagai, “Organic electroluminescent devices based on molecularly doped polymers,” Appl. Phys. Lett., vol. 61, no. 7, pp. 761-763, Jun. 1992.
[22] J. Kido, H. Shionoya, and K. Nagai, “Single‐layer white light‐emitting organic electroluminescent devices based on dye‐dispersed poly(N‐vinylcarbazole),” Appl. Phys. Lett., vol. 67, no. 16, pp. 2281-2283, Aug. 1995.
[23] H. Yan, Q. Huang, J. Cui, J. G. C. Veinot, M. M. Kern, and T. J. Marks, “High-brightness blue light-emitting polymer diodes via anode modification using a self-assembled monolayer,” Adv. Mater., vol. 15, no. 10, pp. 835-838, May 2003.
[24] H. Yan, Q. Huang, B. J. Scott, and T. J. Marks, “A polymer blend approach to fabricating the hole transport layer for polymer light-emitting diodes,” Appl. Phys. Lett., vol. 84, no. 19, pp. 3873-3875, May 2004.
[25] Q. J. Sun, J. H. Hou, C. H. Yang, and Y. F. Li, ”Enhanced performance of white polymer light-emitting diodes using polymer blends as hole-transporting layers,” Appl. Phys. Lett., vol. 89, no. 15, pp. 153501, Oct. 2006.
[26] D. Volz, T. Baumann, H. Flügge, M. Mydlak, T. Grab, M. Bächle, C. B. Kowollik, and S. Bräse, “Auto-catalysed crosslinking for next-generation OLED-design,” J. Mater. Chem., vol. 22, no. 38, pp. 20786-20790, Aug. 2012.
[27] S. Miyata, and H. S. Nalwa, “Organic electroluminescent cells with high luminous efficiency,” Organic electroluminescent materials and devices, Gordon and breach science, pp. 289-310, 1997.
[28] S. Miyata, and H. S. Nalwa, “Chelate metal complexes as organic electroluminescent materials,” Organic electroluminescent materials and devices, Gordon and breach science, pp. 311-334, 1997.
[29] S. A. Vanslyke, C. H. Chen, and C. W. Tang, “Organic electroluminescent devices with improved stability,” Appl. Phys. Lett., vol. 69, no. 15, pp. 2160-2162, Aug. 1996.
[30] C. Giebeler, H. Antoniadis, D. D. C. Bradley, and Y. Shirota, “Influence of the hole transport layer on the performance of organic light-emitting diodes,” J. Appl. Phys., vol. 85, no. 1, pp. 608-615, Jan. 1999.
[31] K. Yamashita, T. Mori, T. Mizutani, H. Miyazaki, and T. Takeda, “EL properties of organic light-emitting-diode using TPD derivatives with diphenylstylyl groups as hole transport layer,” Thin Solid Films, vol. 363, no. 1-2, pp. 33-36, Mar. 2000.
[32] C. Adachi, K. Nagai, and N. Tamoto, “Molecular design of hole transport materials for obtaining high durability in organic electroluminescent diodes,” Appl. Phy. Lett., vol. 66, no. 20, pp. 2679-2681, Mar. 1995.
[33] Y. Shirota, K. Okumoto, and H. Inada, “Thermally stable organic light-emitting diodes using new families of hole-transporting amorphous molecular materials,” Synth. Met., vol. 111-112, pp. 387-391, Jun. 2000.
[34] L. S. Hung, and C. W. Tang, “Thin nonconducting layer having strong dipole character contacting semiconductor and covered with conductive layer having good oxidation resistance; low resistance contact with good corrosion resistance,” U.S. Patent 5 677 572, Oct. 1997.
[35] M. A. Baldo, D. F. Brlen, and S. R. Forrest, “Structure for high efficiency electroluminescent device,” U.S. Patent 6 097 147, Aug. 2000.
[36] F. Li, and H. Tang, J. Anderegg, and J. Shinar, “Fabrication and electroluminescence of double-layered organic light-emitting diodes with the Al2O3/Al cathode,” Appl. Phy. Lett., vol. 70, no. 10, pp. 1233-1235, Mar. 1997.
[37] D. A. Neamen, Semiconductor physics and devices, 2nd ed. Irwin, Chicago, p. 319, 1997.
[38] S. M. Sze, Physics of semiconductor devices, Wiley, New York, 1981.
[39] E. H. Rhoderick, and R. H. Williams, Metal-semiconductor-contacts, Clarendon, Oxford, 1988.
[40] I. H. Campbell, P. S. Davids, D. L. Smith, N. N. Barashkov, and J. P. Ferraris, “The Schottky energy barrier dependence of charge injection in organic light-emitting diodes,” Appl. Phys. Lett., vol. 72, no. 15, pp. 1863-,1865 Apr. 1998.
[41] Y. Yang and A. J. Heeger, “Polyaniline as a transparent electrode for polymer light‐emitting diodes: Lower operating voltage and higher efficiency,” Appl. Phys. Lett., vol. 64, no. 10, pp. 1245-1247, Jan. 1994.
[42] Y. Yang, E. Westerweele, C. Zhang, P. Smith, and A. J. Heeger, “Enhanced performance of polymer light‐emitting diodes using high‐surface area polyaniline network electrodes,” J. Appl. Phys., vol. 77, no. 2, pp. 694-698, Jan. 1995.
[43] A. J. Champbell, D. D. C. Bradley, and D. G. Lidzey, “Space-charge limited conduction with traps in poly(phenylene vinylene) light emitting diodes,” J. Appl. Phys., vol. 82, no. 12, pp. 6326-6342, Sep. 1997.
[44] K. C. Kao, and W. Hwang, Electrical transport in solids. With particular reference to organic semiconductors., Pregamon, Oxford, 1981.
[45] D. Fox, M. M. Labes, A. Weissberger, and R. S. Alger, Physics and chemistry of the organic solid state, Interscience, New York, 1965.
[46] P. W. M. Blom, H. C. F. Martens, and J. N. Huiberts, “Charge transport in polymer light-emitting diodes,” Synth. Met., vol. 121, pp. 1621-1624, Jan. 2001.
[47] A. Rose, “Space-charge-limited currents in solids,” Phys. Rev., vol. 97, no. 6, pp. 1538-1544, Mar. 1955.
[48] K. Unger, “Bestimmung von hafttermspektren mit hilfe von glow-kurven,” Phys. Stat. Sol., vol. 2, no. 10, pp. 1279-1298, Aug. 1962.
[49] J. G. Simmons, and M. C. Tam, “Theory of Isothermal Currents and the Direct Determination of Trap Parameters in Semiconductors and Insulators Containing Arbitrary Trap Distributions,” Phys. Rev. B, vol. 7, no. 8, pp. 3706-3713, Apr. 1973.
[50] G. P. Owen, J. Sworakowski, J. M. Thomas, D. F. Williams, and J. O. Williams, “Carrier traps in ultra-high purity single crystals of anthracene,” J. Chem. Soc.: Fraraday Trans. 2, vol. 70, no. 0, pp. 853-861, Jan. 1974.
[51] A. J. Campbell, M. S. Weaver, D. G. Lidzey, and D. D. C. Bradley, “Bulk limited conduction in electroluminescent polymer devices,” J. Appl. Phys., vol. 84, no. 12, pp. 6737-6746, Sep. 1998.
[52] K. Sugiyama, D. Yoshimura, T. Miyamae, T. Miyazaki, H. Ishii, Y. Ouchi, K. Seki, “Electronic structures of organic molecular materials for organic electroluminescent devices studied by ultraviolet photoemission spectroscopy,” J. Appl. Phys., vol. 83, no. 9, pp. 4928-4938, Jan. 1998.
[53] Y. Yang, S. Chang, J. Bharathan, and J. Liu, “Organic/ polymeric electroluminescent devices processed by hybrid ink-jet printing,” J. Mater. Sci.: Mater. El., vol. 11, no. 2, pp. 89-96, Mar. 2000.
[54] Y. Zhou, J. W. Kim, R. Nandhakumar, M. J. Kim, E. Cho, Y. S. Kim, Y. H. Jang, C. Lee, S. Han, K. M. Kim, J. Kim, and J. Yoon, “Novel binaphthyl-containing bi-nuclear boron complex with low concentration quenching effect for efficient organic light-emitting diodes,” Chem. Commun., vol. 46, no. 35, pp. 6512-6514, Jul. 2010.
[55] E. I. Haskal, “Characterization of blue-light-emitting organic electroluminescent devices,” Synth. Met., vol. 91, no. 1-3, pp. 187-190, Dec. 1997.
[56] A. Cester, D. Bari, J. Framarina, N. Wrachiena, G. Meneghessoa, S. Xia, V. Adamovichb, and J.J. Brown, “Thermal and electrical stress effects of electrical and optical characteristics of Alq3/NPD OLED,” Microelectron. Reliab., vol. 50, no. 9-11, pp. 1866-1870, Sep. 2010.
[57] M. Y. Chan, S. L. Lai, F. L. Wong, O. Lengyel, C. S. Lee, and S. T. Lee, “Efficiency enhancement and retarded dark-spots growth of organic light-emitting devices by high-temperature processing,” Chem. Phys. Lett., vol. 371, no. 5-6, pp. 700-706, Apr. 2003.
[58] Q. Wang, Y. Chen, J. Chen, and D. Ma, “White top-emitting organic light-emitting diodes employing tandem structure,” Appl. Phys. Lett., vol. 101, no. 13, pp. 133302-1-133302-3, Sep. 2012.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code