Responsive image
博碩士論文 etd-0608114-192103 詳細資訊
Title page for etd-0608114-192103
論文名稱
Title
具有震動效果紅外線微機電氣體感測之研究
Research on Infrared Gas Sensing of MEMS with Shock Effect
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
61
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-06-21
繳交日期
Date of Submission
2014-07-08
關鍵字
Keywords
響應度、面型微加工、紅外線氣體感測器、微機電、NDIR 氣體感測
Infrared gas sensors, NDIR gas sensing, MEMS, Responsivity, Surface micromachining
統計
Statistics
本論文已被瀏覽 5698 次,被下載 424
The thesis/dissertation has been browsed 5698 times, has been downloaded 424 times.
中文摘要
現今氣體感測器可分為紅外線式與化學式兩種,紅外線式壽命長與靈敏度精確,化學式耐久度不佳與靈敏度差,但價格便宜。近年來微機電技術逐漸成熟,大幅提高紅外線式氣體感測能見度。因此在本論文中,我們針對紅外線式氣體感測器來做探討,目的除了可以達到偵測氣體濃度外,也可達響應度調諧功能。
我們利用五道光罩,結合乾蝕刻、薄膜成長將矽晶圓加工成面型架構,再透過濕蝕刻方式去除犧牲層二氧化矽,以達到元件懸浮能力。此好處能加入直流電壓使元件受靜電力影響,向下吸附元件基底,產生震動效果,藉此來使感測器空氣熱導產生變化,達到響應度調諧功能,進而改變雜訊等效功率與感測度。也可保持元件在NDIR感測環境中,能精準表示出不同氣體濃度下之訊號大小。
在本篇論文中,我們使用白光干涉儀量測元件受靜電力影響之震動表現。在上板震動分析,當提供元件直流電壓0V~20V,元件在20V時產生靜電力吸附效果,上板最大震動位移量0.66µm,有達到提供小電壓而震動之目標。在懸臂長度與位移分析,元件在0V~5V位移量由彈簧力所主導,隨外加電壓越大時,元件在0V~20V由靜電力主導,並滿足平衡點理論分析。
Abstract
Nowadays, gas sensor mainly infrared type and chemical type, Infrared type long life and accurate sensitivity. Chemical type poor sensitivity and durability, but cheap. In recent years, MEMS technology matures, improve the visibility infrared gas sensing, Therefore in this thesis, the objective was to detect gas concentrations can be achieved, but also to achieve responsivity of the tuning functions.
We use five masks, combined with dry etching, thin film growth surface of the silicon wafer processed into structure, and then removing the sacrificial layer by wet etching silicon dioxide, the ability to achieve suspension components. This advantage can be added to the DC voltage to the components affected by electrostatic force, down the adsorption element substrate. To take this the thermal conductivity of air sensors to make a difference, to respond to the degree of tuning function, components can be maintained in NDIR sensing environment, Magnitude the signal can be accurately expressed under different gas concentrations.
In this thesis, We use white light interferometer measurement devices by static electricity effects of vibration performance. In the upper plate vibration analysis, while providing a DC voltage component 0V ~ 20V, element generates static electricity during adsorption 20V, maximum vibration displacement of the upper plate 0.66μm, there is provided a small voltage shock to reach the goal. In the cantilever length and displacement analysis, elements 0V ~ 5V dominated by the displacement of the spring force, the greater the applied voltage when the element at 0V ~ 20V dominated by static electricity, and meet the theoretical analysis of the equilibrium point.
目次 Table of Contents
論文審定書 i
致謝 ii
摘要 iii
Abstract iv
目錄 v
圖目錄 viii
表目錄 xii
第一章、緒論 1
1.1 研究動機 1
1.2 化學式氣體感測 2
1.3 紅外線式氣體感測 3
1.4 論文架構 6
第二章、架構與儀器原理 7
2.1 微熱輻射熱阻性感測器原理 7
2.1.1 微機電架構原理 7
2.1.2 紅外光吸收層 8
2.1.3 電阻溫度係數反應層 9
2.1.4 平衡點與靜電力影響出平面式微機電間距 9
2.1.5 感測器性能參數 10
2.1.6 感測器整體架構 12
2.1.7 本研究可改善那些缺點 13
2.2 (Non-Dispersive Infrared Radiation) NDIR氣體感測系統 13
2.2.1 NDIR氣體感測原理 13
2.2.2 紅外光氣體感測器工作原理 15
2.3 製程儀器原理 15
2.3.1 多靶磁控濺鍍系統 (Multi-Target Sputter) 15
2.3.2 雙電子槍蒸鍍機 (Dual E-Beam Evaporator) 17
2.3.3 光阻塗佈 (Spin coating) 18
2.3.4 曝光技術 18
2.3.5 電漿增強式化學氣相沉積 (PECVD) 19
2.3.6 感應耦合型電漿 (ICP) 20
2.4量測儀器 21
2.4.1場發射型掃描式電子顯微鏡 (SEM) 21
2.4.2 白光干涉儀 22
第三章、實驗流程 23
3.1 元件製程步驟 23
3.1.1 清洗基板 (Substrate Cleaning) 23
3.1.2 基底電絕緣層氮化矽 23
3.1.3 犧牲層二氧化矽 25
3.1.4 濺鍍鍺作為電阻溫度係數反應層 27
3.1.5 電子束蒸鍍上電極金/鉻與下電極鋁 27
3.1.6 去除犧牲層二氧化矽 28
3.2 微機電元件打線 29
第四章、實驗結果與討論 31
4.1 元件懸空SEM 31
4.2 白光干涉儀量測元件受靜電力影響所產生之位移量 33
4.3 吸附電壓分析 36
4.4 施加電壓與懸臂長度和位移關聯 37
第五章、結論 40
參考文獻 41
Published 47
參考文獻 References
[1] Y. W. Chen and J. X. Chen, “Apartment domestic water heater simulation analysis of carbon monoxide poisoning,” M. S. thesis, Department of Mechanical Engineering, Chiao Tung University, Hsinchu, Taiwan, Jun. 2013.
[2] G. M. Masters, “Introduction to Environmental Engineering and Science,” Prentice Hall, New Jersey, 1997.
[3] J. H Seinfeld, “Atmospheric Chemistry and Physics of Air Pollution,” New York, Wiley, 1986.
[4] 葉欣誠, 環境工程與科學概論, 五南書局出版有限公司, 2000。
[5] J. Kwon, “A study on NDIR-based CO2 sensor to apply remote air quality monitoring system,” IEEE ICROS-SICE International Conference, pp. 1683-1687, Aug. 2009.
[6] J. H. Han, S. W. Han, S. M. Kim, J. J. Pak, “High detection performance of NDIR CO2 sensor using stair-tapered reflector,” IEEE Sensors Journal, vol. 13, no. 8, pp. 3090-3097, Aug. 2013.
[7] A. Graf, H. Mielenz, M. Sauer, M. Arndt, and G. Gerlach, “System design and analysis concept analysis concept of highly adaptable NDIR sensor for gas analysis,” IEEE Solid-State Sensors Acuator and Microsystems Conference, pp. 2537-2540, Jun. 2007.
[8] J. H, R. P. T, “Optical gas sensing: a review,” IOP Science Measuring and Technology, vol. 24, no. 1, Nov. 2012.
[9] Y. Wang, B. Potter, M. Sutton, R. Supino, and J. Talghader, “Step-Wise Tunable Microbolometer Long-Wavelength Infrared Filter,” IEEE Solid-State Sensor Acuator and Microsystems Conference, pp. 1006-1009, Jun. 2005.
[10] L. X. Wang, X. A. Li, “Preparation of VO2 microbolometer for CO2 gas detection,” IEEE International Conference on Microwave and Millimeter Wave Technology, pp. 1774–1777, May. 2010.
[11] J. M. Chang and Z. S. Ho, “A sol - gel method lanthanide monoxide perovskite thin films of sensing,” M. S. thesis, Department of Chemical Engineering, Tung Hai University, Taichung, Taiwan, 2006.
[12] C L Dai, M.C Liu, “Nanoparticle SnO2 gas sensor with circuit and micro-heater on chip fabricated using CMOS-MEMS technique,” 2nd IEEE International conference on Nano/Micro Engineered and Molecular Systems, pp. 959-963, Jan. 2007.
[13] D. H. Kim, J. Y. Yoon, H. C. Park, and K. H. Kim, “CO2 sensing characteristics of SnO2 thick film by coating lanthanum oxide,” Elsevier Sensors Actuator B Chemical, vol. 62, pp. 61-66, Jan. 2000.
[14] B. S. Huang and M. H. Yang, “Thermal radiation technology the construction a non-contact new fire detection system,” M. S. thesis, Department of Electrical Engineering, National Cheng Kung University, Tainan, Taiwan, Jun. 2007.
[15] T. S. Xu and Z. M. Chen, “Research circuit reads the infrared thermal resistance,” M. S. thesis, Department of Photoelectric and Communications Engineering, National Kaohsiung University of Applied Sciences, Kaohsiung, Taiwan, Jul. 2012.
[16] M. H Chang and Y. L Ou, “Electro calibration resistive sensor calibration methods,” M. S. thesis, Department of Photoelectric Science, National Central University, Zhongli, Taiwan, Oct. 2007.
[17] K. P. Yoo, H. P. Hong, M. J .Lee, J. Min, C. W. Park, W. S. Choi, N. K. Min, “Fabrication characterization and application of a micro-electromechanical system (MEMS) thermopile for non-dispersive infrared gas sensors,” IOP Science, vo1. 22, no. 11, pp. 198-206, Aug. 2011.
[18] A. Roncaglia, F. Mancarella, G. C. Cardinali, “CMOS-compatible fabrication of thermopiles with high Sensitivity in the 3–5µm atmospheric window,” Else Sensor Actuator B Chemical, vol. 125, pp. 214-223, Jul. 2007.
[19] E. Mottin, P. h. Ballet, F. L. Mathieu, J. O. Buffet, J. Rothman, J. J. Yon, E. Hadji, E. Picard, “Microcavity light emitters and microbolometer detectors for gas monitoring in the 2-5 μm range,” SPIE, vol. 5739, pp. 277-286, Nov. 2005.
[20] M. Schreiter, R. Gabl, J. Lerchner, C. Hohlfeld, A. Delan, “Functionalized pyroelectric sensors for gas detection,” Elsevier Sensor Actuator B Chemical, vol. 119, pp. 255–261, Nov. 2006.
[21] B. Willing, M. Kohli, P. Muralt, O. Oehler, “Thin film pyroelectric array as a detector for an infrared gas,” Elsevier Infrared Physical Technology, vol. 39, pp. 443–449, Dec. 1998.
[22] T. Lang, H. Wiemhofer, W. Gopel, “Carbonate based CO2 sensors with high performance,” Elsevier Sensors Actuator B Chemical, vol. 34, pp. 383-387, Aug. 1996.
[23] C. G. Mattsson, G. Thungstorm, H. Rodjegard, K. Bertolsson, H. E. Nilsson, and H. Martin, “Experimental evaluation of a thermopile detector With SU-8 membrane in a carbon dioxide meter setup,” IEEE Sensors Journal, vol. 9, no. 12, pp.1633-1638, Dec. 2009.
[24] C. G. Mattsson, G. Thungstorm, H. Rodjegard, K. Bertolsson, H. E. Nilsson, and H. Martin, “Fabrication and characterization of design optimized SU-8 thermopile with enhanced sensivity,” Measure. Science. Technology, Nov. 2009.
[25] J. J. Monzen and L. L. SdnchezSoto, “Optical performance of absorber structures for thermal detector,” Applied Optical, vol. 33, issue 22, pp. 5137-5141, Mar. 1994.
[26] I. Mellouki, N. Bennaji, and N. Yacoubi, “IR characterization of graphite black-coating for cryogenic detector,” Elsevier Infrared Physical Technology, vol. 50, pp. 58–62, Mar. 2007.
[27] V. Yu. Zerov and V. G. Malyarov, “Heat-sensitive materials for uncooled microbolometer arrays,” Journal of Optical Technology, vol. 68, no. 12, pp. 939-948, Dec. 2001.
[28] C. Chen, X. Yi, X. Zhao, B. Xiong, “Characterizations of VO2-based uncooled microbolometer linear array, ” Sensors and Actuators A Physical, vol. 90, no.3, pp. 212-214, May. 2001.
[29] W. B. Song, J. J. Talghader, “Adjustable responsivity for thermal infrared detectors,” Apply Physical Letter, vol. 81, pp. 550-552, May. 2002.
[30] R. N. Supino, J J. Talghader, “Electrostatic control of micro-structure thermal conductivity,” Apply Physical Letter, vol. 78, pp. 1778-1880, Jan. 2001.
[31] F. Hu, J. Yao, C. Qiu, H. Ren, “A MEMS micromirror driven by electrostatic force,” Elsevier Journal of Electrostatics, vol. 68, pp. 237–242, Jun. 2010.
[32] D. Y. Qiao, W. Z. Yuan, X. Y. Li, “A two-beam method for extending the working range of electrostatic parallel-plate micro-actuators,” Elsevier Journal of Electrostatics, vol. 65, pp. 256–262, Apr. 2007.
[33] W. B. Song, J. J. Talghader, “IR detectors with adaptive responsenivity and wavelength,” SPIE, vol. 6464, Feb. 2007.
[34] J. Mayrwoger, W. Reichl, C. Krutzler, B. Jakoby, “Measuring CO2 concentration with a Fabry–Perot based bolometer using a glass plate as simple infrared filter,” Elsevier Sensor Actuator B Chemical, vol. 170, pp. 143–147, Jul. 2012.
[35] J. Mayrwoger, W. Reichl, C. Krutzler, B. Jakoby, “CO2 monitoring using a simple Fabery-Perot-based Germanium bolmeter,” Elsevier Sensor Actuator B Chemical, vol. 154, pp.245-250, Jun. 2011.
[36] J. Mayrwöger, P. Hauer, W. Reichl, R. Schwödiauer, C. Krutzler and B. Jakoby, “Modeling of infrared gas sensors using a ray tracing approach,” IEEE Sensors Journal, vol. 10, no. 11, pp. 1691-1699, Nov. 2010.
[37] R. Frodl and T. Tille, “A high-precision CO2 gas sensor for automotive,” IEEE Sensors Journal, vol. 6, no. 6, pp. 1697-1705, Dec. 2006.
[38] X. Wang, H. Rodjegard, B. Oelmann, H. Martin, B. Larsson, “High performance CO2 measurement based on pressure modulation,” Elsevier Procedia Engineering, vol. 5, pp. 1208-1211, Sep. 2010.
[39] T. StobergRohr, R. Buchner, A. Krishna, L. Munch, K. Pihi, J. S. Hansen, S. Tojaga, H. G. Moos, J. M. Jensen, “NDIR humidity measurement,” IEEE Sensor Conference, pp. 1058-1061, Oct. 2011.
[40] M. Naro, K. Suzuki, N. Kishi, H. Hara, T. Watanabe, H. Iwaoka, “CO2/H2O gas sensor using a tunable Fabery-Perot filter with wide wavelength range,” IEEE The Sixteenth Annual International Conference on Micro Electro Mechanical Systems, pp. 319-322, Jun. 2003.
[41] Y. Wang, M. Nakayama, M. Yagi, M. Nishikawa, M. Fukunaga, and K. Watanabe, “The NDIR CO2 monitor with smart interface for global networking,” IEEE Transactions and Measurement, vol. 54, no.4, pp. 1634-1639, Aug. 2005.
[42] J. Silveira and F. Grasdepot, “New signal processing for absorption-based gas sensing,” Elsevier Sensors Acuathors B Chemical, vol. 29, pp. 363-367, Oct. 1995.
[43] S. Chen, H. Hadano, T. Yamaguchi, and K. Watanabe, “A simple low-cost nondispersive infrared CO2 monitor,” 2nd ISA/IEEE Sensors for Industry conference, pp. 107-110, Nov. 2002.
[44] J. Fonollosa, R. Rubio, S. Hartwig, S. Marco, J. Santander, L. Fonseca, J. Wollenstein, M. Moreno, “Design and fabrication of silicon-based mid infrared multi-lenses for gas sensing application,” Elsevier Sensor Actuator B Chemical, vol. 132, pp. 498-507, Jun. 2008.
[45] P. C. Novelli, “CO in the atmosphere: measurement techniques and related issues,” Elsevier Chemosphere-Global Change Science, vol. 1, pp. 115-126, Aug. 1999.
[46] T. Lang, H. Wiemhofer, W. Gopel, “Carbonate based CO2 sensors with high performance,” Elsevier Sensors Actuator B Chemical, vol. 34, pp. 383-387, Aug. 1996.
[47] S. k. Pandey, and K. H. Kim, “The relative performance of NDIR-based sensors in the near real-time analysis of CO2 in Air,” Sensors, vol. 7, no. 7, pp. 1683-1696, Sep. 2007.
[48] P. M. Cox, R. A. Betts, C. D. Jones, S. A. Spall, and I. J. Totterdell, “Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate mode,” Nature, vol. 408, no. 6809, pp. 184–187, Nov. 2000.
[49] 張鼎張, 羅正忠, 半導體製程技術導論修訂版, 台灣培生教育出版社, 2007。
[50] W. J. Chung, and P. R .Chang, “Electrical properties of flexible elastic boundary the microstructure,” M. S. thesis, Department of Applied Mechanics, National Taiwan University, Taipei, Taiwan, Jul. 2007.
[51] W. F. Ye, O. Z. Wu, and P. R. Chang, “Materials MEMS mechanical properties of thin films,” M. S. thesis, Department of Applied Mechanics, National Taiwan University, Taipei, Taiwan, Jul. 2003.
[52] V. Kaajakari, “Practical MEMS,” Las Vegas Small Gear Publishing, 2009.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code