Responsive image
博碩士論文 etd-0608115-114035 詳細資訊
Title page for etd-0608115-114035
論文名稱
Title
探討粒線體上 GSK3beta-Drp1 及中心體上Ninein-AIBp-Aurora A/ Plk1 蛋白質交互作用的分子調控機制
Characterize the molecular mechanisms of mitochondrial GSK3beta-Drp1 and centrosomal Ninein-AIBp-Aurora A/ Plk1 protein-protein interactions
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
151
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-06-24
繳交日期
Date of Submission
2015-07-08
關鍵字
Keywords
hNinein、Aurora A、AIBp、Plk1、肝醣合成酶激酶-3beta、Drp1、中心體、粒線體
hNinein, GSK3beta, mitochondria, AIBp, Drp1, centrosome, Aurora A, Plk1
統計
Statistics
本論文已被瀏覽 5703 次,被下載 406
The thesis/dissertation has been browsed 5703 times, has been downloaded 406 times.
中文摘要
肝醣合成酶激酶-3beta (GSK3beta)是一個參與細胞內多元化調控過程的主要酵素,包括細胞發育、代謝平衡、神經生長及分化、細胞極性、細胞增殖與凋亡。過去數年間,我們實驗室致力於利用酵母菌雙雜交系統鑑定出多個GSK3beta的特殊結合蛋白,包括dynamin-like protein (Drp1)、 hNinein、 CGI-99、 CABYR variant、 GSKIP 以及 Astrin。近來,我們也利用此一平台篩選出一個未知的Aurora及hNinein的結合蛋白,AIBp。本篇論文的第一個部分,我們延續對Drp1的研究。Drp1是粒線體分裂蛋白,可調控粒線體形態,並與神經退化疾病有關。我們清楚地闡述了DRP1 634至736胺基酸的區域以及 Lys 679的位置是與GSK3beta結合所必需的。GSK3beta會磷酸化DRP1 Ser693的位置去促進粒線體型態的延長,降低cytochrome c 的釋放以及capase-3、caspase-7、PARP的活化因而可以抵抗過氧化氫所造成的細胞凋亡。論文的第二部分則發現AIBp也會與Plk1結合,因而促進Aurora A對Plk1的活化。相反地,AIBp卻會阻斷Ninein被Aurora A及Plk1的磷酸化作用。當降低AIBp表現量時,則會減少Aurora A 在Thr288, 以及Plk1 Thr210位置上的磷酸化,還有 ch-TOG在中心體上的錯誤定位,造成多個spindle pole的形成以及染色體的排列錯誤。 因此,我們推測AIBp與hNinein、Aurora A、Plk1之間的相互作用可能會促進細胞進入分裂期與調控紡錘絲的形成。
Abstract
Glycogen synthase kinase-3beta (GSK3beta) has been reported to participate in several signaling pathways and crucial for cell development, metabolic homeostasis, neuronal growth and differentiation, cell polarity, cell fate and apoptosis. In the past several years, we pay great efforts to study protein-protein interactions by yeast two-hybrid techniques, and identified many novel GSK3beta interaction proteins including dynamin-like protein (Drp1), hNinein, CGI-99, CABYR variant, GSKIP and Astrin. Recently, we also used two-hybrid platform to discover a novel Aurora A and hNinein binding protein, AIBp. At first part of this study, we continued our research on Drp1. Drp1 is a mitochondria fission protein, involved in neurodegenerative diseases in terms of affecting mitochondrial dynamics. We clearly demonstrated that GSK3beta-mediated phosphorylation at Ser693 of Drp1 and the region of Drp1634-690 and Lys679 are crucial for GSK3beta interaction. We also revealed that mitochondrial elongation due to ectopic expression of Drp1 S693D mutants may be associated with enhanced resistance to H2O2-induced mitochondrial fragmentation and ensuing apoptosis via down-regulating cytochrome c release, capase-3, -7 and PARP activation, rather than inducing autophagy. At the second part of the study, we demonstrated that AIBp also interacts with Plk1, which subsequently promotes Aurora-A–mediated Plk1 activation. In contrast, it blocks the hNinein phosphorylation mediated by Aurora A and Plk1. Knockdown of AIBp expression caused down-regulation of Aurora A Thr288, Plk1 Thr210 phosphorylation and mislocalization of ch-TOG to centrosomes, resulted in phenotypes of multiple spindle pole formation and chromosome misalignment. We suggested that the interplay of hNinein, AIBp, Aurora-A, and Plk1 may contributes to mitotic entry and bipolar spindle assembly during mitotic progression.
目次 Table of Contents
論文審定書..............................ⅰ
誌謝(ACKNOWLEDGEMENTS) ..........................ⅱ
中文摘要..............................ⅲ
ABSTRACT (English)..............................ⅳ
INDEX....................................ⅵ
LIST of FIGURES...............................ⅷ OVERVIEW..................................1
PART I: GSK3beta-mediated Drp1 phosphorylation induced elongated mitochondrial
morphology against oxidative stress .....................5
SUMMARY..................................6
INTRODUCTION............................... 8
1. Glycogen synthase kinase-3.......................... 8
2. Regulations of GSK3 activity......................... 8
3. Dynamin related protein 1........................... 10
4. Post-translational modifications of Drp1..................... 12
MATERIALS and METHODS...........................16
1. Cell culture and transfection..........................16
2. Cloning, site-directed mutagenesis and DNA sequencing.............. 17
3. Yeast two hybrid system........................... 18
4. Western blot analysis.............................18
5. In vitro kinase assay............................. 19
6. GTPase activity assay.............................20
7. Immunofluorescence and quantification of mitochondrial morphology......... 20
8. Statistics..................................21
RESULTS....................................22
1. Interaction and co-localization of Drp1 with GSK3beta................22
2. Drp1 Ser693 is a GSK3beta phosphorylation site...................23
3. Drp1 S693 and K679 locate in GED and do not affect inter-/intra- molecular interactions, but K679 determines GSK3beta binding........................25
4. Drp1 Ser693 is involved in regulating its GTPase activity...............27
5. Phosphorylation of Drp1 at Ser693 inhibits mitochondrial fission............28
6. Overexpressed Drp1 S693D leads to resistance to H2O2-induced mitochondrial fragmentation and ensuing apoptosis, but did not induce autophagy.................30
DISCUSSION..................................32
PART II: AIBp regulates mitotic entry and mitotic spindle assembly by controlling activation of both Aurora-A and Plk1.............................63
SUMMARY...................................64
INTRODUCTION.................................65
1. Centrosome..................................65
2. Aurora kinase A................................66
3. Bora.....................................67
4. Polo-like kinase 1...............................68
5. Ninein....................................70
6. AIBp....................................71
MATERIALs and METHODS............................75
1. Plasmid construction..............................75
2. Yeast two-hybrid system.............................75
3. Protein purification..............................76
4. Site-directed mutagenesis............................77
5. In vitro kinase assay..............................78
6. Cell culture, synchronization, RNA interference and transfection............78
7. Immunofluorescence.............................79
8. Western blot analysis.............................80
9. Co-immunoprecipitation............................81
RESULTS....................................83
1. AIBp bridges hNinein and Aurora-A and anchors PLK1 to form a complex........83
2. AIBp, Aurora-A and Plk1 co-localized to the spindle poles during early mitosis.......83
3. AIBp acts as both a substrate and a positive regulator of Aurora-A and Plk1........84
4. AIBp promotes Aurora-A–mediated Plk1 activation..................85
5. Knockdown of hNinein blocks centrosomal targeting of AIBp, whereas depletion of AIBp do not affect the localization of hNinein and microtubule nucleation..............86
6. AIBp depletion decrease phosphorylation of Plk1 Thr210 and Aurora-A Thr288......87
7. Depletion of AIBp causes asymmetrical spindle poles, multipolar spindles, donut-shaped chromosomes, and chromosome misalignment....................88
8. AIBp was linked to mislocalization of TACC3 and ch-TOG to centrosomes........89
DISCUSSION..................................91
1. AIBp acts as a positive and negative regulator towards both Aurora-A and Plk1.......91
2. The function of AIBp is similar to that of Bora, but its role is to facilitate by interacting with hNinein and is involved in regulation of centrosomal microtubule signaling........92
3. Formation of multiple spindle poles........................93

REFERENCES..................................116
APPENDIX ..................................136

List of figures

Figure ⅰ. The GSK3 and its partners involve in multiple biophysiological and pathophysiological activities. ................................4
Figure1-1. Schematic illustration of Drp1 structure..................14
Figure1-2. The posttranslational modification of Drp1..................15
Figure1-3. Interaction and co-localization of Drp1/Hydn IV with GSK3beta. .........41
Figure1-4. Drp1 is phosphorylated by GSK3beta at Ser693...............44
Figure1-5. Yeast two-hybrid assay identifying Drp1 inter-/intra- interaction and residue responsible
for GSK3beta-Drp1 binding........................46
Figure1-6. GTPase hydrolysis activity of Drp1mutants..................48
Figure1-7. Mitochondrial dynamics of HeLa cells with Drp1 wt and mutants.........49
Figure1-8. Mitochondrial morphology of HeLa cells with Drp1 wt and K679A mutant ....51
Figure1-9. Mitochondrial dynamics of HeLa cells with Drp1 wt and mutants and were treated with
LiCl and H89..............................52
Figure1-10. Mitochondrial dynamics of HeLa cells with Drp1 wt and mutants treated with H2O2.55
Figure1-11.Overexpressed Drp1 S693D can protect against H2O2-induced mitochondrial
fragmentation and ensuing apoptosis but does not induce autophagy........57
Figure1-12.Overexpressed Drp1 S693D can protect HEK293 against H2O2-induced mitochondrial
fragmentation and ensuing apoptosis but does not induce autophagy........60
Figure1-13. Model represents both GSK3β- and PKA-mediated Drp1 phosphorylation induction of
mitochondrial elongation which subsequently causes acquired resistance to H2O2-induced
apoptosis rather than inducing autophagy..................61
Figure2-1. The Centrosome structure.........................73
Figure2-2. Bora regulation of Plk1–Aurora A interplay..................74
Figure2-3. Interaction of AIBp with PLK1 and Aurora-A.................96
Figure2-4. Interaction of AIBp with PLK1, Aurora-A and hNinein..............97
Figure2-5. AIBp, PLK1, and Aurora-A co-localize to the spindle poles in early mitosis.....98
Figure2-6. AIBp and PLK1 co-localize during mitosis..................99
Figure2-7. AIBp is a substrate of PLK1........................100
Figure2-8. AIBp is a positive regulator of both Aurora A and PLK1 but a negative regulator blocking phosphorylation of hNinein mediated by Aurora-A and PLK1...........101
Figure2-9. AIBp promotes Aurora-A-mediated Plk1 activation...............102
Figure2-10. Knockdown of hNinein prevented AIBp centrosome targeting, whereas depletion of AIBp did not affect the localization of hNinein or microtubule nucleation........104
Figure2-11. AIBp depletion decreased phosphorylation of PLK1 Thr-210 and Aurora-A Thr-288.106
Figure2-12. Depletion of AIBp caused formation of multipolar spindle poles, asymmetrical spindle poles, donut-shaped chromosomes, and chromosome misalignment........109
Figure2-13. Depletion of AIBp caused mis-localization of TACC3 and ch-TOG but had no effect on the localization of CEP192 and CEP215...................111
Figure2-14. The interplay of hNinein, AIBp, Aurora-A, and Plk1 in centrosomal maturation and spindle pole organization.........................114
參考文獻 References
1. Hong YR, Chen CH, Cheng DS, Howng SL, Chow CC (1998) Human dynamin-like protein interacts with the glycogen synthase kinase 3beta. Biochem Biophys Res Commun 249: 697-703.
2. Hong YR, Chen CH, Chang JH, Wang S, Sy WD, et al. (2000) Cloning and characterization of a novel human ninein protein that interacts with the glycogen synthase kinase 3beta. Biochim Biophys Acta 1492: 513-516.
3. Howng SL, Sy WD, Cheng TS, Lieu AS, Wang C, et al. (2004) Genomic organization, alternative splicing, and promoter analysis of human dynamin-like protein gene. Biochem Biophys Res Commun 314: 766-772.
4. Hsu HC, Lee YL, Cheng TS, Howng SL, Chang LK, et al. (2005) Characterization of two non-testis-specific CABYR variants that bind to GSK3beta with a proline-rich extensin-like domain. Biochem Biophys Res Commun 329: 1108-1117.
5. Howng SL, Hsu HC, Cheng TS, Lee YL, Chang LK, et al. (2004) A novel ninein-interaction protein, CGI-99, blocks ninein phosphorylation by GSK3beta and is highly expressed in brain tumors. FEBS Lett 566: 162-168.
6. Lin CC, Cheng TS, Hsu CM, Wu CH, Chang LS, et al. (2006) Characterization and functional aspects of human ninein isoforms that regulated by centrosomal targeting signals and evidence for docking sites to direct gamma-tubulin. Cell Cycle 5: 2517-2527.
7. Chou HY, Howng SL, Cheng TS, Hsiao YL, Lieu AS, et al. (2006) GSKIP is homologous to the Axin GSK3beta interaction domain and functions as a negative regulator of GSK3beta. Biochemistry 45: 11379-11389.
8. Cheng TS, Hsiao YL, Lin CC, Hsu CM, Chang MS, et al. (2007) hNinein is required for targeting spindle-associated protein Astrin to the centrosome during the S and G2 phases. Exp Cell Res 313: 1710-1721.
9. Cheng TS, Hsiao YL, Lin CC, Yu CT, Hsu CM, et al. (2008) Glycogen synthase kinase 3beta interacts with and phosphorylates the spindle-associated protein astrin. J Biol Chem 283: 2454-2464.
10. Lieu AS, Cheng TS, Chou CH, Wu CH, Hsu CY, et al. (2010) Functional characterization of AIBp, a novel Aurora-A binding protein in centrosome structure and spindle formation. Int J Oncol 37: 429-436.
11. Howng SL, Hwang CC, Hsu CY, Hsu MY, Teng CY, et al. (2010) Involvement of the residues of GSKIP, AxinGID, and FRATtide in their binding with GSK3beta to unravel a novel C-terminal scaffold-binding region. Mol Cell Biochem 339: 23-33.
12. Lin CC, Chou CH, Howng SL, Hsu CY, Hwang CC, et al. (2009) GSKIP, an inhibitor of GSK3beta, mediates the N-cadherin/beta-catenin pool in the differentiation of SH-SY5Y cells. J Cell Biochem 108: 1325-1336.
13. Chou CH, Lin CC, Yang MC, Wei CC, Liao HD, et al. (2012) GSK3beta-mediated Drp1 phosphorylation induced elongated mitochondrial morphology against oxidative stress. PLoS One 7: e49112.
14. Loh JK, Lin CC, Yang MC, Chou CH, Chen WS, et al. (2015) GSKIP- and GSK3-mediated anchoring strengthens cAMP/PKA/Drp1 axis signaling in the regulation of mitochondrial elongation. Biochim Biophys Acta 1850: 1796-1807.
15. Chou CH, Chou AK, Lin CC, Chen WJ, Wei CC, et al. (2012) GSK3beta regulates Bcl2L12 and Bcl2L12A anti-apoptosis signaling in glioblastoma and is inhibited by LiCl. Cell Cycle 11: 532-542.
16. Cross DA, Alessi DR, Cohen P, Andjelkovich M, Hemmings BA (1995) Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 378: 785-789.
17. Jope RS, Johnson GV (2004) The glamour and gloom of glycogen synthase kinase-3. Trends Biochem Sci 29: 95-102.
18. Cho J, Rameshwar P, Sadoshima J (2009) Distinct roles of glycogen synthase kinase (GSK)-3alpha and GSK-3beta in mediating cardiomyocyte differentiation in murine bone marrow-derived mesenchymal stem cells. J Biol Chem 284: 36647-36658.
19. Bhat RV, Budd SL (2002) GSK3beta signalling: casting a wide net in Alzheimer's disease. Neurosignals 11: 251-261.
20. Gould TD, Zarate CA, Manji HK (2004) Glycogen synthase kinase-3: a target for novel bipolar disorder treatments. J Clin Psychiatry 65: 10-21.
21. Hooper C, Killick R, Lovestone S (2008) The GSK3 hypothesis of Alzheimer's disease. J Neurochem 104: 1433-1439.
22. Woodgett JR (2003) Physiological roles of glycogen synthase kinase-3: potential as a therapeutic target for diabetes and other disorders. Curr Drug Targets Immune Endocr Metabol Disord 3: 281-290.
23. Manoukian AS, Woodgett JR (2002) Role of glycogen synthase kinase-3 in cancer: regulation by Wnts and other signaling pathways. Adv Cancer Res 84: 203-229.
24. Grimes CA, Jope RS (2001) The multifaceted roles of glycogen synthase kinase 3beta in cellular signaling. Prog Neurobiol 65: 391-426.
25. Hay E, Faucheu C, Suc-Royer I, Touitou R, Stiot V, et al. (2005) Interaction between LRP5 and Frat1 mediates the activation of the Wnt canonical pathway. J Biol Chem 280: 13616-13623.
26. Hedgepeth CM, Deardorff MA, Rankin K, Klein PS (1999) Regulation of glycogen synthase kinase 3beta and downstream Wnt signaling by axin. Mol Cell Biol 19: 7147-7157.
27. Thomas GM, Frame S, Goedert M, Nathke I, Polakis P, et al. (1999) A GSK3-binding peptide from FRAT1 selectively inhibits the GSK3-catalysed phosphorylation of axin and beta-catenin. FEBS Lett 458: 247-251.
28. Chen CH, Hwang SL, Howng SL, Chou CK, Hong YR (2000) Three rat brain alternative splicing dynamin-like protein variants: interaction with the glycogen synthase kinase 3beta and action as a substrate. Biochem Biophys Res Commun 268: 893-898.
29. Figueroa-Romero C, Iniguez-Lluhi JA, Stadler J, Chang CR, Arnoult D, et al. (2009) SUMOylation of the mitochondrial fission protein Drp1 occurs at multiple nonconsensus sites within the B domain and is linked to its activity cycle. FASEB J 23: 3917-3927.
30. Reddy PH, Manczak M, Mao P, Calkins MJ, Reddy AP, et al. (2010) Amyloid-beta and mitochondria in aging and Alzheimer's disease: implications for synaptic damage and cognitive decline. J Alzheimers Dis 20 Suppl 2: S499-512.
31. Bossy-Wetzel E, Barsoum MJ, Godzik A, Schwarzenbacher R, Lipton SA (2003) Mitochondrial fission in apoptosis, neurodegeneration and aging. Curr Opin Cell Biol 15: 706-716.
32. Suen DF, Norris KL, Youle RJ (2008) Mitochondrial dynamics and apoptosis. Genes Dev 22: 1577-1590.
33. Smirnova E, Griparic L, Shurland DL, van der Bliek AM (2001) Dynamin-related protein Drp1 is required for mitochondrial division in mammalian cells. Mol Biol Cell 12: 2245-2256.
34. James DI, Parone PA, Mattenberger Y, Martinou JC (2003) hFis1, a novel component of the mammalian mitochondrial fission machinery. J Biol Chem 278: 36373-36379.
35. Stojanovski D, Koutsopoulos OS, Okamoto K, Ryan MT (2004) Levels of human Fis1 at the mitochondrial outer membrane regulate mitochondrial morphology. J Cell Sci 117: 1201-1210.
36. Otera H, Wang C, Cleland MM, Setoguchi K, Yokota S, et al. (2010) Mff is an essential factor for mitochondrial recruitment of Drp1 during mitochondrial fission in mammalian cells. J Cell Biol 191: 1141-1158.
37. Palmer CS, Osellame LD, Laine D, Koutsopoulos OS, Frazier AE, et al. (2011) MiD49 and MiD51, new components of the mitochondrial fission machinery. EMBO Rep 12: 565-573.
38. Koirala S, Bui HT, Schubert HL, Eckert DM, Hill CP, et al. (2010) Molecular architecture of a dynamin adaptor: implications for assembly of mitochondrial fission complexes. J Cell Biol 191: 1127-1139.
39. Sever S, Muhlberg AB, Schmid SL (1999) Impairment of dynamin's GAP domain stimulates receptor-mediated endocytosis. Nature 398: 481-486.
40. Ingerman E, Perkins EM, Marino M, Mears JA, McCaffery JM, et al. (2005) Dnm1 forms spirals that are structurally tailored to fit mitochondria. J Cell Biol 170: 1021-1027.
41. Zhu PP, Patterson A, Stadler J, Seeburg DP, Sheng M, et al. (2004) Intra- and intermolecular domain interactions of the C-terminal GTPase effector domain of the multimeric dynamin-like GTPase Drp1. J Biol Chem 279: 35967-35974.
42. Santel A, Frank S (2008) Shaping mitochondria: The complex posttranslational regulation of the mitochondrial fission protein DRP1. IUBMB Life 60: 448-455.
43. Chang CR, Blackstone C (2010) Dynamic regulation of mitochondrial fission through modification of the dynamin-related protein Drp1. Ann N Y Acad Sci 1201: 34-39.
44. Braschi E, Zunino R, McBride HM (2009) MAPL is a new mitochondrial SUMO E3 ligase that regulates mitochondrial fission. EMBO Rep 10: 748-754.
45. Wasiak S, Zunino R, McBride HM (2007) Bax/Bak promote sumoylation of DRP1 and its stable association with mitochondria during apoptotic cell death. J Cell Biol 177: 439-450.
46. Zunino R, Braschi E, Xu L, McBride HM (2009) Translocation of SenP5 from the nucleoli to the mitochondria modulates DRP1-dependent fission during mitosis. J Biol Chem 284: 17783-17795.
47. Karbowski M, Neutzner A, Youle RJ (2007) The mitochondrial E3 ubiquitin ligase MARCH5 is required for Drp1 dependent mitochondrial division. J Cell Biol 178: 71-84.
48. Wang H, Song P, Du L, Tian W, Yue W, et al. (2011) Parkin ubiquitinates Drp1 for proteasome-dependent degradation: implication of dysregulated mitochondrial dynamics in Parkinson disease. J Biol Chem 286: 11649-11658.
49. Cho DH, Nakamura T, Fang J, Cieplak P, Godzik A, et al. (2009) S-nitrosylation of Drp1 mediates beta-amyloid-related mitochondrial fission and neuronal injury. Science 324: 102-105.
50. Chang CR, Blackstone C (2007) Cyclic AMP-dependent protein kinase phosphorylation of Drp1 regulates its GTPase activity and mitochondrial morphology. J Biol Chem 282: 21583-21587.
51. Cribbs JT, Strack S (2007) Reversible phosphorylation of Drp1 by cyclic AMP-dependent protein kinase and calcineurin regulates mitochondrial fission and cell death. EMBO Rep 8: 939-944.
52. Cereghetti GM, Stangherlin A, Martins de Brito O, Chang CR, Blackstone C, et al. (2008) Dephosphorylation by calcineurin regulates translocation of Drp1 to mitochondria. Proc Natl Acad Sci U S A 105: 15803-15808.
53. Han XJ, Lu YF, Li SA, Kaitsuka T, Sato Y, et al. (2008) CaM kinase I alpha-induced phosphorylation of Drp1 regulates mitochondrial morphology. J Cell Biol 182: 573-585.
54. Taguchi N, Ishihara N, Jofuku A, Oka T, Mihara K (2007) Mitotic phosphorylation of dynamin-related GTPase Drp1 participates in mitochondrial fission. J Biol Chem 282: 11521-11529.
55. Knott AB, Perkins G, Schwarzenbacher R, Bossy-Wetzel E (2008) Mitochondrial fragmentation in neurodegeneration. Nat Rev Neurosci 9: 505-518.
56. Cho B, Choi SY, Cho HM, Kim HJ, Sun W (2013) Physiological and pathological significance of dynamin-related protein 1 (drp1)-dependent mitochondrial fission in the nervous system. Exp Neurobiol 22: 149-157.
57. Elgass K, Pakay J, Ryan MT, Palmer CS (2013) Recent advances into the understanding of mitochondrial fission. Biochim Biophys Acta 1833: 150-161.
58. Ingerman E, Nunnari J (2005) A continuous, regenerative coupled GTPase assay for dynamin-related proteins. Methods Enzymol 404: 611-619.
59. Chappie JS, Acharya S, Liu YW, Leonard M, Pucadyil TJ, et al. (2009) An intramolecular signaling element that modulates dynamin function in vitro and in vivo. Mol Biol Cell 20: 3561-3571.
60. Liesa M, Palacin M, Zorzano A (2009) Mitochondrial dynamics in mammalian health and disease. Physiol Rev 89: 799-845.
61. Gao S, von der Malsburg A, Paeschke S, Behlke J, Haller O, et al. (2010) Structural basis of oligomerization in the stalk region of dynamin-like MxA. Nature 465: 502-506.
62. Wasilewski M, Scorrano L (2009) The changing shape of mitochondrial apoptosis. Trends Endocrinol Metab 20: 287-294.
63. Parone PA, Da Cruz S, Tondera D, Mattenberger Y, James DI, et al. (2008) Preventing mitochondrial fission impairs mitochondrial function and leads to loss of mitochondrial DNA. PLoS One 3: e3257.
64. Rambold AS, Kostelecky B, Elia N, Lippincott-Schwartz J (2011) Tubular network formation protects mitochondria from autophagosomal degradation during nutrient starvation. Proc Natl Acad Sci U S A 108: 10190-10195.
65. Rambold AS, Kostelecky B, Lippincott-Schwartz J (2011) Fuse or die: Shaping mitochondrial fate during starvation. Commun Integr Biol 4: 752-754.
66. Chen H, Detmer SA, Ewald AJ, Griffin EE, Fraser SE, et al. (2003) Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development. J Cell Biol 160: 189-200.
67. Chen H, Chan DC (2005) Emerging functions of mammalian mitochondrial fusion and fission. Hum Mol Genet 14 Spec No. 2: R283-289.
68. Yen WL, Klionsky DJ (2008) How to live long and prosper: autophagy, mitochondria, and aging. Physiology (Bethesda) 23: 248-262.
69. Gomes LC, Di Benedetto G, Scorrano L (2011) During autophagy mitochondria elongate, are spared from degradation and sustain cell viability. Nat Cell Biol 13: 589-598.
70. Chen CH, Howng SL, Hwang SL, Chou CK, Liao CH, et al. (2000) Differential expression of four human dynamin-like protein variants in brain tumors. DNA Cell Biol 19: 189-194.
71. Wang S, Song J, Tan M, Albers KM, Jia J (2012) Mitochondrial fission proteins in peripheral blood lymphocytes are potential biomarkers for Alzheimer's disease. Eur J Neurol 19: 1015-1022.
72. Wilson TJ, Slupe AM, Strack S (2012) Cell signaling and mitochondrial dynamics: Implications for neuronal function and neurodegenerative disease. Neurobiol Dis.
73. Merrill RA, Dagda RK, Dickey AS, Cribbs JT, Green SH, et al. (2011) Mechanism of neuroprotective mitochondrial remodeling by PKA/AKAP1. PLoS Biol 9: e1000612.
74. Skroblin P, Grossmann S, Schafer G, Rosenthal W, Klussmann E (2010) Mechanisms of protein kinase A anchoring. Int Rev Cell Mol Biol 283: 235-330.
75. Bettencourt-Dias M, Glover DM (2007) Centrosome biogenesis and function: centrosomics brings new understanding. Nat Rev Mol Cell Biol 8: 451-463.
76. Bornens M (2002) Centrosome composition and microtubule anchoring mechanisms. Curr Opin Cell Biol 14: 25-34.
77. Moritz M, Agard DA (2001) Gamma-tubulin complexes and microtubule nucleation. Curr Opin Struct Biol 11: 174-181.
78. Doxsey S, Zimmerman W, Mikule K (2005) Centrosome control of the cell cycle. Trends Cell Biol 15: 303-311.
79. Meraldi P, Honda R, Nigg EA (2004) Aurora kinases link chromosome segregation and cell division to cancer susceptibility. Curr Opin Genet Dev 14: 29-36.
80. Azimzadeh J, Bornens M (2007) Structure and duplication of the centrosome. J Cell Sci 120: 2139-2142.
81. Wang G, Jiang Q, Zhang C (2014) The role of mitotic kinases in coupling the centrosome cycle with the assembly of the mitotic spindle. J Cell Sci 127: 4111-4122.
82. Doxsey S (2002) Duplicating dangerously: linking centrosome duplication and aneuploidy. Mol Cell 10: 439-440.
83. Holland AJ, Cleveland DW (2009) Boveri revisited: chromosomal instability, aneuploidy and tumorigenesis. Nat Rev Mol Cell Biol 10: 478-487.
84. Carmena M, Earnshaw WC (2003) The cellular geography of aurora kinases. Nat Rev Mol Cell Biol 4: 842-854.
85. Marumoto T, Zhang D, Saya H (2005) Aurora-A - a guardian of poles. Nat Rev Cancer 5: 42-50.
86. Buschhorn HM, Klein RR, Chambers SM, Hardy MC, Green S, et al. (2005) Aurora-A over-expression in high-grade PIN lesions and prostate cancer. Prostate 64: 341-346.
87. Gritsko TM, Coppola D, Paciga JE, Yang L, Sun M, et al. (2003) Activation and overexpression of centrosome kinase BTAK/Aurora-A in human ovarian cancer. Clin Cancer Res 9: 1420-1426.
88. Gautschi O, Heighway J, Mack PC, Purnell PR, Lara PN, Jr., et al. (2008) Aurora kinases as anticancer drug targets. Clin Cancer Res 14: 1639-1648.
89. Toji S, Yabuta N, Hosomi T, Nishihara S, Kobayashi T, et al. (2004) The centrosomal protein Lats2 is a phosphorylation target of Aurora-A kinase. Genes Cells 9: 383-397.
90. Abe Y, Ohsugi M, Haraguchi K, Fujimoto J, Yamamoto T (2006) LATS2-Ajuba complex regulates gamma-tubulin recruitment to centrosomes and spindle organization during mitosis. FEBS Lett 580: 782-788.
91. Mori D, Yano Y, Toyo-oka K, Yoshida N, Yamada M, et al. (2007) NDEL1 phosphorylation by Aurora-A kinase is essential for centrosomal maturation, separation, and TACC3 recruitment. Mol Cell Biol 27: 352-367.
92. LeRoy PJ, Hunter JJ, Hoar KM, Burke KE, Shinde V, et al. (2007) Localization of human TACC3 to mitotic spindles is mediated by phosphorylation on Ser558 by Aurora A: a novel pharmacodynamic method for measuring Aurora A activity. Cancer Res 67: 5362-5370.
93. Cheeseman LP, Booth DG, Hood FE, Prior IA, Royle SJ (2011) Aurora A kinase activity is required for localization of TACC3/ch-TOG/clathrin inter-microtubule bridges. Commun Integr Biol 4: 409-412.
94. Kinoshita K, Noetzel TL, Pelletier L, Mechtler K, Drechsel DN, et al. (2005) Aurora A phosphorylation of TACC3/maskin is required for centrosome-dependent microtubule assembly in mitosis. J Cell Biol 170: 1047-1055.
95. Hirota T, Kunitoku N, Sasayama T, Marumoto T, Zhang D, et al. (2003) Aurora-A and an interacting activator, the LIM protein Ajuba, are required for mitotic commitment in human cells. Cell 114: 585-598.
96. Dutertre S, Cazales M, Quaranta M, Froment C, Trabut V, et al. (2004) Phosphorylation of CDC25B by Aurora-A at the centrosome contributes to the G2-M transition. J Cell Sci 117: 2523-2531.
97. Macurek L, Lindqvist A, Medema RH (2009) Aurora-A and hBora join the game of Polo. Cancer Res 69: 4555-4558.
98. Kufer TA, Sillje HH, Korner R, Gruss OJ, Meraldi P, et al. (2002) Human TPX2 is required for targeting Aurora-A kinase to the spindle. J Cell Biol 158: 617-623.
99. Hutterer A, Berdnik D, Wirtz-Peitz F, Zigman M, Schleiffer A, et al. (2006) Mitotic activation of the kinase Aurora-A requires its binding partner Bora. Dev Cell 11: 147-157.
100. Pugacheva EN, Golemis EA (2005) The focal adhesion scaffolding protein HEF1 regulates activation of the Aurora-A and Nek2 kinases at the centrosome. Nat Cell Biol 7: 937-946.
101. Liu L, Guo C, Dammann R, Tommasi S, Pfeifer GP (2008) RASSF1A interacts with and activates the mitotic kinase Aurora-A. Oncogene 27: 6175-6186.
102. Chan EH, Santamaria A, Sillje HH, Nigg EA (2008) Plk1 regulates mitotic Aurora A function through betaTrCP-dependent degradation of hBora. Chromosoma 117: 457-469.
103. Seki A, Coppinger JA, Du H, Jang CY, Yates JR, 3rd, et al. (2008) Plk1- and beta-TrCP-dependent degradation of Bora controls mitotic progression. J Cell Biol 181: 65-78.
104. Seki A, Coppinger JA, Jang CY, Yates JR, Fang G (2008) Bora and the kinase Aurora a cooperatively activate the kinase Plk1 and control mitotic entry. Science 320: 1655-1658.
105. Macurek L, Lindqvist A, Lim D, Lampson MA, Klompmaker R, et al. (2008) Polo-like kinase-1 is activated by aurora A to promote checkpoint recovery. Nature 455: 119-123.
106. Lee YC, Liao PC, Liou YC, Hsiao M, Huang CY, et al. (2013) Glycogen synthase kinase 3 beta activity is required for hBora/Aurora A-mediated mitotic entry. Cell Cycle 12: 953-960.
107. Barr FA, Sillje HH, Nigg EA (2004) Polo-like kinases and the orchestration of cell division. Nat Rev Mol Cell Biol 5: 429-440.
108. Archambault V, Glover DM (2009) Polo-like kinases: conservation and divergence in their functions and regulation. Nat Rev Mol Cell Biol 10: 265-275.
109. Petronczki M, Lenart P, Peters JM (2008) Polo on the Rise-from Mitotic Entry to Cytokinesis with Plk1. Dev Cell 14: 646-659.
110. Lenart P, Petronczki M, Steegmaier M, Di Fiore B, Lipp JJ, et al. (2007) The small-molecule inhibitor BI 2536 reveals novel insights into mitotic roles of polo-like kinase 1. Curr Biol 17: 304-315.
111. Strebhardt K (2010) Multifaceted polo-like kinases: drug targets and antitargets for cancer therapy. Nat Rev Drug Discov 9: 643-660.
112. Casenghi M, Meraldi P, Weinhart U, Duncan PI, Korner R, et al. (2003) Polo-like kinase 1 regulates Nlp, a centrosome protein involved in microtubule nucleation. Dev Cell 5: 113-125.
113. Casenghi M, Barr FA, Nigg EA (2005) Phosphorylation of Nlp by Plk1 negatively regulates its dynein-dynactin-dependent targeting to the centrosome. J Cell Sci 118: 5101-5108.
114. Lee K, Rhee K (2011) PLK1 phosphorylation of pericentrin initiates centrosome maturation at the onset of mitosis. J Cell Biol 195: 1093-1101.
115. Elia AE, Cantley LC, Yaffe MB (2003) Proteomic screen finds pSer/pThr-binding domain localizing Plk1 to mitotic substrates. Science 299: 1228-1231.
116. Elia AE, Rellos P, Haire LF, Chao JW, Ivins FJ, et al. (2003) The molecular basis for phosphodependent substrate targeting and regulation of Plks by the Polo-box domain. Cell 115: 83-95.
117. Jang YJ, Ma S, Terada Y, Erikson RL (2002) Phosphorylation of threonine 210 and the role of serine 137 in the regulation of mammalian polo-like kinase. J Biol Chem 277: 44115-44120.
118. Ikeda M, Chiba S, Ohashi K, Mizuno K (2012) Furry protein promotes aurora A-mediated Polo-like kinase 1 activation. J Biol Chem 287: 27670-27681.
119. Joukov V, Walter JC, De Nicolo A (2014) The Cep192-organized aurora A-Plk1 cascade is essential for centrosome cycle and bipolar spindle assembly. Mol Cell 55: 578-591.
120. Stillwell EE, Zhou J, Joshi HC (2004) Human ninein is a centrosomal autoantigen recognized by CREST patient sera and plays a regulatory role in microtubule nucleation. Cell Cycle 3: 923-930.
121. Ou YY, Mack GJ, Zhang M, Rattner JB (2002) CEP110 and ninein are located in a specific domain of the centrosome associated with centrosome maturation. J Cell Sci 115: 1825-1835.
122. Chen CH, Howng SL, Cheng TS, Chou MH, Huang CY, et al. (2003) Molecular characterization of human ninein protein: two distinct subdomains required for centrosomal targeting and regulating signals in cell cycle. Biochem Biophys Res Commun 308: 975-983.
123. Piel M, Meyer P, Khodjakov A, Rieder CL, Bornens M (2000) The respective contributions of the mother and daughter centrioles to centrosome activity and behavior in vertebrate cells. J Cell Biol 149: 317-330.
124. Eckerdt F, Maller JL (2008) Kicking off the polo game. Trends Biochem Sci 33: 511-513.
125. Zhu L (1997) Yeast GAL4 two-hybrid system. A genetic system to identify proteins that interact with a target protein. Methods Mol Biol 63: 173-196.
126. Gergely F, Draviam VM, Raff JW (2003) The ch-TOG/XMAP215 protein is essential for spindle pole organization in human somatic cells. Genes Dev 17: 336-341.
127. McInnes C, Mazumdar A, Mezna M, Meades C, Midgley C, et al. (2006) Inhibitors of Polo-like kinase reveal roles in spindle-pole maintenance. Nat Chem Biol 2: 608-617.
128. Gomez-Ferreria MA, Rath U, Buster DW, Chanda SK, Caldwell JS, et al. (2007) Human Cep192 is required for mitotic centrosome and spindle assembly. Curr Biol 17: 1960-1966.
129. Lee S, Rhee K (2010) CEP215 is involved in the dynein-dependent accumulation of pericentriolar matrix proteins for spindle pole formation. Cell Cycle 9: 774-783.
130. Bruinsma W, Macurek L, Freire R, Lindqvist A, Medema RH (2014) Bora and Aurora-A continue to activate Plk1 in mitosis. J Cell Sci 127: 801-811.
131. Maiato H, Logarinho E (2014) Mitotic spindle multipolarity without centrosome amplification. Nat Cell Biol 16: 386-394.
132. De Luca M, Brunetto L, Asteriti IA, Giubettini M, Lavia P, et al. (2008) Aurora-A and ch-TOG act in a common pathway in control of spindle pole integrity. Oncogene 27: 6539-6549.
133. Marumoto T, Honda S, Hara T, Nitta M, Hirota T, et al. (2003) Aurora-A kinase maintains the fidelity of early and late mitotic events in HeLa cells. J Biol Chem 278: 51786-51795.
134. Gruber J, Harborth J, Schnabel J, Weber K, Hatzfeld M (2002) The mitotic-spindle-associated protein astrin is essential for progression through mitosis. J Cell Sci 115: 4053-4059.
135. Thakur HC, Singh M, Nagel-Steger L, Kremer J, Prumbaum D, et al. (2014) The centrosomal adaptor TACC3 and the microtubule polymerase chTOG interact via defined C-terminal subdomains in an Aurora-A kinase-independent manner. J Biol Chem 289: 74-88.
136. Oshimori N, Ohsugi M, Yamamoto T (2006) The Plk1 target Kizuna stabilizes mitotic centrosomes to ensure spindle bipolarity. Nat Cell Biol 8: 1095-1101.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code