Responsive image
博碩士論文 etd-0608115-235429 詳細資訊
Title page for etd-0608115-235429
論文名稱
Title
紫外光輔助合成多腺苷包覆金奈米簇:應用於螢光比例法感測汞離子、酵素活性與特定核苷酸
UV Light-Assisted Synthesis of Polyadenosine-Stabilized Gold Nanoclusters for Ratiometric Fluorescent Sensing of Hg(II), Enzyme Activity, and Target Nucleic Acid
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
112
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-07-01
繳交日期
Date of Submission
2015-07-09
關鍵字
Keywords
螢光比例法、多腺苷、光化學、紫外光輔助、金奈米簇
adenosine, photo-chemical, UV light-assisted, ratiometric, DNA-template, gold nanoclusters
統計
Statistics
本論文已被瀏覽 5645 次,被下載 22
The thesis/dissertation has been browsed 5645 times, has been downloaded 22 times.
中文摘要
DNA已被證實能夠作為不同尺寸大小銀奈米簇的合成模板,這類以DNA為合成模板的銀奈米簇已被廣泛的應用在金屬離子、生物小分子的偵測與生物造影上,但以DNA作為合成模板的金奈米簇卻仍是一大挑戰,目前為止僅有少數文獻有提及。
本研發展出一套藉由紫外光輔助、簡單、且無需使用NaBH4並能夠大量生產的一步合成法,合成以多腺苷(poly-adenosine, A30)為合成模板的金奈米簇,所得的多腺苷包覆金奈米簇其螢光放光波長為475 nm;藉由粒徑層析證實當多腺苷包覆住金奈米簇時,整個結構會較多腺苷時更為剛性,多腺苷在反應中扮演著避免金原子聚集成尺寸較大的金奈米粒子的穩定劑,而在經過一連串的實驗後,證實紫外光在citrate離子還原金離子前驅物的反應上扮演著關鍵角色;此外本研究設計一段包含金奈米簇合成端-多腺苷(A30)與偵測端的單股核苷酸序列,可搭配SYBR GREEN I (SG)開發出一種金奈米簇螢光比例法探針,能夠靈敏高選擇性地偵測偵測端的互補序列,當偵測端的互補序列與偵測端完全互補雜交時,該金奈米簇螢光比例法探針會產生475 nm與525 nm兩道螢光,可藉由此兩道螢光強度的比值對偵測端的互補序列進行定量;此外汞離子與金奈米簇表面金一價的作用力會造成金奈米簇的螢光消光,而酵素水解反應所產生的胺基硫醇分子會對金奈米簇進行蝕刻而使金奈米簇的螢光消光,因此本螢光探針亦能夠運用在汞離子與酵素的檢測;上述三種螢光比例法偵測方法也成功的使用在真實樣品的偵測上。
Abstract
DNA sequence has been used in synthesis of silver nanoclusters that play a role of template in decade in decade. The DNA-templated silver nanocluster has been widely applied at sensing of metal ion, biomolecular and bio-image. But there is a challenge in synthesis of gold nanoclusters by using DNA sequence as a template.

In this study, we develop a new approach that UV light-assisted, facile, one-pot, NaBH4-free and boundary way to synthesize gold nanoclusters by using poly-adenosine as a template, and get the poly-adenosine stabilized gold nanoclusters that have an emission at 475 nm under the excitation of 280 nm. Under a series of experiment, we definit the UV light play an important role in reduction reaction of gold ion by citrate ion. In size-exclusion chromatogaph(SEC), we can find the structure of poly-adenosine is more compact after the formation of poly-adenosine stabilized gold nanoclusters, it provide an evidence that poly-adenosine is a stabilizer for preventing gold atom aggregate into gold nanoparticles and forming of gold nanoclusters. On the other hand, we design a sequence contain poly-adenosine and specific DNA sequence to synthesize a poly-adenosine stabilized gold nanoclusters of containing specific DNA sequence, and it can combine with SYBR GREEN I to provide a ratiometric fluorescent sensors. This ratiometric fluorescent sensors provide a sensitivie and selective detection for specific DNA sequence, thiol-relative enzyme and mercury ion by hybridization of DNA, etching of thiol and metallophilic interactions, and successfully used in real sample.
目次 Table of Contents
論文審定書 i
論文公開授權書 ii
謝誌 iii
摘要 iv
ABSTRACT v
目錄 vi
圖次 viii
表次 xi
縮寫表 xii
第壹章 序論 1
一 金奈米簇 1
二 金奈米簇合成方法 1
2-1 上至下(top-down) 2
2-2 下至上(bottom-up) 2
三 金奈米簇光學性質 6
3-1 尺寸效應 6
3-2 配位基效應 6
3-3 結構與電荷效應 7
四 光化學還原反應 8
第貳章 紫外光輔助合成多腺苷包覆金奈米簇 9
一 研究動機 9
二 實驗部分 10
2-1 實驗藥品 10
2-2 儀器設備 12
2-3 實驗操作與藥品配置 15
三 結果與討論 19
3-1 紫外光輔助合成多腺苷包覆金奈米簇反應機制之探討 19
3-2 多腺苷包覆金奈米簇之光學性質 43
四 結論 50
第參章 設計多腺苷包覆金奈米簇應用在螢光比例法偵測汞離子酵素活性與特定核苷酸序列 51
一 前言 51
1-1 金奈米簇的應用 51
二 研究動機 58
三 實驗部分 58
3-1 實驗藥品 58
3-2 儀器設備 61
3-3 實驗操作 62
四 結果與討論 67
4-1 多腺苷包覆金奈米簇以螢光比例法偵測特定核苷酸序列 67
4-2 多腺苷包覆金奈米簇以螢光比例法偵測乙醯膽鹼酯酶 76
4-3 多腺苷包覆金奈米簇以螢光比例法偵測汞離子 84
五 結論 90
第肆章 參考文獻 91
參考文獻 References
1. Zheng, J.; Nicovich, P. R.; Dickson, R. M., Highly Fluorescent Noble-Metal Quantum Dots. Annu. Rev. Phys. Chem. 2007, 58 (1), 409-431.
2. Chen, L.-Y.; Wang, C.-W.; Yuan, Z.; Chang, H.-T., Fluorescent Gold Nanoclusters: Recent Advances in Sensing and Imaging. Anal. Chem. 2015, 87 (1), 216-229.
3. Li, J.; Zhu, J.-J.; Xu, K., Fluorescent metal nanoclusters: From synthesis to applications. Trends in Analytical Chemistry 2014, 58 (0), 90-98.
4. Palmal, S.; Jana, N. R., Gold nanoclusters with enhanced tunable fluorescence as bioimaging probes. WIREs Nanomed Nanobiotechnol 2014, 6 (1), 102-110.
5. Xu, Y.; Sherwood, J.; Qin, Y.; Crowley, D.; Bonizzoni, M.; Bao, Y., The role of protein characteristics in the formation and fluorescence of Au nanoclusters. Nanoscale 2014, 6 (3), 1515-1524.
6. Wang, T.; Hu, X.; Dong, S., The fragmentation of gold nanoparticles induced by small biomolecules. Chem. Commun. 2008, (38), 4625-4627.
7. Huang, C.-C.; Yang, Z.; Lee, K.-H.; Chang, H.-T., Synthesis of Highly Fluorescent Gold Nanoparticles for Sensing Mercury(II). Angew. Chem. Int. Ed. 2007, 46 (36), 6824-6828.
8. Lin, C.-A. J.; Yang, T.-Y.; Lee, C.-H.; Huang, S. H.; Sperling, R. A.; Zanella, M.; Li, J. K.; Shen, J.-L.; Wang, H.-H.; Yeh, H.-I.; Parak, W. J.; Chang, W. H., Synthesis, Characterization, and Bioconjugation of Fluorescent Gold Nanoclusters toward Biological Labeling Applications. ACS Nano 2009, 3 (2), 395-401.
9. Habeeb Muhammed, M.; Ramesh, S.; Sinha, S.; Pal, S.; Pradeep, T., Two distinct fluorescent quantum clusters of gold starting from metallic nanoparticles by pH-dependent ligand etching. Nano Res 2008, 1 (4), 333-340.
10. Cui, M.; Zhao, Y.; Song, Q., Synthesis, optical properties and applications of ultra-small luminescent gold nanoclusters. Trends in Analytical Chemistry 2014, 57 (0), 73-82.
11. Habeeb Muhammed, M. A.; Verma, P. K.; Pal, S. K.; Retnakumari, A.; Koyakutty, M.; Nair, S.; Pradeep, T., Luminescent Quantum Clusters of Gold in Bulk by Albumin-Induced Core Etching of Nanoparticles: Metal Ion Sensing, Metal-Enhanced Luminescence, and Biolabeling. Chem. Eur. J. 2010, 16 (33), 10103-10112.
12. Zhu, M.; Lanni, E.; Garg, N.; Bier, M. E.; Jin, R., Kinetically Controlled, High-Yield Synthesis of Au25 Clusters. J. Am. Chem. Soc. 2008, 130 (4), 1138-1139.
13. Duan, H.; Nie, S., Etching Colloidal Gold Nanocrystals with Hyperbranched and Multivalent Polymers:  A New Route to Fluorescent and Water-Soluble Atomic Clusters. J. Am. Chem. Soc. 2007, 129 (9), 2412-2413.
14. Wen, F.; Dong, Y.; Feng, L.; Wang, S.; Zhang, S.; Zhang, X., Horseradish Peroxidase Functionalized Fluorescent Gold Nanoclusters for Hydrogen Peroxide Sensing. Anal. Chem. 2011, 83 (4), 1193-1196.
15. Xie, J.; Zheng, Y.; Ying, J. Y., Protein-Directed Synthesis of Highly Fluorescent Gold Nanoclusters. J. Am. Chem. Soc. 2009, 131 (3), 888-889.
16. Li, L.; Li, Z.; Zhang, H.; Zhang, S.; Majeed, I.; Tan, B., Effect of polymer ligand structures on fluorescence of gold clusters prepared by photoreduction. Nanoscale 2013, 5 (5), 1986-1992.
17. Liu, G.; Shao, Y.; Ma, K.; Cui, Q.; Wu, F.; Xu, S., Synthesis of DNA-templated fluorescent gold nanoclusters. Gold Bull 2012, 45 (2), 69-74.
18. Chan, P.-H.; Chen, Y.-C., Human Serum Albumin Stabilized Gold Nanoclusters as Selective Luminescent Probes for Staphylococcus aureus and Methicillin-Resistant Staphylococcus aureus. Anal. Chem. 2012, 84 (21), 8952-8956.
19. Wei, H.; Wang, Z.; Yang, L.; Tian, S.; Hou, C.; Lu, Y., Lysozyme-stabilized gold fluorescent cluster: Synthesis and application as Hg2+ sensor. Analyst 2010, 135 (6), 1406-1410.
20. Kawasaki, H.; Hamaguchi, K.; Osaka, I.; Arakawa, R., ph-Dependent Synthesis of Pepsin-Mediated Gold Nanoclusters with Blue Green and Red Fluorescent Emission. Adv. Funct. Mater. 2011, 21 (18), 3508-3515.
21. Lee, W. I.; Bae, Y.; Bard, A. J., Strong Blue Photoluminescence and ECL from OH-Terminated PAMAM Dendrimers in the Absence of Gold Nanoparticles. J. Am. Chem. Soc. 2004, 126 (27), 8358-8359.
22. Zheng, J.; Petty, J. T.; Dickson, R. M., High Quantum Yield Blue Emission from Water-Soluble Au8 Nanodots. J. Am. Chem. Soc. 2003, 125 (26), 7780-7781.
23. Chen, S.; Ingram, R. S.; Hostetler, M. J.; Pietron, J. J.; Murray, R. W.; Schaaff, T. G.; Khoury, J. T.; Alvarez, M. M.; Whetten, R. L., Gold Nanoelectrodes of Varied Size: Transition to Molecule-Like Charging. Science 1998, 280 (5372), 2098-2101.
24. Zheng, J.; Zhou, C.; Yu, M.; Liu, J., Different sized luminescent gold nanoparticles. Nanoscale 2012, 4 (14), 4073-4083.
25. Alivisatos, A. P., Semiconductor Clusters, Nanocrystals, and Quantum Dots. Science 1996, 271 (5251), 933-937.
26. Zheng, J.; Zhang, C.; Dickson, R. M., Highly Fluorescent, Water-Soluble, Size-Tunable Gold Quantum Dots. Phys. Rev. Lett. 2004, 93 (7), 077402.
27. Cha, S.-H.; Kim, J.-U.; Kim, K.-H.; Lee, J.-C., Preparation and Photoluminescent Properties of Gold(I)−Alkanethiolate Complexes Having Highly Ordered Supramolecular Structures. Chem. Mater. 2007, 19 (25), 6297-6303.
28. Wu, Z.; Jin, R., On the Ligand’s Role in the Fluorescence of Gold Nanoclusters. Nano Lett. 2010, 10 (7), 2568-2573.
29. Jin, R., Quantum sized, thiolate-protected gold nanoclusters. Nanoscale 2010, 2 (3), 343-362.
30. Devadas, M. S.; Kim, J.; Sinn, E.; Lee, D.; Goodson, T.; Ramakrishna, G., Unique Ultrafast Visible Luminescence in Monolayer-Protected Au25 Clusters. J. Phys. Chem. C 2010, 114 (51), 22417-22423.
31. Shichibu, Y.; Negishi, Y.; Watanabe, T.; Chaki, N. K.; Kawaguchi, H.; Tsukuda, T., Biicosahedral Gold Clusters [Au25(PPh3)10(SCnH2n+1)5Cl2]2+ (n = 2−18):  A Stepping Stone to Cluster-Assembled Materials. J. Phys. Chem. C 2007, 111 (22), 7845-7847.
32. McGilvray, K. L.; Decan, M. R.; Wang, D.; Scaiano, J. C., Facile Photochemical Synthesis of Unprotected Aqueous Gold Nanoparticles. J. Am. Chem. Soc. 2006, 128 (50), 15980-15981.
33. Carbone, L.; Jakab, A.; Khalavka, Y.; Sönnichsen, C., Light-Controlled One-Sided Growth of Large Plasmonic Gold Domains on Quantum Rods Observed on the Single Particle Level. Nano Lett. 2009, 9 (11), 3710-3714.
34. Quintana, M.; Ke, X.; Van Tendeloo, G.; Meneghetti, M.; Bittencourt, C.; Prato, M., Light-Induced Selective Deposition of Au Nanoparticles on Single-Wall Carbon Nanotubes. ACS Nano 2010, 4 (10), 6105-6113.
35. Grzelczak, M.; Liz-Marzan, L. M., The relevance of light in the formation of colloidal metal nanoparticles. Chem. Soc. Rev. 2014, 43 (7), 2089-2097.
36. Park, J.-W.; Shumaker-Parry, J. S., Structural Study of Citrate Layers on Gold Nanoparticles: Role of Intermolecular Interactions in Stabilizing Nanoparticles. J. Am. Chem. Soc. 2014, 136 (5), 1907-1921.
37. Wu, X.; Redmond, P. L.; Liu, H.; Chen, Y.; Steigerwald, M.; Brus, L., Photovoltage Mechanism for Room Light Conversion of Citrate Stabilized Silver Nanocrystal Seeds to Large Nanoprisms. J. Am. Chem. Soc. 2008, 130 (29), 9500-9506.
38. Xue, C.; Métraux, G. S.; Millstone, J. E.; Mirkin, C. A., Mechanistic Study of Photomediated Triangular Silver Nanoprism Growth. J. Am. Chem. Soc. 2008, 130 (26), 8337-8344.
39. Kennedy, T. A. C.; MacLean, J. L.; Liu, J., Blue emitting gold nanoclusters templated by poly-cytosine DNA at low pH and poly-adenine DNA at neutral pH. Chem. Commun. 2012, 48 (54), 6845-6847.
40. Liu, J., DNA-stabilized, fluorescent, metal nanoclusters for biosensor development. Trends in Analytical Chemistry 2014, 58 (0), 99-111.
41. Zhu, S.; Gorski, W.; Powell, D. R.; Walmsley, J. A., Synthesis, Structures, and Electrochemistry of Gold(III) Ethylenediamine Complexes and Interactions with Guanosine 5‘-Monophosphate. Inorg. Chem. 2006, 45 (6), 2688-2694.
42. Obliosca, J. M.; Babin, M. C.; Liu, C.; Liu, Y.-L.; Chen, Y.-A.; Batson, R. A.; Ganguly, M.; Petty, J. T.; Yeh, H.-C., A Complementary Palette of NanoCluster Beacons. ACS Nano 2014, 8 (10), 10150-10160.
43. Pyykko, P., Structural properties: Magic nanoclusters of gold. Nat. Nanotechnol. 2007, 2 (5), 273-274.
44. Fu, Y.; Xu, S.; Pan, C.; Ye, M.; Zou, H.; Guo, B., A matrix of 3,4-diaminobenzophenone for the analysis of oligonucleotides by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Nucleic Acids Res. 2006, 34 (13), e94.
45. Chen, W.; Chen, S., Oxygen Electroreduction Catalyzed by Gold Nanoclusters: Strong Core Size Effects. Angew. Chem. Int. Ed. 2009, 48 (24), 4386-4389.
46. Wang, X.-X.; Wu, Q.; Shan, Z.; Huang, Q.-M., BSA-stabilized Au clusters as peroxidase mimetics for use in xanthine detection. Biosens. Bioelectron. 2011, 26 (8), 3614-3619.
47. Shivhare, A.; Ambrose, S. J.; Zhang, H.; Purves, R. W.; Scott, R. W. J., Stable and recyclable Au25 clusters for the reduction of 4-nitrophenol. Chem. Commun. 2013, 49 (3), 276-278.
48. Nie, X.; Qian, H.; Ge, Q.; Xu, H.; Jin, R., CO Oxidation Catalyzed by Oxide-Supported Au25(SR)18 Nanoclusters and Identification of Perimeter Sites as Active Centers. ACS Nano 2012, 6 (7), 6014-6022.
49. Kauffman, D. R.; Alfonso, D.; Matranga, C.; Qian, H.; Jin, R., Experimental and Computational Investigation of Au25 Clusters and CO2: A Unique Interaction and Enhanced Electrocatalytic Activity. J. Am. Chem. Soc. 2012, 134 (24), 10237-10243.
50. Hu, D.; Sheng, Z.; Gong, P.; Zhang, P.; Cai, L., Highly selective fluorescent sensors for Hg2+ based on bovine serum albumin-capped gold nanoclusters. Analyst 2010, 135 (6), 1411-1416.
51. Lin, Y.-H.; Tseng, W.-L., Ultrasensitive Sensing of Hg2+ and CH3Hg+ Based on the Fluorescence Quenching of Lysozyme Type VI-Stabilized Gold Nanoclusters. Anal. Chem. 2010, 82 (22), 9194-9200.
52. Xie, J.; Zheng, Y.; Ying, J. Y., Highly selective and ultrasensitive detection of Hg2+ based on fluorescence quenching of Au nanoclusters by Hg2+-Au+ interactions. Chem. Commun. 2010, 46 (6), 961-963.
53. Lin, Z.; Luo, F.; Dong, T.; Zheng, L.; Wang, Y.; Chi, Y.; Chen, G., Recyclable fluorescent gold nanocluster membrane for visual sensing of copper(ii) ion in aqueous solution. Analyst 2012, 137 (10), 2394-2399.
54. Liu, H.; Zhang, X.; Wu, X.; Jiang, L.; Burda, C.; Zhu, J.-J., Rapid sonochemical synthesis of highly luminescent non-toxic AuNCs and Au@AgNCs and Cu (ii) sensing. Chem. Commun. 2011, 47 (14), 4237-4239.
55. Durgadas, C. V.; Sharma, C. P.; Sreenivasan, K., Fluorescent gold clusters as nanosensors for copper ions in live cells. Analyst 2011, 136 (5), 933-940.
56. Lu, D.; Liu, L.; Li, F.; Shuang, S.; Li, Y.; Choi, M. M. F.; Dong, C., Lysozyme-stabilized gold nanoclusters as a novel fluorescence probe for cyanide recognition. Spectrochim. Acta, Part A 2014, 121 (0), 77-80.
57. Cui, M.-L.; Liu, J.-M.; Wang, X.-X.; Lin, L.-P.; Jiao, L.; Zheng, Z.-Y.; Zhang, L.-H.; Jiang, S.-L., A promising gold nanocluster fluorescent sensor for the highly sensitive and selective detection of S2−. Sens. Actuators, B: Chem. 2013, 188 (0), 53-58.
58. Liu, H.; Yang, G.; Abdel-Halim, E. S.; Zhu, J.-J., Highly selective and ultrasensitive detection of nitrite based on fluorescent gold nanoclusters. Talanta 2013, 104 (0), 135-139.
59. Chen, W.-Y.; Huang, C.-C.; Chen, L.-Y.; Chang, H.-T., Self-assembly of hybridized ligands on gold nanodots: tunable photoluminescence and sensing of nitrite. Nanoscale 2014, 6 (19), 11078-11083.
60. Xia, X.; Long, Y.; Wang, J., Glucose oxidase-functionalized fluorescent gold nanoclusters as probes for glucose. Anal. Chim. Acta 2013, 772 (0), 81-86.
61. Nair, L. V.; Philips, D. S.; Jayasree, R. S.; Ajayaghosh, A., A Near-Infrared Fluorescent Nanosensor (AuC@Urease) for the Selective Detection of Blood Urea. Small 2013, 9 (16), 2673-2677.
62. Selvaprakash, K.; Chen, Y.-C., Using protein-encapsulated gold nanoclusters as photoluminescent sensing probes for biomolecules. Biosens. Bioelectron. 2014, 61 (0), 88-94.
63. Li, P.-H.; Lin, J.-Y.; Chen, C.-T.; Ciou, W.-R.; Chan, P.-H.; Luo, L.; Hsu, H.-Y.; Diau, E. W.-G.; Chen, Y.-C., Using Gold Nanoclusters As Selective Luminescent Probes for Phosphate-Containing Metabolites. Anal. Chem. 2012, 84 (13), 5484-5488.
64. Tian, D.; Qian, Z.; Xia, Y.; Zhu, C., Gold Nanocluster-Based Fluorescent Probes for Near-Infrared and Turn-On Sensing of Glutathione in Living Cells. Langmuir 2012, 28 (8), 3945-3951.
65. Chen, T.-H.; Tseng, W.-L., (Lysozyme Type VI)-Stabilized Au8 Clusters: Synthesis Mechanism and Application for Sensing of Glutathione in a Single Drop of Blood. Small 2012, 8 (12), 1912-1919.
66. Wang, Y.; Chen, J.; Irudayaraj, J., Nuclear Targeting Dynamics of Gold Nanoclusters for Enhanced Therapy of HER2+ Breast Cancer. ACS Nano 2011, 5 (12), 9718-9725.
67. Wu, X.; He, X.; Wang, K.; Xie, C.; Zhou, B.; Qing, Z., Ultrasmall near-infrared gold nanoclusters for tumor fluorescence imaging in vivo. Nanoscale 2010, 2 (10), 2244-2249.
68. Liu, C.-L.; Ho, M.-L.; Chen, Y.-C.; Hsieh, C.-C.; Lin, Y.-C.; Wang, Y.-H.; Yang, M.-J.; Duan, H.-S.; Chen, B.-S.; Lee, J.-F.; Hsiao, J.-K.; Chou, P.-T., Thiol-Functionalized Gold Nanodots: Two-Photon Absorption Property and Imaging In Vitro. J. Phys. Chem. Commun. 2009, 113 (50), 21082-21089.
69. Shang, L.; Dorlich, R. M.; Brandholt, S.; Schneider, R.; Trouillet, V.; Bruns, M.; Gerthsen, D.; Nienhaus, G. U., Facile preparation of water-soluble fluorescent gold nanoclusters for cellular imaging applications. Nanoscale 2011, 3 (5), 2009-2014.
70. Oh, E.; Fatemi, F. K.; Currie, M.; Delehanty, J. B.; Pons, T.; Fragola, A.; Lévêque-Fort, S.; Goswami, R.; Susumu, K.; Huston, A. L.; Medintz, I. L., PEGylated Luminescent Gold Nanoclusters: Synthesis, Characterization, Bioconjugation, and Application to One- and Two-Photon Cellular Imaging. Part. Part. Syst. Charact. 2013, 30 (5), 453-466.
71. Chen, T.-H.; Yu, C.-J.; Tseng, W.-L., Sinapinic acid-directed synthesis of gold nanoclusters and their application to quantitative matrix-assisted laser desorption/ionization mass spectrometry. Nanoscale 2014, 6 (3), 1347-1353.
72. Vanderpuije, B. N. Y.; Han, G.; Rotello, V. M.; Vachet, R. W., Mixed Monolayer-Protected Gold Nanoclusters as Selective Peptide Extraction Agents for MALDI-MS Analysis. Anal. Chem. 2006, 78 (15), 5491-5496.
73. Chan, P.-H.; Wong, S.-Y.; Lin, S.-H.; Chen, Y.-C., Lysozyme-encapsulated gold nanocluster-based affinity mass spectrometry for pathogenic bacteria. Rapid Commun. Mass Spectrom. 2013, 27 (19), 2143-2148.
74. Yin, H.; Tang, H.; Wang, D.; Gao, Y.; Tang, Z., Facile Synthesis of Surfactant-Free Au Cluster/Graphene Hybrids for High-Performance Oxygen Reduction Reaction. ACS Nano 2012, 6 (9), 8288-8297.
75. Miao, Y.; He, N.; Zhu, J.-J., History and New Developments of Assays for Cholinesterase Activity and Inhibition. Chem. Rev. 2010, 110 (9), 5216-5234.
76. Lin, J.-H.; Chang, C.-W.; Wu, Z.-H.; Tseng, W.-L., Colorimetric Assay for S-Adenosylhomocysteine Hydrolase Activity and Inhibition Using Fluorosurfactant-Capped Gold Nanoparticles. Anal. Chem. 2010, 82 (21), 8775-8779.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code