Responsive image
博碩士論文 etd-0609100-130955 詳細資訊
Title page for etd-0609100-130955
論文名稱
Title
應用吸收式冷凍系統以增強發電機組能力之分析研究
The Application of Absorption Cooling Systems in Enhancing Power Generation Capacity
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
92
研究生
Author
指導教授
Advisor
召集委員
Convenor

口試委員
Advisory Committee
口試日期
Date of Exam
2000-06-08
繳交日期
Date of Submission
2000-06-09
關鍵字
Keywords
發電量、燃氣渦輪機、吸收式冷凍系統
Absorption chiller, Power generation, Gas turbine
統計
Statistics
本論文已被瀏覽 5721 次,被下載 8795
The thesis/dissertation has been browsed 5721 times, has been downloaded 8795 times.
中文摘要
電源開發的規劃,由廠址勘察、可行性研究、環境影響評估、政府審查等過程,至少需時三至五年。若再加上土地取得不易及環保意識高漲的情況下,可說是緩不濟急。因此,針對既有發電機組之增加發電容量,乃是當務之急的工作。
傳統之方式,常藉由不斷的努力提高燃燒室溫度,以增加發電機輸出功率。然而,如此不僅排氣溫度增高,而且機組之壓縮比也迅速增大,使在發電機組的結構設計愈加困難。本研究則是採取創新之思考方式,亦即降低進氣溫度,增加空氣流量密度,以增加氣渦輪機發電容量。可使得夏季之發電能力增加10% ~ 20%之鉅,效果極為顯著。
吸收式燃氣渦輪機進氣冷卻系統(CTIAC-ABS)之優點:增加燃氣渦輪機發電量、熱耗率的改善、燃氣渦輪機壽命延長、增進複循環發電系統發電容量、減緩新電廠建造的時程、進氣盤管之冷凝水可當作電廠之飼水,減少自來水消耗量。吸收式燃氣渦輪機進氣冷卻系統之缺點:進氣冷卻系統所需額外的土地面積、增加電廠維修費、初期資成本高
汽電共生系統對通往製程的高壓蒸汽加以分流,引導部分的蒸汽給進氣冷卻系統之吸收式冷凍主機當作熱源。其優點有:1.可以替現在國內汽電共生廠大量蒸汽的使用找到新用途。2.使用蒸汽雙效式吸收式主機可節省大部分進氣冷卻系統運轉費用。
將實際發電廠資料運轉資料分析,並配合燃氣渦輪機設計規格與應用EPRI發展之動力廠模擬程式(GateCycle),分析出壓縮機入口溫度、相對濕度、大氣壓力、進氣壓降與渦輪機排氣壓降與發電量之靈敏度分析。當壓縮機入口溫度由30OC降低至10OC時,結果顯示空氣質量流率上昇6.3%、燃料質量流率上昇5.95%、排氣溫度下降1.7%與質量流率上昇6.3%、淨發電量上昇12.2%、熱耗率下降3.7%與效率1.32%等之優點。並獲得外氣乾球溫度與實際運轉發電量回歸方程式。
在外氣乾球溫度30OC時,使用蒸汽雙效吸收式CTIAC系統,可使原系統熱耗率提昇3.8%,熱效率提昇1.2%。若改用瓦斯直燃吸收式CTIAC系統之熱耗率約有5%之提昇,熱效率提昇1.5%。此結果與EPRI之GateCycle模擬之結果比對(表3.2)有相同的趨勢,故模擬結果及實際資料計算出之CTIAC-ABS系統之熱效率與熱耗率在進氣溫度10OC,有最佳運轉點。
經濟效益評估顯示出,當吸收式進氣冷卻系統應用於(Siemens V84.2),於民國八十七年時,每天六小時時段使用下回收年限為4.8年;八小時時段為2.9年,十小時時段為2.2年。顯示此進氣冷卻系統是極可行之燃氣渦輪機效率改良系統。
若應用於未來複循環機組之燃氣渦輪機發電量5706 MW,提昇12.2%,達696MW,相當於一座火力發電廠之發電量。將可增加全國總裝置容量(26880MW,87年)之2.6%。對國內能源短缺現象提供另一解決方向。
Abstract
It takes 3~5 years to finish a power plaint project including location, reliability, environment evaluating, investigation, etc. In addition, it is difficulty to get a right place and hinder by the environment protection. So, it is an important class on boosting the existing power generation capacity.
It was used to enhance power generation capacity by increasing the combustion chamber temperature in traditional way. However, it not only increases the exhaust temperature of gas turbine, but also increase the compressor ration. However, it is more difficulty on the design of gas turbine. And then we consider the other way in this thesis by reducing inlet air temperature of compressor to increase the density and flow of air and the power generation capacity. The result is magic that the power generation capacity enhance 10% ~20%.
The analysis of Combustion Turbine Inlet Air Cooling System by Absorption refrigerant system(CTIAC-ABS) describe in chapter 2 including fundamental of a gas turbine, the absorption refrigerant chiller, the inlet cooling coil and cogeneration system. It lets us know how to select the style of cogeneration and specification of an absorption refrigerant chiller.
It is important to consider the mass condensate water in the air side of inlet cooling coil. The author suggest to use the analysis method of wet-coil developed by Threlkeld(1970).
The CTIAC system could be used to the Gas Turbine System, Gas Turbine with HRSG System and Combined System. Because of there is not high pressure steam, we can use the fired-gas absorption refrigerant system as the source of chiller on the CTIAC-ABS system. There is the high pressure steam of Gas Turbine with HRSG System and Combined System. So we can divided the high pressure steam into two part, one to process and the other could be used as the heat source of absorption refrigerant chiller There are two advantages of using CTIAC-ABS on cogeneration power plaint.
1.The new purpose of mass high pressure steam could be used in cogeneration power plaint in Taiwan.
2.Reduction operational cost of CTIAC-ABS
The author finished the sensibility of power generation capacity with the analysis of practical operative data, classification of gas turbine and the power plaint Simulation program (GateCycle). When the compressor inlet temperature decrease from 30OC to 10OC, the results are : air flow rate increase 6.3%, fuel flow rate increase 5.95%, exhaust air temperature decrease 1.7% and exhaust air flow rate increase 6.3%, net power output increase 12.2%, heat rat decrease 3.7% and thermal efficiency upward 1.32%.Then, the author got a simulative equation of power capacity.
The typical gas turbines operate at full-load condition, 52.25% of annual hours, in 1998 in Taiwan. Gas turbines were almost full load on daytime and half-load or closed at night.
If we apply the CTIAC-ABS system on TPC's combined power plant, it can operate at 8:00~18:00 on daytime and shutdown at night. If there is high pressure steam in the cogeneration with HRSG, the CTIAC-ABS system can operate at the time that the cogeneration power plant is operative.
How to decide the capacity of absorption refrigerant chiller? The author decided the maximum capacity of absorption refrigerant chiller operating at 31OC , 80%RH of weather condition that limit by 2.5% ***. The author forecasts the lowest compressor inlet air temperature will be 10OC.
The steam double-effect CTIAC-ABS system could make the compressor inlet air temperature decrease from 30OC to 10 OC and enhances the heat rate 3.8%, the thermal efficiency 1.2%. The fired-direct CTIAC-ABS system also enhances the heat rate 5% and the thermal efficiency 1.5%. The results are close to the simulation of GateCycle program. So, the author compared the result of simulation with real data that the optimumal operative point of the CTIAC-ABS system is 10OC.
目次 Table of Contents
目錄
目錄 I
表目錄 II
圖目錄 IV
第一章 續論 1
1.1 研究動機與目的 1
1.2 文獻回顧 6
1.3 研究內容 8
1.4 研究架構 10
第二章 吸收式進氣冷卻系統與汽電共生理論基礎 11
2.1 燃氣渦輪機理論分析 11
2.2 影響氣渦輪機熱效率的因素 15
2.3 吸收式冰水主機之篩選 20
2.4 汽電共生理論與型式 24
第三章 吸收式進氣冷卻系統模擬分析 32
3.1 燃氣渦輪機Siemens V84.2實際運轉數據 32
3.2 燃氣渦輪機Siemens V84.2電腦模擬分析 38
3.3 使用吸收式進氣冷卻系統可提升之發電量 48
3.4 複循環發電廠之運轉性能分析 54
第四章 吸收式進氣冷卻系統與氣渦輪機之系統整合 58
4.1吸收式進氣冷卻系統整合 58
4.2 民國87年氣象資料分析 63
4.3 評估吸收式進氣冷卻系統使用時機 67
第五章 經濟效益評估 70
5.1 吸收式進氣冷卻系統之最佳化 70
5.2 吸收式進氣冷卻系統之經濟效益分析 79
5.3 預期對國內能源供應之貢獻 84
第六章 結論與建議 87
參考文獻 90
附件 92
參考文獻 References
參考文獻
[1] P.E. Hufford "Absorption Chillers Maximize Cogenation Value", ASHRAE Transactions: Symposia,1991,pp.428-433
[2] B.Mohaty and G,Paloso Jr, "Enhancing gas Turbine Performance By Intake Air Cooling Using an Absorption Chiller", Heat Recovery Systems &CHP Vol,1,pp. 41-50, 1995
[3] M. De Lucia, R. Bronconi, E. Carnevale, "Performance and Economic Enhancement of Cogeneration Gas Turbines Through Compressor Inlet Air Cooling", Journal of Engineering for Gas Turbine and Power, April 1994, pp.360~365
[4] Yousef S. H. Najjar, "Enhancement Of Performance of gas Turbine Engines By inlet Air Cooling and Cogeneration", Applied Thermal Engineering Vol. 16 No. 2 pp.163-173,1996
[5] 劉德勇, "汽電共生與儲冷整合系統之分析經濟效益評估",民國84年, 中山大學機械工程研究所碩士論文
[6] M. A. Ait-Ali, "Optimum Power Boosting Of Gas Turbine Cycles With Compressor Inlet Air Refrigeration", Transaction of ASME, Vol, 119, January 1997
[7] A.ISHIKAW, M.ATSUMI, A.COGAWARA, "Liquid air storage system to Boost Gas Turbine Capacity ",PowerGen
[8] E.I. Mackie, P.Eng. "Inlet Air Cooling for a combustion turbine Using Thermal Storage" 1994 ASHRAE Transactions, vol.100 pt. 1:572-582
[9]"The Gas Turbine World Handbook: Principle an Practices " Tony Giampaolo, MSME, PE
[10]"Design Guide: Combustion Turbine Inlet Air Cooling Systems " Willian E. Stewart, Jr. edited by ASHRAE
[11]Andrepont, J.S. 1994 Performance and economics of CT inlet air cooling using chilled water stirage. ASHRAE treansactions 100(1):587-594
[12]ASHRAE. 1997. 1997 ASHRAE Handbook- Fundamentents. Atlanta : American Society of Heating, Refrigerating and Air-Conditioning Engineering, Inc.
[13]Giourof, A. 1995. Gas Turbine inlet-air cooling: You can almost pick your payback. Power, Vol. 139, No.5(May): 56-58
[14]MacCracken, C.D. 1994. Overview of the progess and the potential of thermal storage in off-peak turbine cooling. ASHRAE transactions, Vol. 100 Pt. 1: 569-571
[15]"Fundamentals of Heat and Mass Transfer", Fourth Edition, Frank P. Incropera, David P. Dewitt
[16]"Process Heat Transfer" G. F. Hewitt, G. L. Shries, T. R. Bott,1994
[17]"冷凍與空調", Wilbert F. Stoecker, Jerold W. Jones, second edition,蘇金佳譯.
[18]"溴化鋰吸收式製冷空調技術實用手冊" 戴永慶, 機械工業出版社
[19]張娜, 蔡瑞賢"燃氣渦輪機估價方程式" 中國科學熱物理研究所和北京燃氣渦輪機研究與發展公司。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code