Responsive image
博碩士論文 etd-0609113-230351 詳細資訊
Title page for etd-0609113-230351
論文名稱
Title
永續性綠色整治評估工具在石油碳氫化合物污染場址之應用
Application of sustainable green remediation assessment tools at petroleum-hydrocarbon contaminated sites
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
114
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-06-26
繳交日期
Date of Submission
2013-07-09
關鍵字
Keywords
永續性綠色整治評估、石油碳氫化合物、綠色整治、溫室氣體
greenhouse gases, sustainability assessment of green remediation, petroleum hydrocarbons, green remediation
統計
Statistics
本論文已被瀏覽 5726 次,被下載 0
The thesis/dissertation has been browsed 5726 times, has been downloaded 0 times.
中文摘要
本研究以一國內受石油碳氫化合物污染之地下水場址為案例,以永續性綠色整治評估工具(Sustainable Remediation Tool,SRT)軟體進行評估,利用不同地下水污染場址整治方法,評估污染整治時期所需消耗之能源及整治費用,以及目前極關切之議題:如各種整治過程中產生之溫室效應氣體。本研究依美國空軍單位所研發之永續性綠色整治評估工具(Sustainable Remediation Tool,SRT)來進行污染場址之模擬,研究結果可有效評估各種整治工法對環境造成的影響,以作為決策者或執行者進行整治工法篩選及整治效益評估之依據。以往污染責任承擔者或企業主因選擇錯誤的整治方法而成效不彰,且無法徹底整治完成,導致最終清理環境需付出龐大的整治經費,亦未能讓整體環境以更友善的整治工法作為技術上的選擇,故責任承擔者為迅速達到法規標準所使用的整治方法,在過程往往消耗大量的能源與資源,期間亦伴隨產生大量的廢水、廢氣與廢棄物,使得整體自然環境造成相當大的威脅與衝擊,等同於二次污染行為,導致污染整治所發揮的經濟效益相對降低。故綠色整治方式漸漸孕育而生,其主要是在執行整治時必須盡量與相關再甦方案結合,詳盡考慮所有對環境可能產生衝擊,並採取對整體環境最大淨化效益之清理行動方案,以要求對環境及生態等做到最小衝擊。而本研究受石油碳氫化合物污染之地下水場址經由SRT模式模擬,選用較符合綠色整治方式進行評估比較,故以加強生物整治法(Enhanced Bioremediation, EB)及監測式自然衰減法(Monitored Natural Attenuation, MNA),二種較符合綠色環保之整治方式進行SRT模式評估,藉此比較兩種方式應用在石油碳氫化合物污染場址之整治效益上的區別,經SRT模式模擬結果顯示,以EB及MNA為整治工法時,使用EB及MNA所釋放之溫室氣體排放CO2分別為EB32 tons及MNA1.5 tons;NOx分別為EB0.19 tons及MNA0.009 tons;SOx分別為EB0.058 tons及MNA0.0026 tons;PM10分別為EB0.0094 tons及MNA0.0004 tons。在總能源消耗分別為EB81,000 kWh及MNA 3,600 kWh。技術成本之模擬結果顯示,於整治期間EB及MNA整治方案預估將花費$1,200,000及$200,000。故研究發現以MNA來進行污染整治,於整治期間費用及溫室氣體排放量等方面皆可得到較高的效益且較符合綠色整治的效果。
Abstract
In this study, a country affected by petroleum hydrocarbon contaminated groundwater sites for the case to green remediation sustainability assessment tool (Sustainable Remediation Tool, SRT) software to evaluate the use of different methods of groundwater contaminated site remediation, remediation assessment period The energy consumption required and remediation costs, and currently very concerned about the question: If the remediation process produces a variety of greenhouse gases. In this study, developed by the U.S. Air Force units in the green remediation sustainability assessment tool (Sustainable Remediation Tool, SRT) for the simulation of contaminated sites, the findings can effectively evaluate various remediation work on the environmental impact of the law, as a decision-maker or remediation work performed by screening and remediation benefit assessment method basis. Assume responsibility for the pollution in the past mainly due to the wrong choice or enterprise remediation methods ineffective and unable to complete a thorough renovation, leading to the final clean up the environment will have to pay a huge renovation funds, nor make the whole environment more friendly to labor law as a technical regulation choice, therefore duty-bearers to meet regulatory standards rapidly remediation methods used in the process often consumes a lot of energy and resources, is also accompanied by a large amount during the period of wastewater, waste gas and waste, making the overall natural environment caused considerable threat and shock, equivalent to the behavior of secondary pollution, causing pollution remediation played relatively lower cost. Green Remediation way it gradually bred, which is mainly in the implementation of remediation must try to re-Soviet program combines with relevant and detailed consideration of all potential impacts on the environment, and to take on the overall environmental benefits of the clean-up operations largest cleanup program to require and so do the minimum environmental and ecological impact. In this study, groundwater contaminated by petroleum hydrocarbons site via SRT model simulations, using more in line with environmental remediation methods evaluated comparing it to enhance bioremediation (Enhanced Bioremediation, EB) and Monitored natural attenuation (Monitored Natural Attenuation , MNA), two kinds of regulation more in line with the way Green SRT model assessment, to compare the two methods used in petroleum hydrocarbon contaminated sites remediation effectiveness of the difference, the SRT model simulation results show that with EB and MNA as a remediation engineering methods, the use of EB and MNA released CO2 greenhouse gas emissions were EB 32 tons and MNA 1.5 tons; NOx were EB 0.19 tons and MNA 0.009 tons; SOx were EB 0.058 tons and MNA 0. 0026 tons; PM10 were EB 0.0094 tons and MNA 0.0004 tons. While the total energy consumption was EB 81, 000 kWh and MNA 3,600 kWh. Simulation results show that the cost of the technology, and the MNA for remediation remediation programs during the EB estimate will cost $ 1,200,000 and $ 200,000. Therefore, studies found that MNA for remediation, remediation expenses for the period in greenhouse gas emissions and other aspects can get higher efficiency and more in line with environmental remediation effect.
目次 Table of Contents
目 錄
論文審定書 i
謝 誌 ii
摘 要 iii
Abstract iv
目 錄 vi
圖目錄 ix
表目錄 xi
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的 2
第二章 文獻回顧 3
2.1 地下水油品污染來源 3
2.1.1 石油碳氫化合物之特性及其危害 4
2.1.2 石油碳氫化合物之管制標準 7
2.2 土壤及地下水整治技術發展趨勢 8
2.3監測式自然衰減 (monitored natural attenuation, MNA) 9
2.3.1基本原理 9
2.3.2自然衰減機制 10
2.3.3自然衰減優缺點及使用限制 16
2.3.4自然衰減評估參數介紹 17
2.3.5監測式自然衰減於實場之案例 18
2.4 綠色整治技術 20
2.5 生物復育技術之定義 21
2.6 現地加強式生物整治技術 21
2.7 石油碳氫化合物之生物分解 23
2.8土壤及地下水永續性綠色整治評估工具 27
2.8.1永續性綠色整治技術 28
2.8.2永續性綠色整治評估工具 29
第三章 場址背景介紹 42
3.1 場址調查 42
3.1.1場址背景 42
3.2場址特性 43
3.2.1地形條件 43
3.2.2地質條件 44
3.2.3氣候條件 46
3.2.4地表水文 48
3.2.5水文地質 49
3.2.6地下水文 51
3.3污染物、污染範圍及污染程度 52
3.3.1桃園縣環保局調查結果 52
3.3.2中油公司補充調查結果 54
3.3.3中油公司污染改善成效評估結果 58
3.3.4中油公司「改善計畫書」定期監測結果 61
3.3.5自然衰減採樣分析 68
3.4永續性綠色整治評估工具 73
3.4.1評估平台 73
3.4.2評估架構 74
3.4.3第一階系統( Tier 1 System) 77
3.4.4第二階系統( Tier 2 System) 77
3.4.5第一階( Tier 1)與第二階( Tier 2)的選用差異 78
第四章 結果與討論 79
4.1 SRT評估模式 79
4.2 SRT模式第一階段評估 79
4.3 SRT模式第二階段評估 85
4.4 SRT模式評估結果討論 88
第五章 結論與建議 93
5.1結論 93
5.2建議 94
參考文獻 95
參考文獻 References
參考文獻
1. Abalos, A., Vin˜as, M., Sabate´, J., Manresa, M. A. and Solanas, A. M., (2004). Enhanced biodegradation of Casablanca crude oil by a microbial consortium in presence of a rhamnolipid produced by Pseudomonas aeruginosa AT10. Biodegradation, 15, 249-260.
2. Abu, G. O. and Dike, P. O., (2008). A study of natural attenuation processes involved in a microcosm model of a crude oil-impacted wetland sediment in the Niger Delta. Bioresource Technology, 99, 4761-4767.
3. Air Force Center for Engineering and the Environment website, Resource Library ,Technology Transfer ,Programs and Initiatives, Sustainable Remediation, http://www.afcee.af.mil/ resources/technologytransfer/programsandinitiatives/sustainableremediation/srt/index.asp.
4. Air Force Center for Engineering and the Environment , ”Sustainable Remediation Tool User Guide”, May 2010.
5. Alvarez-Cohen, L. and Speitel Jr., G. E., (2001). Kinetics of aerobic cometabolism of chlorinated solvents. Biodegradation, 12, 105-126.
6. Bacosa, H., Suto, K. and Inoue, C., (2010). Preferential degradation of aromatic hydrocarbons in kerosene by a microbial consortium. International Biodeterioration & Biodegradation, 64, 702-710.
7. Brar, S. K., Verma, M. R., Surampalli, Y., Misra, K., Tyagi, R. D. and Meunier, J. F., (2006). Blais, Bioremediation of hazardous wastes-a review. Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management, 10, 59-72.
8. Brassington, K. J., Hough, R. L., Paton, G. I., Semple, K. T., Risdon, G. C., Crossley, J., Hay, I., Askari, K., and Pollard, S. J. T., (2007). Weathered hydrocarbon wastes: management primer. Critical Reviews in Environmental Science and Technology, 37, 199-232.
9. Bruce1, L., Kolhatkar, A. and Cuthbertson, J., (2010). Comparison of BTEX attenuation rates under anaerobic conditions. International Journal of Soil, Sediment and Water, 3, 2-11.
10. Campbell, M. A., Chain, P. S. G., Dang, H. Y., El Sheikh, A. F., Norton, J. M., Ward, N. L., Ward, B. B. and Klotz, M. G., (2011). Nitrosococcus watsonii sp. nov., a new species of marine obligate ammonia-oxidizing bacteria that is not omnipresent in the world's oceans: calls to validate the names 'Nitrosococcus halophilus' and 'Nitrosomonas mobilis' FEMS Microbiology Ecology, 76, 39-48.
11. Chen, J. S., Liang, C. P., Chen, C. Y., and Liu, C. W., (2007). Composite analytical solutions for a soil vapor extraction system. Hydrological Processes : in press, (SCI )
12. Chen, J. S., Liu, C. W., Hsu, H. T. and Liao, C. M., (2003). A Lapace transformed power series solution for solute transport in a convergent flow field with scale-dependent dispersion. Water Resources Research, 39, 1229.
13. Chen, K. F., Kao, C. M., Chen, C. W., Surampalli, R. Y. and Lee, M. S., (2010). Control of petroleum-hydrocarbon contaminated groundwater by intrinsic and enhanced bioremediation. Journal of Environmental Sciences, 22, 864-871.
14.Chen, K. F., Kao, C. M., Chen, T. Y., Weng, C. H. and Tsai, C. T., (2006). Intrinsic bioremediation of MTBE-contaminated groundwater at a petroleum-hydrocarbon spill site. Environmental Geology, 50, 439-445.
15. Chen, K. F., Kao, C. M., Chen, C. W., Surampalli, R. Y. and Lee, M. S., (2010). Control of petroleum-hydrocarbon contaminated groundwater by intrinsic and enhanced bioremediation. Journal of Environmental Sciences, 22, 864-871.
16. Coates, J. D., Chakraborty, R. and McInerney, M. J., (2002). Anaerobic benzene biodegradation - a new era. Research in Microbiology, 153, 621-628.
17. Coupland, K. and Johnson, D. B., (2004). Geochemistry and microbiology of an impounded subterranean acidic water body at Mynydd Parys, Anglesey, Wales. Geobiology, 2, 77-86.
18. Cravo-Laureau, C., Grossi, V., Raphel, D., Matheron, R. and Hirschler-Rea, A., (2005). Anaerobic n-alkane metabolism by a sulfate-reducing bacterium. Desulfatibacillum aiphaticivorans Strain CV2803. Applied Environmental Microbiology, 71, 3458-3467.
19. Cuthbertson, J. F., Kaestner, J. A. and Bruce, L. G., (2007). Use of high concentration magnesium sulfate solution to remediate petroleum impacted groundwater. Proceedings of the Annual International Conference on Soils, Sediments. Water and Energy, 12, 24
20. Cuthbertson, J., Patterson, S., O'Harte, F. P. M. and Bell, P. M., (2009). Investigation of the effect of oral metformin on dipeptidylpeptidase-4 (DPP-4) activity in Type 2 diabetes, Journal compilation, Diabetes UK. Diabetic Medicine, 26, 649-654.
21. Cuthbertson, J. and Schumacher, M., (2010). Full scale implementation of sulfate enhanced biodegradation to remediate petroleum impacted groundwater. Proceedings of the Annual International Conference on Soils, Sediments, Water and Energy, 14, 15.
22. Das, K. and Mukherjee, A. K., (2006). Crude petroleum-oil biodegradation efficiency of Bacillus subtilis and Pseudomonas aeruginosa strains isolated from a petroleum-oil contaminated soil from North-East India, Bioresource Technology, 10, 10-16.
23. Dyer M., (2003). Field investigation into the biodegration of TCE and BTEX at a formermetal plating works. Engineering Geology, 70, 321-329.
24. Environment Agency., (2005). The UK Approach for Evaluating Human Health Risks from Petroleum Hydrocarbons in Soils. Science Report, P5-080/TR3.
25. Hamamura, N., Olson, S. H., Ward, D. M. and Inskeep, W. P., (2005). Diversity and functional analysis of bacterial communities associated with natural hydrocarbon seeps in acidic soils at Rainbow Springs, Yellowstone National Park. Applied and Environmental Microbiology, 71, 5943-5950.
26. Google地圖 http://maps.google.com.tw/,2013
27. Illman, W. A. and Alvarez, P. J., (2009). Performance Assessment of Bioremediation and Natural Attenuation. Critical Reviews in Environmental Science and Technology, 39, 209-270.
28. Illinois Environmental Protection Agency, Greener Cleanups website, http://www.epa.state.il.us/land/greener-cleanups/.
29. Jahn, M. K., Haderlein, S. B. and Meckenstock, R. U., (2005). Anaerobic degradation of benzene, toluene, ethylbenzene, and o-xylene in sediment-free iron-reducing enrichment cultures. Applied and Environmental Microbiology, 71, 3355-3358.
30. Jehmlich, N., Kleinsteuber, S., Vogt, C., Benndorf, D., Harms, H., Schmidt, F., von Bergen, M. and Seifert, J., (2010). Phylogenetic and proteomic analysis of an anaerobic toluene-degrading community. Journal of Applied Microbiology ISSN, 1364-5072.
31. Minnesota Pollution Control Agency, Greener Practices Toolkit website, http://www.pca.state.mn.us/index.php/topics/preventing- waste-and-pollution/sustainability/index.html
32. Nakagawa, T., Nakagawa, S., Inagaki, F., Takai, K., and Horikoshi, K., (2004). Phylogenetic diversity of sulfate-reducing prokaryotes in active deep-sea hydrothermal vent chimney structures. FEMS Microbiology Letters, 232, 145-152
33. Kao, C. M. and Prosser, J., (1999). Intrinsic bioremediation of trichloroethene and chlorobenzene: Field and laboratory studies. Journal of Hazardous Materials, B69, 67-79.
34. Kao, C. M. and Wang, Y. S., (2001). Application of microbial enumeration technique to evaluate the occurrence of natural bioremediation. Environmental Geology, 40, 622-631.
35. Kao, C. M., Huang, W. Y., Chang, L. J., Chien, H. Y. and Hou, F., (2005). Application of monitored natural attenuation to remediate a petroleum- hydrocarbon spill site. Water Science and Technology, 53, 321-328.
36. Kao, C. M., Chien, H. Y., Surampalli, R. Y., Chien, C. C., and Chen, C. Y., (2010). Assessing of natural attenuation and intrinsic bioremediation rates at a petroleum-hydrocarbon spill site: Laboratory and field studies. Journal of Environmental Engineering, 136, 1.
37. Kleikemper, J., Pombo, S. A., Schroth, M. H., Sigler, W. V., Pesaro, M. and Zeyer, J., (2005). Activity and diversity of methanogens in a petroleum hydrocarbon - contaminated aquifer, Applied and Environmental Microbiology, 71, 149-158.
38. Kocamemi, B. A. and Çeçen, F., (2005). Cometabolic degradation of TCE in enriched nitrifying batch systems. Journal of Hazardous Materials, B125, 260-265.
39. Kolhatkar, R., Wilson, J. T. and Dunlap, L. E., (2000). Evaluating Natural Biodegradation of MTBE at Multiple UST Sites. NGWA/API Petroleum Hydrocarbons & Organic Chemicals in Groundwater, API, 32-49.
40. Kota, S., (1998). Biodegradation in contaminated aquifers: Influence of microbial ecology and iron bioavailability. Ph.D. Dissertation, North Carolina State University, Raleigh, NC, U.S.A.
41. Lei, L., Khodadoust, A. P., Suidan, M. T. and Tabak, H. H., (2005). Biodegradation of sediment-bound PAHs in field-contaminated sediment, Water Research, 39, 349-361.
42. Nardi I. R., Ribero, R., Zaiat, M. and Foresti, E., (2005). Anaerobic packed-bed reactor for bioremediation of gasoline-contaminated aquifer, Process Biochemistry, 40, 587-592.

43. Ojo, O. A., (2006). Petroleum-hydrocarbon utilization by native bacterial population from a wastewater canal Southwest Nigeria., African Journal of Biotechnology, 5, 333-337.
44. Pommerening-Roser A., Rath, G. and Koops, H. P., (1996). Phylodenetic diversity within the genus Nitrosomonas. Systematic and applied microbiology, 19, 344-351.
45. Raskin, L., Poulsen, L. K., Noguera, D. R., Rittmann B. E. and Stahl, D. A., (1994). Quantification of methanogenic groups in anaerobic biological reactors by oligonucleotide probe hybridization. Applied and Environmental Microbiology, 1241-1248.
46. Ridgeway, H. F., Safarik, J., Phipps, D., Carl, P. and Clark, D., (1990). Identification and catabolic activity of well-derived gasoline-degrading bacteria and a contaminated aquifer. Applied and Environmental Microbiology, 56, 3565-3575.
47. Rifai, H. S., Borden, R. C., Wilson, J. T. and Ward, C. H., (1995). Intrinsic Bioattenuation for Subsurface Restoration., In Hinchee, R. E., Wilson, J. T., and Downey, D. C., editors. Intrinsic Bioremediation, CRC Press, Boca Raton, FL, 1-30.
48. Schroder, I., Johnson, E., de Vries, S., (2003). Microbial ferric iron reductases. FEMS Microbiology, 27, 427-447.
49. Seagren, E. and Becker, J., (2002). Review of natural attenuation of BTEX and MTBE in groundwater. Practice periodical of hazardous, toxic, and radioactive waste management, 6, 156-172.
50. Siegrist, R. L., Urynowicz, M. A., West, O. R., Crimi, M. L. and Lowe, K. S., (2001). Principle and practices of in situ chemical oxidation using permanganate. Battelle Press.
51. Siegrist, R. L., (2002). Fundamentals of In Situ Chemical Oxidation (ISCO), Teleconference of in situ treatment of groundwater contaminated with Non-aqueous Phase Liquids, Dec. 10-11, Chicago, IL.
52. Smets, B. F. and Pritchard, P. H., (2003). Elucidating the microbial component of natural attenuation Current Opinion in Biotechnology, 14, 283-288.
53. Soga, K., Page, J. W. E. and Illangasekare, T. H., (2004). A review of NAPL source zone remediation efficiency and the mass flux approach. Journal of Hazardous Materials, 110, 13-27.
54. Surampalli, R. and Banerji, S., (2002). Long-term performance monitoring at natural attenuation site. Practice periodical of hazardous, toxic, and radioactive waste management, 6, 173-176.
55. The Interstate Technology & Regulatory Council Green and Sustainable Remediation Team, “Green and Sustainable Remediation: A Practical Framework”, November 2011.
56. Towel, M. G., Bellarby, J., Paton, G. I., Coulon, F., Pollard, S. J. T., and Semple, K. T., (2011). Mineralisation of target hydrocarbons in three contaminated soils from former refinery facilities. Environmental Pollution, 159, 515-523.
57. U.S. Presidential Documents, “Strengthening Federal Environmental, Energy, and Transportation Management”, Executive Order 13423, Federal Register, Vol. 72, No. 17.
58. U.S. Environmental Protection Agency (EPA), April 2008. “Green Remediation: Incorporating Sustainable Environmental Practices into Remediation of Contaminated Sites”, Office of Solid Waste and Emergency Response, EPA 542-R-08-002.
59. U.S. Environmental Protection Agency December 2008 Office of Solid Waste and Emergency Response, “Green Remediation: Best Management Practices for Excavation and Surface Restoration”, EPA 542-F-08-012.
60. U. S. Environmental Protection Agency (EPA), (1999). Monitored natural attenuation of petroleum hydrocarbons: U.S. EPA remedial technology fact sheet, EPA/600/F-98/601.
61. U. S. Environmental Protection Agency (EPA), (2000). Engineered approaches to in situ bioremediation of chlorinated solvents: fundamentals and field applications, EPA 542-R-00-008
62. U. S. Environmental Protection Agency (EPA), (2001). A citizen’s guide to monitored natural attenuation. EPA 542-F-01-004.
63. U. S. Environmental Protection Agency (EPA), (2004). Treatment Technologies for Site Cleanup: annual Status Report (Eleventh Edition). EPA-542-R-03-009.
64. U.S. Environmental Protection Agency, CLU-IN website, Technology Innovation and Field Services Division, Green Remediation Focus, http://www.clu-in.org/greenremediation /subtab_b3.cfm
65. U.S. Environmental Protection Agency, CLU-IN website, Technology Innovation and Field Services Division, Green Remediation Focus, http://www.clu-in.org/greenremediation /subtab_b3.cfm
66. Uyttebroek, M., Vermeir, S., Wattiau, P., Ryngaert, A. and Springael, D., (2007). Characterization of cultures enriched from acidic polycyclic aromatic hydrocarbon-contaminated soil for growth on pyrene at low pH. Applied and Environmental Microbiology, 73, 3159-3164.
67. Wiedemeier, T. H., Rifai, H. S., Newell, C. J. and Wilson, J. T., (1999). Natural attenuation of fuels and chlorinated solvents in the subsurface. John Wiley & Sons Inc.: New York.
68. Wilson, J. T. and Kolhatkar, R., (2002). Role of natural attenuation in the life cycle of MTBE plumes. Journal of Environmental Engineering, 128, 9, 876-882.
69. Wu, Y. W., Huang, G. H., Chakma, A. and Zeng, G. M., (2005). Separation of petroleum hydrocarbons from soil and groundwater through enhanced bioremediation. Energy Sources, 27, 221-232.
70. 中央氣象局網頁,2013,(http://www.cwb.gov.tw/V7/index.htm)。
71. 台灣中油股份有限公司網頁,2013,http://www.cpc.com.tw/big5/home/index.asp)。
72. 台灣電力股份有限公司網頁,2013,(http://www.taipower.com.tw/)。
73. 行政院環境保護署網頁,2013,(http://www.epa.gov.tw/index.aspx)。
74. 行政院環保署,土壤及地下水污染整治基金管理會,土壤及地下水污染整治網頁,2013,(http://sgw.epa.gov.tw/public/0401.asp)。
75. 行政院環保署,土壤及地下水污染整治基金管理會,土壤及地下水污染整十年有成專刊,2011,pp.101-017。
76. 何建仁,我國土壤及地下水污染整治之未來發展方向,工業污染防治第121期 2012,pp.89-111。
77. 行政院農業委員會水土保持局網頁,2013,(http://www.swcb.gov.tw/)。
78. 行政院環境保護署,環保法規網頁,2013,(http://w3.epa.gov.tw/epalaw/index.aspx)。
79. 桃園縣政府水利局,2013,(http://www.tycg.gov.tw/ )。
80. 桃園縣埤塘水圳查詢系統,2013,(http://gistest.tycg.gov.tw/apmap/i2.htm)。
81. 曾依蕾,柴油降解菌組合的最佳化,2005,國立成功大學環境及工程系研究所。
82. 經濟部工業局,2004,土壤與地下水污染整治技術手冊-生物處理技術。
83. 劉敏信、王奕森、韓國興、姚俊宇及莊煒志,特定場址自然衰減潛勢分析研究,2002,第一屆海峽兩岸土壤與地下水污染整治研討會,第227-234頁。
84. 工業污染防治,2012,土壤及地下水永續性綠色整治評估工具簡介。
85. 工業污染防治,2012,我國土壤及地下水污染整治之未來發展方向。
86. 郭雅鈴,應用監測式自然衰減法整治受石油碳氫化合物污染之地下水,2006,國立中山大學 環境工程研究所。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.117.107.90
論文開放下載的時間是 校外不公開

Your IP address is 18.117.107.90
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code