Responsive image
博碩士論文 etd-0609114-104451 詳細資訊
Title page for etd-0609114-104451
論文名稱
Title
改質奈米二氧化鈦光觸媒結合塗料降解亞甲基藍之研究
Combining Modified Nano-TiO2 Photocatalysts with Painting Technology for Decomposing Methylene Blue
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
121
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-06-19
繳交日期
Date of Submission
2014-07-09
關鍵字
Keywords
紅移現象、室內外空氣淨化、光觸媒塗料、揮發性有機污染物(VOCs)、降解效率
Indoor and outdoor air purification, volatile organic compounds (VOCs), decomposition efficiency, red-shift phenomenon, photocatalyst painting
統計
Statistics
本論文已被瀏覽 5753 次,被下載 791
The thesis/dissertation has been browsed 5753 times, has been downloaded 791 times.
中文摘要
針對裝潢帶來的室內空氣污染問題,不少室內外空氣淨化產品被開發應用,其中光觸媒成為炙手可熱的最新產品之一,係藉由紫外光照射光觸媒進行光催化作用,將氧氣或水分子轉換成極具活性的羥基自由基(OH‧)及負氧離子(O2¯),此兩種物質均有超強的氧化能力,能有效分解對人體健康不利的揮發性有機污染物(VOCs),並具有抑制病菌滋生、淨化空氣品質、自我潔淨、除污和脫臭等優點;同時亦具備能源消耗率低、處理效率高的環保效益。
近年來,隨著國內經濟起飛和都市化的快速發展,環境負荷日益加重,導致環境污染問題的嚴重性逐漸升高,同時民眾的環保意識亦隨環境污染程度日漸提昇,對室內空氣品質的要求也不斷升高。執是之故,總統已於100年11月23日頒佈「室內空氣品質管理法」,且於101年11月23日正式實施,使得我國成為繼韓國之後第二個將室內空氣品質管理立法推動的國家,將過去室外大氣管制為主的空氣污染防制,延伸至公共場所室內空氣品質的管理,更使得室內空氣污染問題受到民眾的重視。
本研究旨在利用工業級原料複合溶膠-凝膠法(sol-gel method)與水熱法(hydrothermal method)製備奈米級可見光二氧化鈦光觸媒,藉由添加Fe2+、Ag+兩種不同金屬進行光觸媒摻雜改質,且以不同比例添加量製備可見光複合光觸媒,並將其製備成塗料。由紫外光-可見光吸收光譜分析結果得知,此類光觸媒的吸光度會隨著Fe2+、Ag+添加含量的增加而改變,且光吸收帶會變寬並往可見光吸收區域移動(即發生紅移現象)。本研究最後使用改質奈米光觸媒粉體經由奈米分散技術製成光觸媒塗料,針對亞甲基藍溶液進行光催化分解測試,俾做為光催化反應活性的依據。本研究進一步評估改質光觸媒吸光度及亞甲基藍降解效率,針對不同可見光複合奈米光觸媒塗料進行特性比較,綜合評估改質光觸媒吸光度及亞甲基藍降解效率,選擇最適之改質金屬及最佳金屬添加量。
針對TiO2、Ag/TiO2及Fe/TiO2光觸媒塗料,進行可見光光催化降解亞甲基藍效率之研究結果得知,摻雜金屬鐵對光催化降解效率確實有大幅度提升,且摻雜金屬鐵比例越多,光催化降解效率也越好,而摻雜金屬銀對光催化降解效率亦有大幅度提升,摻雜特定比例金屬銀1%Ag/TiO2、4%Ag/TiO2、5%Ag/TiO2,可獲得最佳光催化亞甲基藍之降解效率,比較自製TiO2、Ag/TiO2及Fe/TiO2粉體及塗料的光催化降解亞甲基藍效率之分析結果得知,光觸媒粉體經由奈米分散後,光觸媒光催化效果較未分散佳,光催化降解亞甲基藍效果可以完全顯現。
Abstract
For indoor air purification caused by decorating, many products have been developed for indoor and outdoor air purification applications, which became one of the most popular photocatalyst products. Photocatalyst carried out by UV irradiation photocatalysis. Oxygen or water molecules converted into highly reactive hydroxyl radicals (OH‧) and negative oxygen ions (O2¯). These two oxidants have powerful oxidizing ability, which can effectively decompose volatile organic compounds (VOCs) detrimental to human health, and inhibit the breeding of germs, purify the air quality, and have the capability of self-cleansing and deodorization. It also has environmental benefits of low energy consumption and high removal efficiency.
In recent years, environmental loading is increasing with the domestic economic take-off and the rapid development of urbanization, which gradually leads to the serious environmental problems. At the same time, people's environmental awareness is steadily growing with the level of environmental pollution and the requirement of indoor air quality is also rising. Indoor air quality management approach promulgated by the President in November 23, 2011 and formally implemented on November 23, 2012. The Republic of China becomes the second country to promote indoor air quality management legislation after South Korea. It contributes that the outdoor based air pollution control strategies in the past extends to the indoor air quality management in public places and causes more people focus on the issue of indoor air pollution.
This research attempts to use industrial grade materials by sol-gel and thermohydrolysis method to prepare visible light induced nano-sized titanium dioxide visible light photocatalyst. By the addition of Fe2+ or Ag+ modified photocatalyst doped with two different metals, and used different amounts of visible light photocatalyst with coating preparation. UV-visible absorption results indicated that the photocatalyst absorbance increased with the amount of metal addition, and the optical absorption band spanded and moved toward the visible absorption region (i.e. red-shift phenomenon). This research attempted to use a modified powder dispersed photocatalyst painting made by nano technology. Testing for photocatalytic decomposition of methylene blue solution as the basis for evaluating the photocatalytic reactivity. Finally, this research compared the absorbance of modified photocatalyst and the decomposition efficiency of methylene blue for different complex photocatalysts. Comprehensive assessment of the modified photocatalyst absorbance and methylene blue decomposition efficiency, choose the most suitable dosage of metal added to TiO2.
The results of visible light photocatalytic degradation of methylene blue efficiency about TiO2, Ag/TiO2 and Fe/TiO2 photocatalyst coatings. Photocatalytic decomposition of iron-doped metal does have greatly improved the efficiency and the more metal-doped iron ratio of photocatalytic decomposition efficiency is better. Metallic silver doped photocatalytic decomposition efficiency has also improved significantly, the proportion of metallic silver doped particular 1% Ag/TiO2, 4% Ag/TiO2 and 5%Ag/TiO2 get the best photocatalytic degradation efficiency of methylene blue. Comparison of photocatalytic TiO2, Ag/TiO2 and Fe/TiO2 powder and paint degradation of methylene blue efficiency analysis results, photocatalyst nano powder through the dispersion. Photocatalyst photocatalytic effect than those without good dispersion and degradation of Methylene Blue effects can be fully apparent.
目次 Table of Contents
目錄
論文審定書………………………………………………………………i
謝誌………………………………………………………………………ii
中文摘要…………………………………………………………………iii
英文摘要…………………………………………………………………v
目錄………………………………………………………………………vii
表目錄……………………………………………………………………x
圖目錄……………………………………………………………………xii
第一章 前言…………………………………………………………… 1-1
1-1 研究緣起……………………………………………………… 1-1
1-2 研究目的……………………………………………………… 1-5
1-3 研究範圍……………………………………………………… 1-6
第二章 文獻回顧……………………………………………………… 2-1
2-1 光觸媒技術之發展及應用…………………………………… 2-1
2-1-1 光觸媒產品之發展趨勢及應用………………………... 2-1
2-1-2 光觸媒塗料之應用情形………………………………... 2-9
2-2 二氧化鈦光觸媒……………………………………………… 2-11
2-2-1 二氧化鈦之種類及晶型結構………………………….. 2-11
2-2-2 二氧化鈦之光催化特性……………………………….. 2-13
2-3 二氧化鈦製備方法…………………………………………… 2-14
2-3-1 溶膠-凝膠(Sol-Gel)法…………………………………... 2-15
2-3-2 溶膠溶解萃取法……………………………………….. 2-15
2-3-3 水解法…………………………………………………... 2-16
2-3-4 水熱合成法……………………………………………... 2-16
2-3-5 含浸法…………………………………………………... 2-17
2-4 二氧化鈦光觸媒之改質修飾………………………………… 2-17
2-4-1 改質修飾方法………………………………………….. 2-17
2-4-2 過渡金屬之摻雜……………………………………….. 2-17
2-4-3 非金屬之摻雜…………………………………………... 2-18
2-5 有機污染物之光催化反應特性……………………………… 2-18
2-5-1 有機污染物之來源與性質……………………………… 2-18
2-5-2光催化反應機制…………………………………………... 2-24
2-5-3亞甲基藍(Methylene Blue)光催化反應降解…………….. 2-25
2-6 塗料之特性及種類…………………………………………… 2-26
2-6-1 塗料之定義……………………………………………… 2-26
2-6-2塗料之功能和性能………………………………………. 2-26
2-6-3塗料之分類和命名………………………………………. 2-30
2-6-4塗料之組成……………………………………………….. 2-32
2-6-5塗料之生產製程…………………………………………. 2-38
2-6-6外牆塗料概況和塗料發展趨勢………………………….. 2-39
第三章 研究方法……………………………………………………… 3-1
3-1 改質二氧化鈦光觸媒製備…………………………………… 3-1
3-1-1 實驗材料…………………………………………………. 3-1
3-1-2 複合溶膠-凝膠法與水熱法製備改質二氧化鈦….......... 3-4
3-2 光觸媒與水性樹脂摻合製備薄膜…………………………… 3-6
3-3 光觸媒液相氧化分解實驗設計……………………………… 3-7
3-3-1 光催化反應系統………………………………………... 3-7
3-3-2 亞甲基藍光降解實驗…………………………….......... 3-9
3-3-3 亞甲基藍光降解空白實驗…………………….……… 3-9
3-3-4 異相光觸媒測試………………………………………... 3-10
3-4 改質二氧化鈦光觸媒之特性分析…………………………… 3-12
第四章 結果與討論…………………………………………………… 4-1
4-1 改質光觸媒之基本特性分析………………………………… 4-1
4-1-1 表面結構分析結果…………………………………....... 4-1
4-1-2 化學成分分析結果………………………....................... 4-1
4-1-3 晶相分析結果…………………………........................... 4-6
4-2 不同改質金屬之光敏感度……………………………............ 4-6
4-3 光催化亞甲基藍空白實驗測試結果……………………….... 4-12
4-4 改質光觸媒粉體降解亞甲基藍之效率……………………… 4-13
4-5 改質光觸媒結合塗料降解亞甲基藍之效率………………… 4-17
第五章 結論與建議…………………………………………………… 5-1
5-1 結論…………………………………………………………… 5-1
5-2 建議…………………………………………………………… 5-2
參考文獻………………………………………………………………… R-1
附錄A 品保與品管……………………………………………………... A-1
附錄B 原始實驗數據…………………………………………………... B-1
參考文獻 References
Augugliaro, V., Coluccia, S., Loddo, V., Martra, G., Palmisano, L., and Schiavello, M.,“Photocatalytic Oxidation of Gaseous Toluene Onanatase TiO2 Catalyst: Mechanistic Aspects and FT-IR Investigation,” Applied Catalysis B-Environmental, 20(1), 15, 1999.
Bellin, P. and Spengler J.D.,“Indoor and Outdoor Carbon Monoxide Measurements at an Airport,” JAPCA, 30, 392-394, 1980.
Berger, R.S.,“The Carcinogenicity of Radon,” Environ. Sci. Technol., 24, 30-31, 1983.
Blair, A., Stewart P.A., Hoover R.N., Fraumeni JF Jr., Walrath J., O'Berg M., and Gaffey W., “Cancers of the Nasopharynx and Oropharynx and Formaldehyde Exposure,” J. Natl. Cancer Inst., 78(1), 191-193, 1987.
Bolton, J., Ali, S. A., Buckley, J. A., Notarfonzo, R., and Carter, S., “Homogeneous Photodegradation of Pollutants in Air,” Proc. of the 87th Annual Meeting, Air and Waste Management Association, Cincinnati, Ohio, U.S.A., 1-16, 1994.
Chao, H.E., Yun, Y.U., Xingfang, H.U., and Larbot, A., “Effect of Silver Doping on the Phase Transformation and Grain Growth of Sol-Gel Titania powder,” Journal of the European Ceramic Society, 23, 1457-1464, 2003.
Dibble, L.A. and Raupp, G.B.,“Kinetics of the Gas-Solid Heterogeneous Photocatalytic Oxidation of Trichloroethyleneby Near-UV Illuminated Titanium Dioxide,”Catal. Lett., 4,345, 1990.
Drissen, M.D. and Grassian,V.H., “Photooxidation of Trichloro-ethylene on Pt/TiO2,” J. Phys. Chem. B, 104, 1418-1423, 1998.
EPA, “Residential Air Cleaning Devices - A Summary of Available Information,” http://www.epa.gov/iaq/pubs/residair.html.
Fox, M.A. and Dulay, M.T., “Hetergeneous Photocatalysis,” Chem. Rev., 93, 341-357, 1993.
Fujishima, A., Hashimoto K., and Watanabe, T.,“TiO2 Photocatalysis Fundamentals and Applications,” 1st edition, BKC Inc., 1999.
Gupta, K.C., Ulsamer A.G., and Preuss P.W.,“Formaldehyde in Indoor Air Source and Toxicity,” Environ. Int., 8, 349-358, 1982.
Hoffmann, M.R., Martin, S.T., Choi, W., and Bahnemann, D.W., “Environmental Applications of Semiconductor Photocatalysis,” Chem. Rev., 20, 69-96, 1995.
Hung, C.H. and Marinas, B.J., “Role of Chlorine and Oxygen in the Photocatalytic Degradation of Trichloroethylene Vapor on TiO2 Films,” Envirion. Sci. Technol., 31(2), 562-568, 1997.
Hung, C.H., Yuan, C.S., Liu, A.C., and Yuan C., “Control of Chlorinated Indoor Air Pollutants via Photocatalytic Oxidation,” The 11th World Clean Air and Environment Congress, Durban, South Africa, September, 1998.
Ismail, A. A., Ibrahim, I. A., Ahmed, M. S., and Mohamed, R. M., “ Sol-gel synthesis of vanadia-silica for photocatalytic degradation of cyanide,” Applied Catalysis B: Environmental, 45, 161-166, 2003.
JIS A 6909 試験方法 日本工業規格 建築用仕上塗材 “Coating Materials for Textured Finishes of Buildings”.
JIS K 5600試験方法 日本工業規格 塗料一般試験方法 “Testing Methods for Paints“.
Kato, K., “Synthesis of TiO2 Photocatalyst with High Activity by the Alkoxide Method,” in Photocatalytic Purification and Treatment of Water and Air, 820, 809-820, 1993.
Ku, Y. Leu, R.M., and Lee, K.C., “The Effect of Dissolved Oxygen on the Treatment of 2-Chlorophenol in Aqueous Solution by the UV/TiO2 Process,” J. of Chinese Inst. of Environ. Eng., 6(1), 43-49, 1996.
Lambert, W.E. and Samet, J.M., “Indoor Air Pollution,” Chapter 48 in: Harber P., Schenker M.B., Balmes J.R. (eds), “Occupational and Environmental Respiratory Disease,” St. Louis, Missouri: Mosby-Year Book, Inc., 784-807, 1996.
Linsebigier, A.L., Lu, G., and Yates, J.T.,“Photocatalysis on TiO2 Surface:Principles, Mechanism, and Selected Results,” Chem. Rev. 95, 735, 1995.
Lyons, C.E., Turchi, C., and Gratson, D., “Solving Widesprea Low-Concentration VOC Air Pollution Problems:Gas-Phase Photocatalytic Oxidation Answers the Needs of Many Small Businesses,” The 88th Air & Waste Management Assoication Annual Meeting, June, 1995.
Mills, A. and Hunte, S.L., “An Overview of Semiconductor Photocatalysis,” Journal of Photochemistry and Photobiology A: Chemistry, 108,1-35,1997.
Martra, G., Coluccia, S., Marchese, L., Augugliaro, V., Loddo, V., Palmisano, L., and Schiavello, M.,“The Role of H2O in the Photocatalytic Oxidation of Toluene in Vapour Phase on Anatase TiO2 Catalyst: A FTIR Study,” Catal. Today, 53(4), 695, 1999.
Maira, A.J., Yeung, K.L., Soria, J., Coronado, J.M., Belver, C., Lee, C.Y., and Augugliaro, V.,“Gas-phase Photo-oxidation of Toluene Using Nanometer-size TiO2 Catalysts,” Applied Catalysis B-Environmental 29, 327, 2001.
Metcalf & Eddy, “Wastewater Engineering Treatment and Reuse,” 4th Edition, McGraw-Hill Book Co., 2003.
NAS, Indoor Pollutants, Committee on Indoor Pollutants, National Academy Press, Washington, D.C, 1981.
Parkhurst, W.J., Humphreys, M.P., and Harper J.P., “Influence of Indoor Combustion Sources on Indoor Air Quality,” Environ. Progress, 7, 257-261, 1988.
Pennsylvania State University, “Aerobiological Engineering,” http://www.engr.psu.edu/www/dept/arc/server/wjkaerob.html
Pusit, P. and Sukon, P.,“Titanium dioxide powder prepared by a sol-gel method,” Journal of Ceramic Processing Research, 10(2), 167-170, 2009.
Rafael, M.R. and Nelson.,“Relationship between the Formation of Surface Species and Catalyst Deactivation During the Gas-phase Photocatalytic Oxidation of Toluene,” Catal. Today, 40, 353-365, 1998.
Sonawane, R.S., Hegde, S.G., and Dongare, M.K., “Preparation of Titanium(IV) Oxide Thin Film Photocatalyst by Sol-Gel Dip Coating,” Materials Chemistry and Physics, 77, 744-750, 2002.
Stayner, L.S., Smith, A.B., Reeve, G., Blade, L., Elliott, L., Keenlyside, R., Halperin W., “Proportionate Mortality Study of Workers in the Garment Industry Exposed to Formaldehyde,” Am. J. Ind. Med. 7, 229-240, 1985.
Su, C., Hong, B.Y., Tseng, C.M., “Sol-gel preparation and photocatalysis of titanium dioxide,” Catalysis Today, 96, 119-126, 2004.
Thad Godish, “Indoor Air Pollution Control,” Lewis Publishers, Inc., 1989.
Tichenor, B., “An Overview of Source/Sink Characterization Methods,” ASTM Special Technical Publication No. 1287, 9-19, 1996.
Tavares, C.J., Vieira, J., Rebouta, L., Hungerford, G., Coutinho, P.,Teixeira, V., Carneiro, J.O., and Fernandes, A.J., “Reactive Sputtering Deposition of Photocatalytic TiO2 Thin Films on Glass Substrates,” Materials Science and Engineering B, 138, 139-143, 2007.
Thangavelu,. K.,. Annamalai, R.,..and Arulnandhi,. D.,. “Preparation and Characterization of Nanosized TiO2 Powder by Sol-Gel Precipitation Route,” International Journal of Emerging Technology and Advanced Engineering, 3(1), 2013.
US Environmental Protection Agency.,“Formaldehyde,” Teach Chemical Summary, Washington, DC, 2006.
Vaughan, T.L., Stewart, P.A., and Teschke, K., “Occupational Exposure to Formaldehyde and Wood Dust and Nasopharyngeal Carcinoma,” J. Occup. Environ. Med., 57, 376-384, 2000.
Venkatachalam, N., Palanichamy, M., and Murugesan, V., “Sol–gel Preparation and Characterization of Nanosize TiO2: Its Photocatalytic Performance,” Materials Chemistry and Physics, 104, 454-459, 2007.
Wade, III W.A., Cote, W.A., and Yocom, J.E., “A Study of Indoor Air Quality,” JAPCA, 25, 933-939, 1975.
Wadden, R.A. and Scheff, P.A., “Indoor Air Pollution,” John Wiley & Sons, Inc., 1983.
Wu, J.F., Hung, C.H., and Yuan, C.S., “Kinetic Modeling of Promotion and Inhibition of Temperature on Photocatalytic Degradation of Benzene Vapor,” J. Photochemistry and Photobiology A: Chemistry, 170, 299-306, 2005.
Wu, K.R., Yeh, C.W., Hung, C.H., Chod, T.P., and Liue, W.J., “Visible-light-responsive Layered Titanium Oxide/Tin Indium Oxide Catalysts for Hydrogen Production,” Journal of Nanoscience and Nanotechnology, 9(6), 3433-3440, 2009.
Yoneyama, H., Toyoguchi, Y., and Tamura, H., “Reduction of Methylene Blue on Illuminated Titanium Dioxide in Methanolic and Aqueous Solution,” Journal of Physical Chemistry, 76, 3460-3464,1972.
Yocom, J.E., “Indoor-Outdoor Air Quality Relation:A Critical Review,” JAPCA, 32,500-519, 1982.
Yuan, C.S., “Emissions of Volatile Organic Compounds from Incensing in Indoor Environments,” The 1994 International Symposium on Volatile Organic Compounds in Environment, Montreal, Canada, April, 1994.
Yuan, C.S., and Lin, J.H., “Characterization of Indoor Air Pollution in Taiwanese Residential Homes,” The 87th Air and Waste Management Association Annual Meeting, Cincinnati, Ohio, June, 1994.
Yuan, C.S., “The Current Status of Indoor Air Quality Investigation and Management in Taiwan,” The 88th Air and Waste Management Association Annual Meeting, San Antonio, Texas, June, 1995.
Yuan, C.S., and Hsiu C.H., “Influence of Outdoor Air Pollutants on Indoor Air Quality in Urban Areas in Taiwan,” The 4th International Conference on Air Pollution, Toulouse, France, Aug, 1996.
Yu, J., Zhao, X., and Zhao, Q., “Effect of Film Thickness on the Grain Size and Photocatalytic Activity of the Sol-gel Derived Nanometer TiO2 Thin Films,” Journal of Materials Science Letters, 19, 1015-1017, 2000.
Yu, J., Wang, G., Cheng, B., and Zhou, M., “Effects of Hydrothermal Temperature and Time on the Photocatalytic Activity and Microstructures of Bimodal Mesoporous TiO2 Powders,” Applied Catalysis B: Environmental, 69, 171-180, 2007.
Zhang, Q.H., Gao, L., and Guo, J.K., “Preparation and Characterization of Nanosized TiO2 Powders from Aqueous TiCl4 Solution,” Nanostructured Materials, 11, 1293, 1999.
Zeno, W., Frank, N., Peter, S., Douglas, A., “Organic Coatings: Science and Technology,” 3rd, John Wiley & Sons, Ltd., 2007.
吳炳佑、陳湘林、蔣孝澈,“二氧化鈦光觸媒膜之製作與應用”,觸媒與製程,第6 卷,pp.52-68,1997。
許伯彰,“二氧化鈦光觸媒分解含氯揮發性有機污染物之產物分析集反應路徑探討”,國立中山大學環境工程研究所碩士論文,1998。
蕭德福,“以改質之 TiO2 光觸媒探討四氯乙烯分解效率及礦化率之影響”,國立中山大學環境工程研究所碩士論文,2000。
江哲銘、李彥頤、周伯丞、邵文政,“辦公空間室內裝修對空氣品質影響”,第二屆中華民國室內設計學術研討會論文集, pp.257-262,高雄, 2000年。
洪楨琳,“溫度與濕度對光催化分解苯蒸氣之影響研究”,國立中山大學環境工程研究所碩士論文,2001年7月。
陳逸青,“建材揮發性有機化合物 逸散特性與預測式建立之研究-以塗料類建材為例”,國立成功大學建築研究所碩士論文,2003。
謝其德,“室內空氣清淨機去除甲醛之效能評估”,國立台北科技大學環境規劃與管理研究所, 2003年6月。
游振煥、周錦富、章裕民、曾厚元,“建物塗裝 VOCs 逸散特性之研究”,第二十一屆空氣污染控制技術研討會,2004。
林正良,“奈米科技於傳統產業之應用”,台灣奈米科技,工業技術研究院 ,2004。
李彥頤,“辦公空間室內空氣品質管制策略之研究”,國立成功大學建築研究所博士論文,2004年7月。
黃琳琳,“以健康觀點探討室內空氣品質改善可行性之研究”,國立成功大學建築研究所碩士論文,2004年6月。
竹內浩士、指宿堯嗣,“光觸媒商業最前線”, 林振華譯,全華科技圖書公司,2005。
巫玉娟,“活性碳纖維塗覆二氧化鈦光觸媒去除揮發性有機物之可行性研究”,國立中山大學環境工程研究所碩士論文,2005。
吳政峰,“溫度與濕度效應對光催化分解氣相揮發性有機物之影響”,國立中山大學環境工程研究所博士論文,2005年2月。
陳厚甫,“二氧化鈦與親水性silicone-polyester摻合物之光觸媒效果”,國立臺灣科技大學高分子工程研究所碩士論文,2005。
趙壬淇,“含TiO2之親水性PEG-Silicone型聚酯之薄膜性質”,國立臺灣科技大學高分子工程研究所碩士論文,2005。
吳怡貞、羅卓卿、王大昌、袁中新、洪崇軒,“以CVD法製備奈米光觸媒塗覆於玻璃纖維去除揮發性有機物之研究”,第三屆環境保護與奈米科技學術研討會,高雄,2006 年 7 月。
橋本和仁、藤嶋昭、謝文權,“圖解光觸媒 (図解光触媒のすべて)”,全華科技圖書公司,2006。
邵文政,“建材揮發性有機化合物管制策略之研究”,國立成功大學建築研究所博士論文,2006年1月。
王大昌,“奈米二氧化鈦光觸媒玻璃纖維濾網應用於處理室內VOCs之可行性研究”,國立中山大學環境工程研究所碩士論文,2007。
吳怡貞,“利用真空濺鍍法製備可見光奈米光觸媒進行丙酮分解之研究”,國立中山大學環境工程研究所碩士論文,2007。
羅卓卿,“應用二氧化鈦及氧化鋯光觸媒還原二氧化碳之研究”,國立中山大學環境工程研究所博士論文,2008。
彭依偉,“活性炭紙纖濾網塗覆奈米光觸媒分解丙酮之研究”,國立中山大學環境工程研究所碩士論文,2008。
姜美琪,“利用批次與連續式TiO2光觸媒反應器處理水中亞甲基藍之研究”,嘉南藥理科技大學環境工程與科學系曁研究所碩士論文,2009。
葉耀仁、劉育甫、錢立行、袁中新,“動物醫院及寵物店室內空氣污染情形問卷調查分析”,環境與能源管理學術研討會,嘉義,2009 年 4 月。
李宛樺、郭柏成、吳政峰、袁中新、洪崇軒,“光電催化效應對光觸媒玻纖電子濾網分解丙酮之影響”,第七屆環境保護與奈米科技學術研討會,台北,2010。
郭柏成,“應用真空濺鍍法製備複合型奈米TiO2/ITO薄膜光觸媒之丙酮分解之研究”,國立中山大學環境工程研究所碩士論文,2010。
李宛樺,“應用光電催化效應於奈米二氧化鈦光觸媒披覆玻璃纖維濾網分解丙酮之研究”,國立中山大學環境工程研究所碩士論文,2010。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code