Responsive image
博碩士論文 etd-0609114-134801 詳細資訊
Title page for etd-0609114-134801
論文名稱
Title
氧離子吸附層於電阻式記憶體切換特性之機制研究
The influence of oxygen ions adsorption layer on resistive switching mechanism of resistance random access memory
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
101
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-06-11
繳交日期
Date of Submission
2014-07-09
關鍵字
Keywords
電阻式記憶體、過渡金屬钆、互補式電阻切換記憶體、氧離子吸附層、氧化銦錫透明導電膜、可撓式元件
RRAM, Complementary resistive switches, oxygen ion-adsorbing layer, transparent conductive film of indium tin oxide, gadolinium, flexible
統計
Statistics
本論文已被瀏覽 5701 次,被下載 0
The thesis/dissertation has been browsed 5701 times, has been downloaded 0 times.
中文摘要
根據許多文獻指出氧離子是影響電阻式記憶體(RRAM)阻絲切換之關鍵,所以本論文主要提出利用氧離子吸附層之特性來控制氧離子的遷移,希望能藉此提升RRAM之性能,並針對其切換機制進行研究及探討 。
第一部份實驗,首先引入氧化钆(Gd2O3)作為氧離子吸附層,希望藉此能有較好的氧離子控制能力。並更進一步針對Pt/Gd2O3/Gd:SiO2/TiN與Pt/Gd:SiO2 /TiN兩元件進行電性量測,發現藉由操作電壓的調變,能夠改變阻絲切換方向與產生互補式電阻切換特性(CRS)的現象,最後提出其物理機制模型。
為了更進一步證實氧離子吸附層具有控制氧離子遷移之功效,因此利用銦錫氧化物(ITO)來作為元件的上電極。並經由電性量測後發現ITO元件能有效降低操作電流與功率消耗。再利用Current-Voltage Fitting 得知ITO元件之操作時的絕緣體載子傳導特性,並提出其物理機制模型。
但是,ITO元件置於一般環境下長達四個月後,卻會產生劣化現象。所以本實驗分別在水氣、氧氣的環境下量測其電性,並根據電流傳導機制分析,進而推測氧含量的多寡對ITO為上電極元件之影響。而後為了克服此現象,所以蓋上工業界常用之Si3N4保護層阻止氣氛進入ITO內,使元件保有較穩定的特性。
最後,利用水氣RTA對ITO元件來進行處理,使水氣與ITO薄膜中的氧空缺產生反應,並對此元件量測分析,進而利用電流傳導機制擬合提出模型。
為了使元件能有更好的發展與應用性,最終希望它們能夠極輕、可撓等,並融入我們的生活中,如利用於電子皮膚感測體溫、又或是牙齒上的健康檢測等等,所以本實驗將此元件製作於可撓式人工電子皮膚上。
Abstract
This paper is surrounded by oxygen ions have better adsorption characteristics of indium tin oxide (ITO) and Transition metal gadolinium used in resistive random access memory (RRAM). Discussion RRAM switching mechanism and improve it.
First, use of multi-target magnetron sputtering system making gadolinium oxide (Gd2O3) films in Gd: SiO2 / TiN and covered Pt with top electrode .And comparison with structure Pt / Gd: SiO2 / TiN. Through measurement in electrical can find that the structure have the buffer layer (Gd2O3) existed limiting effect ,It’s presumably due to Gd’s outer space has higher orbital . And further found that asymmetric voltage operation, will change the resistance and polarity direction. In the phenomenon can emergence of complementary resistive switching characteristics (CRS).
Then used ITO, which has high transparency and good electrical conductivity and has a lot of oxygen vacancies. Caused it to have a good oxygen ion adsorption. This section will be used as sputtering the electrode ITO on Gd: SiO2 / TiN. Compare with buffer layer's device and ITO/Gd: SiO2 / TiN can find ITO/Gd: SiO2 / TiN has effectively reduce power consumption and operating voltage.
Use Current-Voltage Fitting and found that ITO / Gd: SiO2 / TiN 's Reset characteristics operation on Schottky emission. Mainly speculate driven by the oxygen ions in electric field to move and switching resistance .Other case of the multi-stage Set characteristics be use Fast IV measurements and fitting the mechanism , presumably the resistance first through in Gd: SiO2 to ITO , and then drive the dielectric coefficient of oxygen ions in ITO layer .
But after placement more than four months, will find that the measurement of I-V curve are significant instability phenomenon. Therefore, this section leads to use of water vapor, oxygen ,and measurement, and then to clarify the current conduction mechanism, so found that the amount of oxygen will affect the barrier height of it and thereby enabling the current characteristics produce change. In order to improve this phenomenon, Si3N4 protective cover layer can be effectively found good stability .
Finally, to the sample with water vapor thermal annealing processes , the operating current of the devices decrease 10 times after Water vapor RTA. Cause by owing to the introduction of oxygen through defects repairing process by H2O. It is possible to reduce the operating current and power consumption.
In order to make the device to have better development and application, this section will sputter device on type of flexible artificial skin , and found low leakage currents resistance switching characteristics.
目次 Table of Contents
致謝 ii
摘要 iii
Abstract iv
圖目錄 x
表目錄 xiii
第一章 序論 1
1-1前言 1
1-2研究目的 2
第二章 文獻回顧 3
2-1 次世代記憶體發展及簡介 3
2-1-1相變化記憶體(PCRAM) 3
2-1-2垂直自旋磁性隨機存取記憶體(p-STT MRAM) 5
2-1-3電阻式記憶體(RRAM) 6
RRAM之主要性能參數與工作原理[20] 7
互補式電阻切換記憶體 (Complementary resistive switches,CRS) 9
2-2 絕緣層載子傳導機制[22] 11
2-2-1 穿隧(Tunnelig) 11
2-2-2 熱離子發(Thermionic Emission)或蕭基發射(Schottky Emission) 12
2-2-3 普爾-法蘭克發射(Poole-Frenkel Emission) 13
2-2-4 歐姆傳導(Ohmic Conduction) 14
2-2-5 離子電導(Ionic Conduction) 14
2-2-6 空間電荷限制電流(Space Charge Limit Current, SCLC) 15
第三章 實驗設備與原理 17
3-1多靶磁控濺鍍系統( Multi-Target Sputter) 17
3-2 N&K薄膜特性分析儀(N & K analyzer) 18
3-3 傅立葉轉換紅外光譜儀 (Fourier-Transform Infrared Spectrometer) 18
3-4 X光光電子能譜儀(X-ray Photoelectron Spectroscopy) 19
3-5快速退火系統(水氣) (Rapid Thermal Annealing) 20
3-6精密半導體參數量測分析儀(Precision Semiconductor Parameter Analyzer) 21
第四章 元件製備與材料分析 23
4-1製作流程 23
4-1-1 TiN下電極基板的製備 23
4-1-2 Gd:SiO2薄膜鍍製 23
4-1-3 Gd2O3薄膜鍍製 24
4-1-4 Pt電極鍍製 24
4-1-5 ITO電極鍍製 25
4-2材料分析 26
4-2-1 Gd:SiO2的XPS分析 26
4-2-2 Gd2O3的XPS分析 26
第五章 氧離子吸附層於電阻式記憶體之研究與機制分析 28
5-1 氧離子吸附層-Gd2O3 28
5-1-1 Pt/Gd:SiO2/TiN RRAM量測 29
5-1-2 Pt/ Gd2O3/Gd:SiO2/TiN RRAM量測 30
5-1-3 具氧離子吸附層Gd2O3元件之特性探討及物理機制模型 32
基本特性量測與絕緣層載子傳導機制擬合 32
物理機制模型 35
5-2氧離子吸附層-ITO 37
5-2-1 ITO/Gd:SiO2/TiN RRAM元件量測 37
5-2-2 Pt/ Gd2O3/Gd:SiO2/TiN RRAM量測 39
5-2-3具氧離子吸附層ITO元件之特性探討及物理機制分析 40
基本特性量測與絕緣層載子傳導機制擬合(Reset) 40
物理機制模型(Reset) 41
基本特性量測與絕緣層載子傳導機制擬合(Set) 42
物理機制模型(Set) 46
第六章 ITO元件於氣氛環境下之特性研究 47
6-1 氧氣環境 47
6-1-1元件於各環境下之基本電性量測 47
一般環境下 47
真空環境下 48
氧氣環境下 49
6-1-2 元件於各環境下之電流機制擬合 50
一般環境下 50
真空環境下 51
氧氣環境下 52
6-1-3元件於各環境下之物理機制分析 53
針對Schottky斜率提出的傳導機制模型 53
針對Schottky 截距提出的傳導機制模型 55
6-2 水氣環境 57
6-2-1元件於各環境下之基本電性量測 57
一般環境下 57
真空環境下 57
水氣環境下 58
6-2-2元件於各環境下之電流機制擬合 59
一般環境下 59
真空環境下 60
水氣環境下 61
6-2-3元件於各環境下之物理機制分析 62
針對Schottky emission On state提出傳導機制模型 63
針對Schottky emission Off state提出傳導機制模型 64
6-3 蓋上Si3N4保護層 66
6-3-1 保護層Si3N4的材料分析 66
6-3-2 有保護層元件於各環境下之基本電性量測與比較 67
第七章 經水氣快速熱退火之特性探討 69
7-1處理參數 69
7-2材料分析 70
7-2-1 ITO電極材料分析 70
7-2-2 Gd:SiO2材料分析 73
7-3基本電性量測與物理機制分析 74
7-3-1基本電性量測 74
7-3-2 電流機制擬合 76
7-3-3 物理機制分析 77
第八章 延伸探討 79
ITO元件運用於人工皮膚上 79
第九章 結論 83
Reference 84
參考文獻 References
[1] J. C. Wang, Y. R. Ye, J. S. Syu, P. R. Wu, C. I. Wu, P. S. Wang, et al., "Low-Power and High-Reliability Gadolinium Oxide Resistive Switching Memory with Remote Ammonia Plasma Treatment," Japanese Journal of Applied Physics, vol. 52, Apr 2013.
[2] MBA置庫百科, 摩爾定律(Moore's Law).
[3] Wikipedia, Phase-change memory.
[4] 蔡濬名, "氧化鋅薄膜於非揮發電阻式記憶體特性之研究," 2008.
[5] K. Kim and S. J. Ahn, "Reliability investigations for manufacturable high density pram," in Reliability Physics Symposium, 2005. Proceedings. 43rd Annual. 2005 IEEE International, 2005, pp. 157-162.
[6] F. Pellizzer, A. Pirovano, F. Ottogalli, M. Magistretti, M. Scaravaggi, P. Zuliani, et al., "Novel μtrench phase-change memory cell for embedded and stand-alone non-volatile memory applications," in VLSI Technology, 2004. Digest of Technical Papers. 2004 Symposium on, 2004, pp. 18-19.
[7] 工研院, 垂直式自旋磁性記憶體技術, 2013.
[8] 簡昭欣、呂正傑、陳志遠、張茂男、許世祿、趙天生, "先進記憶體簡介," 國研科技第一期.
[9] T. Kishi, H. Yoda, T. Kai, T. Nagase, E. Kitagawa, M. Yoshikawa, et al., "Lower-current and fast switching of a perpendicular TMR for high speed and high density spin-transfer-torque MRAM," in Electron Devices Meeting, 2008. IEDM 2008. IEEE International, 2008, pp. 1-4.
[10] A. Chen, S. Haddad, Y. C. Wu, Z. Lan, T. N. Fang, and S. Kaza, "Switching characteristics of Cu2O metal-insulator-metal resistive memory," Applied Physics Letters, vol. 91, Sep 2007.
[11] K. Tsunoda, K. Kinoshita, H. Noshiro, Y. Yamazaki, T. Iizuka, Y. Ito, et al., "Low power and high speed switching of Ti-doped NiO ReRAM under the unipolar voltage source of less than 3 V," in Electron Devices Meeting, 2007. IEDM 2007. IEEE International, 2007, pp. 767-770.
[12] K. C. Liu, W. H. Tzeng, K. M. Chang, Y. C. Chan, and C. C. Kuo, "Bipolar resistive switching effect in Gd2O3 films for transparent memory application," Microelectronic Engineering, vol. 88, pp. 1586-1589, Jul 2011.
[13] L. F. Liu, D. Yu, B. Chen, F. F. Zhang, B. Gao, B. Y. Li, et al., "Improvement of Reliability Characteristics of TiO2-Based Resistive Switching Memory Device with an Inserted ZnO Layer," Japanese Journal of Applied Physics, vol. 51, Oct 2012.
[14] D. Y. Lee and T. Y. Tseng, "Unipolar Resistive Switching Characteristics of a ZrO2 Memory Device With Oxygen Ion Conductor Buffer Layer," Ieee Electron Device Letters, vol. 33, pp. 803-805, Jun 2012.
[15] Z. Jin, G. Liu, and J. Wang, "Organic nonvolatile resistive memory devices based on thermally deposited Au nanoparticle," AIP Advances, vol. 3, p. 052113, 2013.
[16] K.-C. Chang, T.-M. Tsai, T.-C. Chang, Y.-E. Syu, S.-L. Chuang, C.-H. Li, et al., "The effect of silicon oxide based RRAM with tin doping," Electrochemical and Solid-State Letters, vol. 15, pp. H65-H68, 2011.
[17] T.-M. Tsai, K.-C. Chang, T.-C. Chang, Y.-E. Syu, K.-H. Liao, B.-H. Tseng, et al., "Dehydroxyl effect of Sn-doped silicon oxide resistance random access memory with supercritical CO2 fluid treatment," Applied Physics Letters, vol. 101, p. 112906, 2012.
[18] K.-C. Chang, T.-M. Tsai, T.-C. Chang, Y.-E. Syu, C.-C. Wang, S.-L. Chuang, et al., "Reducing operation current of Ni-doped silicon oxide resistance random access memory by supercritical CO2 fluid treatment," Applied Physics Letters, vol. 99, p. 263501, 2011.
[19] S.-S. Sheu and M.-F. Chang, "Fast-write resistive RAM (RRAM) for embedded applications," 2011.
[20] Y. T. Li, S. B. Long, Q. Liu, H. B. Lu, S. Liu, and M. Liu, "An overview of resistive random access memory devices," Chinese Science Bulletin, vol. 56, pp. 3072-3078, Oct 2011.
[21] E. Linn, R. Rosezin, C. Kugeler, and R. Waser, "Complementary resistive switches for passive nanocrossbar memories," Nature Materials, vol. 9, pp. 403-406, May 2010.
[22] S. M. Sze and K. K. Ng, Physics of semiconductor devices: John Wiley & Sons, 2006.
[23] J. F. Watts and J. Wolstenholme, "An introduction to surface analysis by XPS and AES," An Introduction to Surface Analysis by XPS and AES, by John F. Watts, John Wolstenholme, pp. 224. ISBN 0-470-84713-1. Wiley-VCH, May 2003., vol. 1, 2003.
[24] M.-J. Lee, C. B. Lee, D. Lee, S. R. Lee, M. Chang, J. H. Hur, et al., "A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O5− x/TaO2− x bilayer structures," Nature materials, vol. 10, pp. 625-630, 2011.
[25] Y.-E. Syu, T.-C. Chang, T.-M. Tsai, Y.-C. Hung, K.-C. Chang, M.-J. Tsai, et al., "Redox Reaction Switching Mechanism in RRAM Device With Structure," Electron Device Letters, IEEE, vol. 32, pp. 545-547, 2011.
[26] S. Pal, S. K. Ray, B. R. Chakraborty, S. K. Lahiri, and D. N. Bose, "Gd2O3, Ga2O3(Gd2O3), Y2O3, and Ga2O3, as high-k gate dielectrics on SiGe: A comparative study," Journal of Applied Physics, vol. 90, pp. 4103-4107, Oct 2001.
[27] J. A. Gupta, D. Landheer, J. P. McCaffrey, and G. I. Sproule, "Gadolinium silicate gate dielectric films with sub-1.5 nm equivalent oxide thickness," Applied Physics Letters, vol. 78, pp. 1718-1720, Mar 2001.
[28] A. Sawa, "Resistive switching in transition metal oxides," Materials today, vol. 11, pp. 28-36, 2008.
[29] H. Guo, X. Yang, T. Xiao, W. Zhang, L. Lou, and J. Mugnier, "Structure and optical properties of sol–gel derived Gd< sub> 2</sub> O< sub> 3</sub> waveguide films," Applied surface science, vol. 230, pp. 215-221, 2004.
[30] D. Neumayer and E. Cartier, "Materials characterization of ZrO 2–SiO 2 and HfO 2–SiO 2 binary oxides deposited by chemical solution deposition," Journal of Applied Physics, vol. 90, pp. 1801-1808, 2001.
[31] K.-C. Chang, R. Zhang, T.-C. Chang, T.-M. Tsai, J. Lou, J.-H. Chen, et al., "Origin of hopping conduction in graphene-oxide-doped silicon oxide resistance random access memory devices," 2013.
[32] K.-C. Chang, T.-M. Tsai, T.-C. Chang, H.-H. Wu, K.-H. Chen, J.-H. Chen, et al., "Low Temperature Improvement Method on Zn: SiOₓ Resistive Random Access Memory Devices," 2013.
[33] C. W. Zhong, W. H. Tzeng, K. C. Liu, H. C. Lin, K. M. Chang, Y. C. Chan, et al., "Effect of ITO electrode with different oxygen contents on the electrical characteristics of HfOx RRAM devices," Surface & Coatings Technology, vol. 231, pp. 563-566, Sep 2013.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 13.58.216.18
論文開放下載的時間是 校外不公開

Your IP address is 13.58.216.18
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code