Responsive image
博碩士論文 etd-0609114-173346 詳細資訊
Title page for etd-0609114-173346
論文名稱
Title
合成氧化石墨結合氧化鐵奈米複合材料用來快速和有效去除環境汙染物
Synthesis of Graphite Oxide-Fe3O4 Nanocomposites for Rapid and Efficient Removal of Environmental Contaminants
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
147
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-07-08
繳交日期
Date of Submission
2014-07-09
關鍵字
Keywords
還原氧化石墨、氧化鐵、金汞合金、亞甲基藍、雙酚A、油、砷鐵錯合物
reduced graphite oxide, Fe3O4, methylene blue, Au-Hg amalgam, oil, As-Fe complex, bisphenol A
統計
Statistics
本論文已被瀏覽 5709 次,被下載 0
The thesis/dissertation has been browsed 5709 times, has been downloaded 0 times.
中文摘要
本篇論文使用具有高比表面積的奈米碳材針對環境中的汙染物進行去除,並且將它與磁性奈米粒子結合,可以在外加磁場下收集分散在溶液中的複合材料。使用Hummer法合成氧化石墨(graphite oxide, GO),將聚二烯丙基二甲基胺鹽酸鹽(PDDA)與氧化石墨混合後,再加入鐵離子以共沉澱法進行一步(one-pot)合成還原氧化石墨-氧化鐵奈米複合材料(RGO-Fe3O4 NPs),其對芳香環類化合物和生物分子有良好吸附特性,並且能使用外加磁場回收,避免繁瑣的離心、沉澱等過程,作為一個快速及有效去除環境汙染物的材料。
一、 結合修飾聚山梨醇酯20之金奈米粒子和還原氧化石墨-氧化鐵奈米複合材料用來快速且有效去除環境水樣中的汞離子
本篇研究使用修飾聚山梨醇酯20之金奈米粒子(Tween 20-AuNPs) 作為吸附劑去除高鹽類基質中的有機汞和無機汞,並且以還原氧化石墨-氧化鐵奈米複合材料(RGO-Fe3O4 NPs)回收吸附完汞離子之Tween 20-AuNPs。聚山梨醇酯20是一種常見的保護試劑,讓檸檬酸鈉還原得到的金奈米粒子保持穩定分散在高鹽類基質溶液中,金奈米表面剩餘的檸檬酸根可以將Hg2+還原到Hg0並吸附在金奈米粒子表面,Hg0沉澱在金奈米表面接著形成金汞合金(Au-Hg amalgams)。利用RGO和Tween 20之間疏水性作用力(hydrophobic interaction),加入RGO-Fe3O4 NPs收集分散在溶液中含Hg0的Tween 20-AuNPs,免去費時的離心和轉移過程,相較於已知以奈米材料為基礎來去除汞的方法,利用Tween 20-Au NPs可以快速(< 30分鐘)、高效率(> 99 %)、重複使用(>10次)在高鹽類基質、大pH值範圍下,不受其他金屬離子干擾選擇性的去除Hg2+、CH3Hg+、C2H5Hg+等。並且經由加熱使汞離子揮發後可以重複使用十次。
二、 合成還原氧化石墨-氧化鐵奈米複合材料用來快速去除環境汙染物:(1)亞甲基藍;(2)雙酚A;(3)油汙;(4)砷離子
此篇研究延續使用上篇研究的RGO-Fe3O4 NPs來分別針對亞甲基藍、雙酚A、砷離子、機油這幾種物質作去除。亞甲基藍(methylene blue, MB)和雙酚A(bisphenol A, BPA)都是含有芳香環類化合物,可以和RGO-Fe3O4 NPs上的RGO以π-π interaction的方式吸附到材料上,MB在鹼性條件下(pH 11)可以快速(< 30分鐘)被吸附,其最大吸附量為每克RGO-Fe3O4 NPs可以吸附62.9毫克MB,並且吸附完的RGO-Fe3O4 NPs可以經由溶劑清洗步驟重複使用十次;BPA則可在pH 4 - 9下快速(< 30分鐘)吸附到材料上,其最大吸附量為12.9 mg / g,吸附完的材料亦可以經由溶劑清洗重複使用四次;RGO會因為疏水性和親油性作用力選擇性吸附水中的機油,將RGO-Fe3O4 NPs均勻分散在機油中,施以外加磁場下可以將水面上的油汙隨著磁場方向移動來去除油污。(其重量比為RGO-Fe3O4 NPs:油 = 13606:1);利用砷離子容易和鐵離子形成砷鐵錯合物,使用有較大比表面積的RGO-Fe3O4 NPs,可以在小於pH 11的環境下快速(< 10分鐘)去除As(III)及As(V),其最大吸附量分別為7 mg / g和8 mg / g,並且可在真實環境水樣中去除,RGO和表面修飾的PDDA可以保護Fe3O4 NPs,避免材料因為氧化和聚集而減少吸附表面積。本研究中配合使用RGO和Fe3O4 NPs可以針對不同種類汙染物達到一個有效的去除,未來可以應用於工廠廢水、河川汙染、海洋漏油汙染等環境汙染防治議題上。
Abstract
I. Combined Tween 20-stabilized Gold Nanoparticles and Reduced Graphite Oxide-Fe3O4
Nanoparticle Composites for Rapid and Efficient Removal of Mercury Species in
Environmental Water
This study describes a simple method for removing mercuric ions (Hg2+) from a high-salt matrix based on the use of Tween-20-stabilized gold nanoparticles (Tween 20-Au NPs) as Hg2+ adsorbents and composites of reduced graphite oxide and Fe3O4 NPs as NP collectors. Citrate ions adsorbed on the surface of the Tween 20-Au NPs reduced Hg2+ to Hg0, resulting in the deposition of Hg0 on the surface of the NPs and the formation of an Au–Hg amalgam. To circumvent time-consuming centrifugation and transfer steps, the Hg0-containing gold NPs were collected using reduced graphite oxide-Fe3O4 NP composites. Compared with the reported NP-based methods for removing Hg2+, Tween 20-Au NPs offered the rapid (within 30 min), efficient (> 99% elimination efficiency), durable (> 10 cycles), and selective removal of Hg2+, CH3Hg+, and C2H5Hg+ in a high-salt matrix, without the interference of other metal ions. This was attributed to the fact that the Tween 20-Au NPs were dispersed in a high-salt matrix, providing them with large surface to volume ratio to interact with Hg2+. The formation of graphite oxide sheets and reduced graphite oxide-Fe3O4 NP composites was demonstrated using X-ray diffraction, X-ray photoelectron spectroscopy, Raman spectroscopy, Fourier transform infrared spectrometry, and/or transmission electron microscopy. The mechanism of interaction between Tween 20-Au NPs and Hg2+ was studied using visible spectroscopy, transmission electron microscopy, and X-ray photoelectron spectroscopy.
II. Synthesis of Ruduced Graphite Oxide-Fe3O4 Nanoparticle Composites for Rapid
Removal of Environmental Contaminants:(1)Methylene blue; (2)Bisphenol A; (3)Oil;
(4)Arsenic ions
Developing of a rapid, simple, efficient method for removing methylene blue, bisphenol A, oil and arsenic ion from aqueous media using reduced graphite oxide-Fe3O4 nanoparticle composites. The nanocomposites with both magnetic and good adsorption capacity have been one-pot synthesized via PDDA-modified and coprecipitation process. Here we demonstrated the potential environmental engineering application of this nanocomposite by taking organic dye and emerging contaminants, methylene blue and bisphenol A, as our model system. Methylene blue and bisphenol A are heterocyclic aromatic chemical compound, and adsorb on the surface of ruduced Graphite Oxide-Fe3O4 nanoparticle composites through strongly π-π interaction between aromatic ring structure and sp2 orbital. Reduced graphite oxide-Fe3O4 nanoparticle composites with hydrophobic but oleophilic coating, such as reduced graphite oxide, a selectivity oil-adsorbing material capable of floating on sea water is achieved. Because of the low density and the ability to absorb nonpolar liquids and oils, the nanomaterials allow to collect organic contaminants from the water surface. The hybrids show a high binding capacity for As(III) and As(V), whose presence in the drinking water in wide areas of South Asia has been a huge problem. The formation of As-Fe complex lead to a deposition of arsenic ion on the surface of nanocomposites. Their high binding capacity is due to the increased adsorption sites in the RGO-Fe3O4 NPs composites which occur by reducing the aggregation of bare magnetite. Since the composites show near complete (over 98.0%) arsenic removal within 10 μM, they are practically usable for arsenic separation from environmental water.
目次 Table of Contents
謝誌.........................................................................................................................i
中文摘要.................................................................................................................iii
英文摘要..................................................................................................................v
目錄.......................................................................................................................vii
圖表目錄..................................................................................................................x
縮寫表...................................................................................................................xiii
第一章 結合修飾聚山梨醇酯20之金奈米粒子和還原氧化石墨-氧化鐵奈米複合材料用來快
速且有效去除環境水樣中的汞離子
一、 前言…………………………………………………………………………...............…. 1
二、 實驗步驟………………………………………………………………................…....... 4
2.1 藥品與溶液配置…………………………………………...…………….......................… 4
2.2 儀器裝置………………………………………………................................................. 8
2.3 金奈米粒子製備方法……………………………..................…………………............. 11
2.4 合成還原氧化石墨-氧化鐵奈米複合材料.............................................................. 12
2.5 模擬還原氧化石墨形成...................................................................................... 14
2.6 汞離子去除過程................................................................................................ 15
三、 結果與討論.................................................................................................... 17
3.1 Hg2+去除機制之探討........................................................................................ 17
3.2 Hummer法合成之氧化石墨表面特徵鑑定............................................................. 23
3.3 還原氧化石墨-氧化鐵奈米複合材料表面特徵鑑定................................................. 25
3.4 模擬還原氧化石墨合成...................................................................................... 28
3.5 去除條件最適化與重複使用探討......................................................................... 33
3.6 對於其他離子干擾和真實樣品之探討.................................................................. 38
3.7 對汞物種最大吸附能力之探討............................................................................ 40
3.8 證實金汞合金之形成......................................................................................... 46
四、 結論............................................................................................................. 50
五、 參考資料....................................................................................................... 51
第二章 合成還原氧化石墨-氧化鐵奈米複合材料用來快速去除環境汙染物:(1)亞甲基藍;
(2)雙酚A;(3)油汙;(4)砷離子
一、 前言…………………………………………..…………………......………...........…... 60
二、 實驗步驟……………………………………………………………….................…..... 66
2.1 藥品與溶液配置................................................................................................ 66
2.2 儀器裝置………...............…………………………………………............................. 71
2.3 還原氧化石墨-氧化鐵奈米複合材料製備方法........................................................ 72
2.4 不同氧化鐵奈米粒子製備方法............................................................................ 72
2.5 樣品製備......................................................................................................... 73
三、 結果與討論.................................................................................................... 79
3.1.1 去除亞甲基藍之機制探討................................................................................ 79
3.1.2 探討pH值和反應時間對亞甲基藍吸附效果之影響............................................... 81
3.1.3 亞甲基藍最大吸附能力之探討......................................................................... 84
3.1.4 亞甲基藍重複使用能力和與其他材料比較之探討............................................... 87
3.2.1 去除雙酚A之機制探討.................................................................................... 90
3.2.2 探討pH值和反應時間對雙酚A吸附效果之影響................................................... 92
3.2.3 雙酚A最大吸附能力之探討.............................................................................. 95
3.2.4 雙酚A重複使用能力和不同材料去除能力比較之探討.......................................... 98
3.3.1 海上油汙去除之機制探討.............................................................................. 101
3.3.2 油汙去除能力之探討......................................................................................103
3.4.1 去除砷離子之機制探討................................................................................. 106
3.4.2 探討pH值和反應時間對砷離子吸附效果之影響................................................ 108
3.4.3 砷離子之最大吸附能力和恆溫吸附模式探討.................................................... 111
3.4.4 其他離子干擾以及真實樣品應用之探討........................................................... 115
3.4.5 有機砷離子去除和材料重複使用能力之探討.................................................... 118
四、 結論............................................................................................................ 123
五、 參考資料..................................................................................................... 124
參考文獻 References
第一章 結合修飾聚山梨醇酯20之金奈米粒子和還原氧化石墨-氧化鐵奈米複合材料用來快
速且有效去除環境水樣中的汞離子
(1) Boening, D. W. Ecological effects, transport, and fate of mercury: a general review.
Chemosphere 2000, 40, 1335-1351.
(2) Wood, C. M.; McDonald, M. D.; Walker, P.; Grosell, M.; Barimo, J. F.; Playle, R. C.;
Walsh, P. J. Bioavailability of silver and its relationship to ionoregulation and silver
speciation across a range of salinities in the gulf toadfish (Opsanus beta). Aquat.
Toxicol. 2004, 70, 137-157.
(3) Holmes, P.; James, K. A.; Levy, L. S. Is low-level environmental mercury exposure of
concern to human health? Sci Total Environ 2009, 408, 171-182.
(4) Biester, H.; Schuhmacher, P.; Muller, G. Effectiveness of mossy tin filters to remove
mercury from aqueous solution by Hg(0) reduction and Hg(0) amalgamation. Water
Res 2000, 34, 2031-2036.
(5) Chakrabarty, K.; Saha, P.; Ghoshal, A. K. Separation of mercury from its aqueous
solution through supported liquid membrane using environmentally benign diluent. J.
Membrane Sci. 2010, 350, 395-401.
(6) Chojnacki, A.; Chojnacka, K.; Hoffmann, J.; Gorecki, H. The application of natural
zeolites for mercury removal: from laboratory tests to industrial scale. Miner. Eng.
2004, 17, 933-937.
(7) Huttenloch, P.; Roehl, K. E.; Czurda, K. Use of copper shavings to remove mercury
from contaminated groundwater or wastewater by amalgamation. Environ. Sci.
Technol. 2003, 37, 4269-4273.
(8) Oehmen, A.; Viegas, R.; Velizarov, S.; Reis, M. A. M.; Crespo, J. G. Removal of
heavy metals from drinking water supplies through the ion exchange membrane
bioreactor. Desalination 2006, 199, 405-407.
(9) Zhang, H. Photochemical redox reactions of mercury. Struct. Bond. 2006, 120, 37-79.
(10) Evangelista, S. M.; DeOliveira, E.; Castro, G. R.; Zara, L. F.; Prado, A. G. S.
Hexagonal mesoporous silica modified with 2-mercaptothiazoline for removing
mercury from water solution. Surf. Sci. 2007, 601, 2194-2202.
(11) Mahmoud, M. E.; Osman, M. M.; Amer, M. E. Selective pre-concentration and solid
phase extraction of mercury(II) from natural water by silica gel-loaded dithizone
phases. Anal. Chim. Acta 2000, 415, 33-40.
(12) Ahmed, S. A. Alumina physically loaded by thiosemicarbazide for selective
preconcentration of mercury(II) ion from natural water samples. J. Hazard. Mater.
2008, 156, 521-529.
(13) Soliman, E. M.; Saleh, M. B.; Ahmed, S. A. Alumina modified by dimethyl sulfoxide
as a new selective solid phase extractor for separation and preconcentration of
inorganic mercury(II). Talanta 2006, 69, 55-60.
(14) Pourreza, N.; Ghanemi, K. Determination of mercury in water and fish samples by
cold vapor atomic absorption spectrometry after solid phase extraction on agar
modified with 2-mercaptobenzimidazole. J. Hazard. Mater. 2009, 161, 982-987.
(15) Park, H. G.; Kim, T. W.; Chae, M. Y.; Yoo, I. K. Activated carbon-containing
alginate adsorbent for the simultaneous removal of heavy metals and toxic organics.
Process Biochem. 2007, 42, 1371-1377.
(16) Li, X. G.; Feng, H.; Huang, M. R. Strong Adsorbability of Mercury Ions on
Aniline/Sulfoanisidine Copolymer Nanosorbents. Chem-Eur. J. 2009, 15, 4573-4581.
(17) Ralston, N. Nanomaterials: Nano-selenium captures mercury. Nat. Nanotechnol.
2008, 3, 527-528.
(18) Lisha, K. P.; Maliyekkal, S. M.; Pradeep, T. Manganese dioxide nanowhiskers: A
potential adsorbent for the removal of Hg(II) from water. Chem. Eng. J. 2010, 160,
432-439.
(19) Luo, G. Q.; Yao, H.; Xu, M. H.; Cui, X. W.; Chen, W. X.; Gupta, R.; Xu, Z. H. Carbon
Nanotube-Silver Composite for Mercury Capture and Analysis. Energ. Fuel. 2010,
24, 419-426.
(20) Sumesh, E.; Bootharaju, M. S.; Anshup; Pradeep, T. A practical silver nanoparticle-
based adsorbent for the removal of Hg2+ from water. J. Hazard. Mater. 2011, 189,
450-457.
(21) Yordanova, T.; Vasileva, P.; Karadjova, I.; Nihtianova, D. Submicron silica spheres
decorated with silver nanoparticles as a new effective sorbent for inorganic mercury
in surface waters. Analyst 2014, 139, 1532-1540.
(22) Lee, Y. F.; Nan, F. H.; Chen, M. J.; Wu, H. Y.; Ho, C. W.; Chen, Y. Y.; Huang, C.
C. Detection and removal of mercury and lead ions by using gold nanoparticle-based
gel membrane. Anal. Methods 2012, 4, 1709-1717.
(23) Lisha, K. P.; Anshup; Pradeep, T. Towards a Practical Solution for Removing
Inorganic Mercury from Drinking Water Using Gold Nanoparticles. Gold Bull. 2009,
42, 144-152.
(24) Lo, S. I.; Chen, P. C.; Huang, C. C.; Chang, H. T. Gold Nanoparticle–Aluminum
Oxide Adsorbent for Efficient Removal of Mercury Species from Natural Waters.
Environ. Sci. Technol. 2012, 46, 2724-2730.
(25) Ojea-Jimenez, I.; Lopez, X.; Arbiol, J.; Puntes, V. Citrate-Coated Gold Nanoparticles
As Smart Scavengers for Mercury(II) Removal from Polluted Waters. Acs Nano
2012, 6, 2253-2260.
(26) Mertens, S. F. L.; Gara, M.; Sologubenko, A. S.; Mayer, J.; Szidat, S.; Kramer, K.
W.; Jacob, T.; Schiffrin, D. J.; Wandlowski, T. Au@Hg Nanoalloy Formation Through
Direct Amalgamation: Structural, Spectroscopic, and Computational Evidence for
Slow Nanoscale Diffusion. Adv. Funct. Mater. 2011, 21, 3259-3267.
(27) Chang, C. W.; Tseng, W. L. Gold Nanoparticle Extraction Followed by Capillary
Electrophoresis to Determine the Total, Free, and Protein-Bound Aminothiols in
Plasma. Anal. Chem. 2010, 82, 2696-2702.
(28) Lin, C. Y.; Yu, C. J.; Lin, Y. H.; Tseng, W. L. Colorimetric Sensing of Silver(I) and
Mercury(II) Ions Based on an Assembly of Tween 20-Stabilized Gold Nanoparticles.
Anal. Chem. 2010, 82, 6830-6837.
(29) Shen, C. C.; Tseng, W. L.; Hsieh, M. M. Selective extraction of thiol-containing
peptides in seawater using Tween 20-capped gold nanoparticles followed by
capillary electrophoresis with laser-induced fluorescence. J. Chromatogr. A 2012,
1220, 162-168.
(30) Zhao, Y. Y.; Wang, Z.; Zhang, W.; Jiang, X. Y. Adsorbed Tween 80 is unique in its
ability to improve the stability of gold nanoparticles in solutions of biomolecules.
Nanoscale 2010, 2, 2114-2119.
(31) Lin, J. H.; Chang, C. W.; Tseng, W. L. Fluorescent sensing of homocysteine in
urine: using fluorosurfactant-capped gold nanoparticles and o-Phthaldialdehyde.
Analyst 2010, 135, 104-110.
(32) Lin, J. H.; Chang, C. W.; Wu, Z. H.; Tseng, W. L. Colorimetric Assay for S-
Adenosylhomocysteine Hydrolase Activity and Inhibition Using Fluorosurfactant-
Capped Gold Nanoparticles. Anal. Chem. 2010, 82, 8775-8779.
(33) Lu, C.; Zu, Y.; Yam, V. W. Specific postcolumn detection method for HPLC assay of
homocysteine based on aggregation of fluorosurfactant-capped gold nanoparticles.
Anal. Chem. 2007, 79, 666-672.
(34) Fujimoto, T.; Miya, M.; Machida, M.; Takechi, S.; Kakinoki, S.; Kanda, K.; Nomura,
A. Improved recovery of human urinary protein for electrophoresis. J. Health Sci.
2006, 52, 718-723.
(35) Huang, C. C.; Tseng, W. L. Role of fluorosurfactant-modified gold nanoparticles in
selective detection of homocysteine thiolactone: remover and sensor. Anal Chem
2008, 80, 6345-6350.
(36) Lu, Z.; Zhang, L.; Deng, Y.; Li, S.; He, N. Graphene oxide for rapid microRNA
detection. Nanoscale 2012, 4, 5840-5842.
(37) Jeon, K. J.; Lee, Z. Size-dependent interaction of Au nanoparticles and graphene
sheet. Chem. Commun. 2011, 47, 3610-3612.
(38) Bradder, P.; Ling, S. K.; Wang, S. B.; Liu, S. M. Dye Adsorption on Layered
Graphite Oxide. J. Chem. Eng. Data 2011, 56, 138-141.
(39) Kim, F.; Luo, J. Y.; Cruz-Silva, R.; Cote, L. J.; Sohn, K.; Huang, J. X. Self-
Propagating Domino-like Reactions in Oxidized Graphite. Adv. Funct. Mater. 2010,
20, 2867-2873.
(40) Ji, Z. Y.; Zhu, G. X.; Shen, X. P.; Zhou, H.; Wu, C. M.; Wang, M. Reduced graphene
oxide supported FePt alloy nanoparticles with high electrocatalytic performance for
methanol oxidation. New J. Chem. 2012, 36, 1774-1780.
(41) Jeong, H. K.; Colakerol, L.; Jin, M. H.; Glans, P. A.; Smith, K. E.; Lee, Y. H.
Unoccupied electronic states in graphite oxides. Chem. Phys. Lett. 2008, 460, 499-
502.
(42) Jeong, H. K.; Lee, Y. P.; Lahaye, R. J.; Park, M. H.; An, K. H.; Kim, I. J.; Yang, C.
W.; Park, C. Y.; Ruoff, R. S.; Lee, Y. H. Evidence of graphitic AB stacking order of
graphite oxides. J. Am. Chem. Soc. 2008, 130, 1362-1366.
(43) Guo, Y. Q.; Bao, C. L.; Song, L.; Yuan, B. H.; Hu, Y. In Situ Polymerization of
Graphene, Graphite Oxide, and Functionalized Graphite Oxide into Epoxy Resin and
Comparison Study of On-the-Flame Behavior. Ind. Eng. Chem. Res. 2011, 50, 7772-
7783.
(44) Zhang, S.; Shao, Y. Y.; Liao, H. G.; Engelhard, M. H.; Yin, G. P.; Lin, Y. H.
Polyelectrolyte-Induced Reduction of Exfoliated Graphite Oxide: A Facile Route to
Synthesis of Soluble Graphene Nanosheets. Acs Nano 2011, 5, 1785-1791.
(45) Ma, Z.; Guan, Y.; Liu, H. Synthesis and characterization of micron-sized
monodisperse superparamagnetic polymer particles with amino groups. J. Polym.
Sci. Polym. Chem. 2005, 43, 3433-3439.
(46) Hassan, H. M. A.; Abdelsayed, V.; Khder, A. E. R. S.; AbouZeid, K. M.; Terner, J.;
El-Shall, M. S.; Al-Resayes, S. I.; El-Azhary, A. A. Microwave synthesis of
graphene sheets supporting metal nanocrystals in aqueous and organic media. J.
Mater. Chem. 2009, 19, 3832-3837.
(47) Li, J.; Liu, C.-Y.; Liu, Y. Au/graphene hydrogel: synthesis, characterization and its
use for catalytic reduction of 4-nitrophenol. J. Mater. Chem. 2012, 22, 8426-8430.
(48) Zhang, Y.; Ma, H.-L.; Zhang, Q.; Peng, J.; Li, J.; Zhai, M.; Yu, Z.-Z. Facile synthesis
of well-dispersed graphene by [gamma]-ray induced reduction of graphene oxide. J.
Mater. Chem. 2012, 22, 13064-13069.
(49) Valentini, L.; Bon, S. B.; Kenny, J. M. Emerging methods for producing graphene
oxide composites in coatings with multifunctional properties. J. Mater. Chem. 2012,
22, 21355-21361.
(50) Gengler, R. Y.; Badali, D. S.; Zhang, D.; Dimos, K.; Spyrou, K.; Gournis, D.; Miller,
R. J. Revealing the ultrafast process behind the photoreduction of graphene oxide.
Nat. Commun. 2013, 4, 2560.
(51) Yang, S.; Yue, W.; Huang, D.; Chen, C.; Lin, H.; Yang, X. A facile green strategy for
rapid reduction of graphene oxide by metallic zinc. RSC Adv. 2012, 2, 8827-8832.
(52) Dave, N.; Chan, M. Y.; Huang, P. J. J.; Smith, B. D.; Liu, J. W. Regenerable DNA-
Functionalized Hydrogels for Ultrasensitive, Instrument-Free Mercury(II) Detection
and Removal in Water. J. Am. Chem. Soc. 2010, 132, 12668-12673.
(53) Yantasee, W.; Warner, C. L.; Sangvanich, T.; Addleman, R. S.; Carter, T. G.;
Wiacek, R. J.; Fryxell, G. E.; Timchalk, C.; Warner, M. G. Removal of heavy metals
from aqueous systems with thiol functionalized superparamagnetic nanoparticles.
Environ. Sci. Technol. 2007, 41, 5114-5119.
(54) Liu, J. F.; Zhao, Z. S.; Jiang, G. B. Coating Fe3O4 magnetic nanoparticles with
humic acid for high efficient removal of heavy metals in water. Environ. Sci. Technol.
2008, 42, 6949-6954.
(55) Liu, J. S.; Du, X. Z. Fast removal of aqueous Hg(II) with quaternary ammonium-
functionalized magnetic mesoporous silica and silica regeneration. J. Mater. Chem.
2011, 21, 6981-6987.
(56) Guo, L. M.; Li, J. T.; Zhang, L. X.; Li, J. B.; Li, Y. S.; Yu, C. C.; Shi, J. L.; Ruan, M.
L.; Feng, J. W. A facile route to synthesize magnetic particles within hollow
mesoporous spheres and their performance as separable Hg(2+) adsorbents. J.
Mater. Chem. 2008, 18, 2733-2738.
(57) Hakami, O.; Zhang, Y.; Banks, C. J. Thiol-functionalised mesoporous silica-coated
magnetite nanoparticles for high efficiency removal and recovery of Hg from water.
Water Res. 2012, 46, 3913-3922.
(58) He, F.; Wang, W.; Moon, J. W.; Howe, J.; Pierce, E. M.; Liang, L. Rapid removal of
Hg(II) from aqueous solutions using thiol-functionalized Zn-doped biomagnetite
particles. ACS Appl. Mater. Interfaces 2012, 4, 4373-4379.
(59) Song, B. Y.; Eom, Y.; Lee, T. G. Removal and recovery of mercury from aqueous
solution using magnetic silica nanocomposites. Appl. Surf. Sci. 2011, 257, 4754-
4759.
(60) Pan, S. D.; Zhang, Y.; Shen, H. Y.; Hu, M. Q. An intensive study on the magnetic
effect of mercapto-functionalized nano-magnetic Fe3O4 polymers and their
adsorption mechanism for the removal of Hg(II) from aqueous solution. Chem. Eng.
J. 2012, 210, 564-574.
(61) Pan, S.; Shen, H.; Xu, Q.; Luo, J.; Hu, M. Surface mercapto engineered magnetic
Fe3O4 nanoadsorbent for the removal of mercury from aqueous solutions. J. Colloid
Interface Sci. 2012, 365, 204-212.
(62) Parham, H.; Zargar, B.; Shiralipour, R. Fast and efficient removal of mercury from
water samples using magnetic iron oxide nanoparticles modified with 2-
mercaptobenzothiazole. J. Hazard. Mater. 2012, 205, 94-100.
(63) Chandra, V.; Kim, K. S. Highly selective adsorption of Hg2+ by a polypyrrole-
reduced graphene oxide composite. Chem Commun 2011, 47, 3942-3944.
(64) Cui, H.; Qian, Y.; Li, Q.; Wei, Z. B.; Zhai, J. P. Fast removal of Hg(II) ions from
aqueous solution by amine-modified attapulgite. Appl. Clay Sci. 2013, 72, 84-90.
(65) Sari, A.; Tuzen, M. Removal of mercury(II) from aqueous solution using moss
(Drepanocladus revolvens) biomass: Equilibrium, thermodynamic and kinetic
studies. J. Hazard. Mater. 2009, 171, 500-507.
(66) Zhu, J. Z.; Deng, B. L.; Yang, J.; Gang, D. C. Modifying activated carbon with hybrid
ligands for enhancing aqueous mercury removal. Carbon 2009, 47, 2014-2025.
(67) Xiong, C. H.; Yao, C. P. Synthesis, characterization and application of
triethylenetetramine modified polystyrene resin in removal of mercury, cadmium and
lead from aqueous solutions. Chem. Eng. J. 2009, 155, 844-850.
(68) Lo, S.-I.; Chen, P.-C.; Huang, C.-C.; Chang, H.-T. Gold Nanoparticle–Aluminum
Oxide Adsorbent for Efficient Removal of Mercury Species from Natural Waters.
Environ. Sci. Technol. 2012, 46, 2724-2730.
(69) Genin, F.; Alnot, M.; Ehrhardt, J. J. Interaction of vapours of mercury with PbS(0 0
1): a study by X-ray photoelectron spectroscopy, RHEED and X-ray absorption
spectroscopy. Appl. Surf. Sci. 2001, 173, 44-53.
(70) Huang, K.-W.; Yu, C.-J.; Tseng, W.-L. Sensitivity enhancement in the colorimetric
detection of lead(II) ion using gallic acid–capped gold nanoparticles: Improving size
distribution and minimizing interparticle repulsion. Biosens. Bioelectron. 2010, 25,
984-989.
(71) Lai, Y.-J.; Tseng, W.-L. Role of 5-thio-(2-nitrobenzoic acid)-capped gold
nanoparticles in the sensing of chromium(vi): remover and sensor. Analyst 2011, 136,
2712-2717.
第二章 合成還原氧化石墨-還原氧化鐵奈米複合材料用來快速去除環境汙染物:(1)亞甲基
藍;(2)雙酚A;(3)油汙;(4)砷離子
(1) Morel, A. L.; Nikitenko, S. I.; Gionnet, K.; Wattiaux, A.; Lai-Kee-Him, J.; Labrugere,
C.; Chevalier, B.; Deleris, G.; Petibois, C.; Brisson, A.; Simonoff, M. Sonochemical
approach to the synthesis of Fe3O4@SiO2 core-shell nanoparticles with tunable
properties. ACS Nano 2008, 2, 847-856.
(2) Benn, T. M.; Westerhoff, P. Nanoparticle Silver Released into Water from
Commercially Available Sock Fabrics. Environ. Sci. Technol. 2008, 42, 4133-4139.
(3) Lubick, N. Nanosilver toxicity: ions, nanoparticles--or both? Environ. Sci. Technol.
2008, 42, 8617.
(4) Navarro, E.; Piccapietra, F.; Wagner, B.; Marconi, F.; Kaegi, R.; Odzak, N.; Sigg, L.;
Behra, R. Toxicity of silver nanoparticles to Chlamydomonas reinhardtii. Environ. Sci.
Technol. 2008, 42, 8959-8964.
(5) AshaRani, P. V.; Low Kah Mun, G.; Hande, M. P.; Valiyaveettil, S. Cytotoxicity and
genotoxicity of silver nanoparticles in human cells. ACS Nano 2009, 3, 279-290.
(6) Liu, J.; Hurt, R. H. Ion release kinetics and particle persistence in aqueous nano-silver
colloids. Environ. Sci. Technol. 2010, 44, 2169-2175.
(7) Wang, X.; Zhong, S.; He, Y.; Song, G. A graphene oxide-rhodamine 6G
nanocomposite as turn-on fluorescence probe for selective detection of DNA. Anal.
Methods 2012, 4, 360-362.
(8) Li, M.; Zhou, X.; Ding, W.; Guo, S.; Wu, N. Fluorescent aptamer-functionalized
graphene oxide biosensor for label-free detection of mercury(II). Biosens. Bioelectron.
2013, 41, 889-893.
(9) Xing, X. J.; Zhou, Y.; Liu, X. G.; Tang, H. W.; Pang, D. W. Amplified fluorescent
assay of potassium ions using graphene oxide and a conjugated cationic polymer.
Analyst 2013, 138, 6301-6304.
(10) Ramesha, G. K.; Kumara, A. V.; Muralidhara, H. B.; Sampath, S. Graphene and
graphene oxide as effective adsorbents toward anionic and cationic dyes. J. Colloid
Interface Sci. 2011, 361, 270-277.
(11) Lin, S. H.; Juang, R. S.; Wang, Y. H. Adsorption of acid dye from water onto pristine
and acid-activated clays in fixed beds. J. Hazard. Mater. 2004, 113, 195-200.
(12) Stephenson, R. J.; Duff, S. J. B. Coagulation and precipitation of a mechanical
pulping effluent—I. Removal of carbon, colour and turbidity. Water Res. 1996, 30,
781-792.
(13) Chiou, M. S.; Chuang, G. S. Competitive adsorption of dye metanil yellow and RB15
in acid solutions on chemically cross-linked chitosan beads. Chemosphere 2006, 62,
731-740.
(14) Mckay, G.; Ramprasad, G.; Mowli, P. P. Equilibrium Studies for the Adsorption of
Dyestuffs from Aqueous-Solutions by Low-Cost Materials. Water, Air, Soil Pollut.
1986, 29, 273-283.
(15) Luo, X.; Zhang, L. High effective adsorption of organic dyes on magnetic cellulose
beads entrapping activated carbon. J. Hazard. Mater. 2009, 171, 340-347.
(16) Namasivayam, C.; Muniasamy, N.; Gayatri, K.; Rani, M.; Ranganathan, K. Removal
of dyes from aqueous solutions by cellulosic waste orange peel. Bioresour. Technol.
1996, 57, 37-43.
(17) Bhattacharyya, K. G.; Sharma, A. Kinetics and thermodynamics of Methylene Blue
adsorption on Neem (Azadirachta indica) leaf powder. Dyes Pigm. 2005, 65, 51-59.
(18) Gupta, V. K.; Suhas; Ali, I.; Saini, V. K. Removal of Rhodamine B, Fast Green, and
Methylene Blue from Wastewater Using Red Mud, an Aluminum Industry Waste.
Ind. Eng. Chem. Res. 2004, 43, 1740-1747.
(19) Mittal, A.; Kurup, L.; Gupta, V. K. Use of waste materials—Bottom Ash and De-
Oiled Soya, as potential adsorbents for the removal of Amaranth from aqueous
solutions. J. Hazard. Mater. 2005, 117, 171-178.
(20) Garg, V. K.; Amita, M.; Kumar, R.; Gupta, R. Basic dye (methylene blue) removal
from simulated wastewater by adsorption using Indian Rosewood sawdust: a timber
industry waste. Dyes Pigm. 2004, 63, 243-250.
(21) Mahanta, D.; Madras, G.; Radhakrishnan, S.; Patil, S. Adsorption and desorption
kinetics of anionic dyes on doped polyaniline. J. Phys. Chem. B 2009, 113, 2293-
2299.
(22) He, F.; Fan, J.; Ma, D.; Zhang, L.; Leung, C.; Chan, H. L. The attachment of Fe3O4
nanoparticles to graphene oxide by covalent bonding. Carbon 2010, 48, 3139-3144.
(23) Zhang, Y.-X.; Liu, Z.-L.; Sun, B.; Xu, W.-H.; Liu, J.-H. An alternative hydrothermal
route to amorphous carbon nanotubes for treatment of organic pollutants in water.
RSC Adv. 2013, 3, 23197-23206.
(24) Cruz-Guzmán, M.; Celis, R.; Hermosín, M. C.; Cornejo, Adsorption of the Herbicide
Simazine by Montmorillonite Modified with Natural Organic Cations. J. Environ. Sci.
Technol. 2003, 38, 180-186.
(25) Lee, L. S.; Strock, T. J.; Sarmah, A. K.; Rao, P. S. C. Sorption and Dissipation of
Testosterone, Estrogens, and Their Primary Transformation Products in Soils and
Sediment. Environ. Sci. Technol. 2003, 37, 4098-4105.
(26) Akçay, M.; Akçay, G. The removal of phenolic compounds from aqueous solutions
by organophilic bentonite. J. Hazard. Mater. 2004, 113, 189-193.
(27) Yapar, S.; Özbudak, V.; Dias, A.; Lopes, A. Effect of adsorbent concentration to the
adsorption of phenol on hexadecyl trimethyl ammonium-bentonite. J. Hazard. Mater.
2005, 121, 135-139.
(28) Lin, S.-H.; Hsiao, R.-C.; Juang, R.-S. Removal of soluble organics from water by a
hybrid process of clay adsorption and membrane filtration. J. Hazard. Mater. 2006,
135, 134-140.
(29) Rawajfih, Z.; Nsour, N. Characteristics of phenol and chlorinated phenols sorption
onto surfactant-modified bentonite. J. Colloid Interface Sci. 2006, 298, 39-49.
(30) Shareef, A.; Angove, M. J.; Wells, J. D.; Johnson, B. B. Sorption of bisphenol A,
17α-ethynylestradiol and estrone to mineral surfaces. J. Colloid Interface Sci. 2006,
297, 62-69.
(31) Upson, R. T.; Burns, S. E. Sorption of nitroaromatic compounds to synthesized
organoclays. J. Colloid Interface Sci. 2006, 297, 70-76.
(32) Yoon, B. O.; Koyanagi, S.; Asano, T.; Hara, M.; Higuchi, A. Removal of endocrine
disruptors by selective sorption method using polydimethylsiloxane membranes. J.
Membr. Sci. 2003, 213, 137-144.
(33) Zhao, C.; Wei, Q.; Yang, K.; Liu, X.; Nomizu, M.; Nishi, N. Preparation of porous
polysulfone beads for selective removal of endocrine disruptors. Sep. Purif. Technol.
2004, 40, 297-302.
(34) Yamada, M.; Kato, K.; Nomizu, M.; Ohkawa, K.; Yamamoto, H.; Nishi, N. UV-
Irradiated DNA Matrixes Selectively Bind Endocrine Disruptors with a Planar
Structure. Environ. Sci. Technol. 2002, 36, 949-954.
(35) Zhao, C.; Liu, X.; Nomizu, M.; Nishi, N. DNA‐Loaded PSf Microspheres Used in
Environmental Application. Sep. Sci. Technol. 2004, 39, 3043-3055.
(36) Kang, J. H.; Kondo, F. Bisphenol a degradation by bacteria isolated from river water.
Arch. Environ. Contam. Toxicol. 2002, 43, 265-269.
(37) Ooka, C.; Yoshida, H.; Horio, M.; Suzuki, K.; Hattori, T. Adsorptive and
photocatalytic performance of TiO2 pillared montmorillonite in degradation of
endocrine disruptors having different hydrophobicity. Appl. Catal. B: Environ. 2003,
41, 313-321.
(38) Xu, J.; Wang, L.; Zhu, Y. Decontamination of bisphenol A from aqueous solution by
graphene adsorption. Langmuir : the ACS journal of surfaces and colloids 2012, 28,
8418-8425.
(39) Kuo, C.-Y. Comparison with as-grown and microwave modified carbon nanotubes to r
removal aqueous bisphenol A. Desalination 2009, 249, 976-982.
(40) Korhonen, J. T.; Kettunen, M.; Ras, R. H.; Ikkala, O. Hydrophobic nanocellulose
aerogels as floating, sustainable, reusable, and recyclable oil absorbents. ACS Appl.
Mater. Interfaces 2011, 3, 1813-1816.
(41) Nordvik, A. B.; Simmons, J. L.; Bitting, K. R.; Lewis, A.; Strøm-Kristiansen, T. Oil
and water separation in marine oil spill clean-up operations. Spill Sci. Technol. Bull.
1996, 3, 107-122.
(42) Meng, X.; Bang, S.; Korfiatis, G. P. Effects of silicate, sulfate, and carbonate on
arsenic removal by ferric chloride. Water Res. 2000, 34, 1255-1261.
(43) Mohan, D.; Pittman Jr, C. U. Arsenic removal from water/wastewater using
adsorbents—A critical review. J. Hazard. Mater. 2007, 142, 1-53.
(44) Mauter, M. S.; Elimelech, M. Environmental Applications of Carbon-Based
Nanomaterials. Environ. Sci. Technol. 2008, 42, 5843-5859.
(45) Zhang, S.; Li, X.-Y.; Chen, J. P. Preparation and evaluation of a magnetite-doped
activated carbon fiber for enhanced arsenic removal. Carbon 2010, 48, 60-67.
(46) Miyamoto, J.-I.; Kanoh, H.; Kaneko, K. The addition of mesoporosity to activated
carbon fibers by a simple reactivation process. Carbon 2005, 43, 855-857.
(47) Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S.
V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films.
Science 2004, 306, 666-669.
(48) Kim, K. S.; Zhao, Y.; Jang, H.; Lee, S. Y.; Kim, J. M.; Kim, K. S.; Ahn, J. H.; Kim,
P.; Choi, J. Y.; Hong, B. H. Large-scale pattern growth of graphene films for
stretchable transparent electrodes. Nature 2009, 457, 706-710.
(49) Li, X.; Cai, W.; An, J.; Kim, S.; Nah, J.; Yang, D.; Piner, R.; Velamakanni, A.; Jung,
I.; Tutuc, E.; Banerjee, S. K.; Colombo, L.; Ruoff, R. S. Large-area synthesis of
high-quality and uniform graphene films on copper foils. Science 2009, 324, 1312-
1314.
(50) Chandra, V.; Park, J.; Chun, Y.; Lee, J. W.; Hwang, I. C.; Kim, K. S. Water-
dispersible magnetite-reduced graphene oxide composites for arsenic removal. ACS
Nano 2010, 4, 3979-3986.
(51) Pirila, M.; Martikainen, M.; Ainassaari, K.; Kuokkanen, T.; Keiski, R. L. Removal of
aqueous As(III) and As(V) by hydrous titanium dioxide. J. Colloid Interface Sci. 2011,
353, 257-262.
(52) Goswami, A.; Raul, P. K.; Purkait, M. K. Arsenic adsorption using copper (II) oxide
nanoparticles. Chem. Eng. Res. Des. 2012, 90, 1387-1396.
(53) Lu, Z.; Zhang, L.; Deng, Y.; Li, S.; He, N. Graphene oxide for rapid microRNA
detection. Nanoscale 2012, 4, 5840-5842.
(54) Zhang, S.; Shao, Y.; Liao, H.; Engelhard, M. H.; Yin, G.; Lin, Y. Polyelectrolyte-
induced reduction of exfoliated graphite oxide: a facile route to synthesis of soluble
graphene nanosheets. ACS Nano 2011, 5, 1785-1791.
(55) Ai, L.; Zhang, C.; Chen, Z. Removal of methylene blue from aqueous solution by a
solvothermal-synthesized graphene/magnetite composite. J. Hazard. Mater. 2011,
192, 1515-1524.
(56) Che, B. H. X.; Yeap, S. P.; Ahmad, A. L.; Lim, J. Layer-by-layer assembly of iron
oxide magnetic nanoparticles decorated silica colloid for water remediation. Chem.
Eng. J. 2014, 243, 68-78.
(57) Bradder, P.; Ling, S. K.; Wang, S.; Liu, S. Dye Adsorption on Layered Graphite
Oxide. J. Chem. Eng. Data 2011, 56, 138-141.
(58) Fan, L.; Zhang, Y.; Luo, C.; Lu, F.; Qiu, H.; Sun, M. Synthesis and characterization
of magnetic β-cyclodextrin–chitosan nanoparticles as nano-adsorbents for removal of
methyl blue. Inter. J. Bio. Macromol. 2012, 50, 444-450.
(59) Yang, S. T.; Chen, S.; Chang, Y.; Cao, A.; Liu, Y.; Wang, H. A review of the
environmental fate, effects, and exposures of bisphenol A. J. Colloid Interface Sci.
2011, 359, 24-29.
(60) Staples, C. A.; Dome, P. B.; Klecka, G. M.; Oblock, S. T.; Harris, L. R. A review of
the environmental fate, effects, and exposures of bisphenol A. Chemosphere 1998,
36, 2149-2173.
(61) Asada, T.; Oikawa, K.; Kawata, K.; Ishihara, S.; Iyobe, T.; Yamada, A. Study of
removal effect of bisphenol A and beta-estradiol by porous carbon. J. Health Sci.
2004, 50, 588-593.
(62) Cao, F.; Bai, P.; Li, H.; Ma, Y.; Deng, X.; Zhao, C. Preparation of polyethersulfone–
organophilic montmorillonite hybrid particles for the removal of bisphenol A. J.
Hazard. Mater. 2009, 162, 791-798.
(63) Kang, Y.; Zhou, L.; Li, X.; Yuan, J. β-Cyclodextrin-modified hybrid magnetic
nanoparticles for catalysis and adsorption. J. Mater. Chem. 2011, 21, 3704-3710.
(64) Pan, J.; Yao, H.; Li, X.; Wang, B.; Huo, P.; Xu, W.; Ou, H.; Yan, Y. Synthesis of
chitosan/γ-Fe2O3/fly-ash-cenospheres composites for the fast removal of bisphenol
A and 2,4,6-trichlorophenol from aqueous solutions. J. Hazard. Mater. 2011, 190,
276-284.
(65) Muñoz, J. A.; Gonzalo, A.; Valiente, M. Arsenic Adsorption by Fe(III)-Loaded Open-
Celled Cellulose Sponge. Thermodynamic and Selectivity Aspects. Environ. Sci.
Technol. 2002, 36, 3405-3411.
(66) Tian, Y.; Wu, M.; Lin, X.; Huang, P.; Huang, Y. Synthesis of magnetic wheat straw
for arsenic adsorption. J. Hazard. Mater. 2011, 193, 10-16.
(67) Lee, Y.; Um, I.-H.; Yoon, J. Arsenic(III) Oxidation by Iron(VI) (Ferrate) and
Subsequent Removal of Arsenic(V) by Iron(III) Coagulation. Environ. Sci. Technol.
2003, 37, 5750-5756.
(68) Cumbal, L.; SenGupta, A. K. Arsenic Removal Using Polymer-Supported Hydrated
Iron(III) Oxide Nanoparticles:  Role of Donnan Membrane Effect†. Environ. Sci.
Technol. 2005, 39, 6508-6515.
(69) Sheng, G.; Li, Y.; Yang, X.; Ren, X.; Yang, S.; Hu, J.; Wang, X. Efficient removal of
arsenate by versatile magnetic graphene oxide composites. RSC Adv. 2012, 2,
12400-12407.
(70) Zhang, K.; Dwivedi, V.; Chi, C.; Wu, J. Graphene oxide/ferric hydroxide composites
for efficient arsenate removal from drinking water. J. Hazard. Mater. 2010, 182, 162-
168.
(71) Luo, X.; Wang, C.; Wang, L.; Deng, F.; Luo, S.; Tu, X.; Au, C. Nanocomposites of
graphene oxide-hydrated zirconium oxide for simultaneous removal of As(III) and
As(V) from water. Chem. Eng. J. 2013, 220, 98-106.
(72) Luo, X.; Wang, C.; Luo, S.; Dong, R.; Tu, X.; Zeng, G. Adsorption of As (III) and As
(V) from water using magnetite Fe3O4-reduced graphite oxide–MnO2
nanocomposites. Chem. Eng. J. 2012, 187, 45-52.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.218.184.214
論文開放下載的時間是 校外不公開

Your IP address is 18.218.184.214
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code