Responsive image
博碩士論文 etd-0609115-010337 詳細資訊
Title page for etd-0609115-010337
論文名稱
Title
脈衝雷射於四乙基正矽酸鹽和氨水環境剝熔蝕鈷片合成沾碳矽氫Co1-xO與染氮氫Co3-δO4的結構與光性
Structure and optical property of C-Si-H doped Co1-xO and N-H doped Co3-δO4 by pulsed laser ablation of Co plate in TEOS and aqueous ammonia
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
119
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-06-11
繳交日期
Date of Submission
2015-07-13
關鍵字
Keywords
Co1-xO、奈米凝聚物、壓縮內應力、尖晶石結構、電子顯微鏡、相變化、岩鹽結構、順晶、超晶格、雙層狀氫氧化物、Co3-δO4、脈衝雷射剝熔蝕
PLA, Co3-δO4, nanocondensate, internal compressive stress, Co1-xO, phase transformation, electron microscopy, superstructure, layer-double hydroxide, rock salt, paracrystal, spinel
統計
Statistics
本論文已被瀏覽 5687 次,被下載 40
The thesis/dissertation has been browsed 5687 times, has been downloaded 40 times.
中文摘要
本文第一部分將鈷靶材放在四乙基正矽酸鹽溶液(tetraethyl orthosilicate, TEOS)中,進行脈衝雷射剝熔蝕(pulsed laser ablation, PLA),結果產生C-Si-H摻雜具有岩鹽結構的Co1-xO,以及少量亂層石墨烯、平面狀石墨和管/帶狀Co(OH)2,而且C-Si-H摻雜的Co1-xO,在後續常溫TEOS中,可以長期保存良好,有別於在大氣氧分壓情況下,在大約900oC 溫度以下,會自發氧化形成Co3-δO4的行為。C-Si-H摻雜Co1-xO凝固顆粒,傾向以球狀呈現,而且有~(100)和{111}小平面,聚簇形成的低角度傾轉界面。而C-Si-H摻雜的Co1-xO奈米凝聚物,則有發達的{100}和{110}晶面,而且有點缺陷集合形成的順晶排列,其間距約為2.5倍晶格常數,還有大量面缺陷的存在,即1-D 3x和5x{111}超晶格伴隨著Co緊密堆積交替混合排列。此外,根據膠體溶液的吸收光譜分析,發現這些顆粒於紫外-可見光範圍內有多組吸收值,對應於最小能隙值約為3.1-3.7eV,可望有光觸媒催化方面的用途。
第二部分利用脈衝雷射剝熔蝕法在0.25M 氨水中打擊鈷靶材,合成摻雜了氮氫元素的Co3-δO4尖晶石奈米凝聚物與凝固顆粒,使其具有點缺陷聚集造成的順晶結構,以及比純Co3-δO4塊材較大的晶格常數,顯示氮原子佔據了尖晶石結構中的間隙位置。當顆粒快速凝固時,在包含Co3-δO4沉澱物的Co1-xO基體上會因Co3+、N和H+的雜質摻入而衍生出3x3x3尖晶石態的超晶格結構。至於共存的含鈷雙層狀氫氧化物奈米凝聚物在電子束照射下,容易非晶質化。此外,在氨水中脈衝雷射剝熔蝕鈷靶並沒有形成六方晶Co2O3和三斜晶硝酸鈷。氮氫摻雜的氧化鈷顆粒有組成元素鍵結的電子能譜特徵,以及吸收紫色光的特性,其對應最小能隙值約為2.9eV,有潛在光催化應用價值。
Abstract
In the first part, predominant C-Si-H doped Co1-xO particulates/nanocondensates and minor turbostratic graphene, faceted graphite and Co(OH)2 tubes/belts, were formed by pulsed laser ablation (PLA) of Co plate in TEOS without appreciable transformation into Co3O4 which would otherwise be stable below ca. 900oC under open air condition. The C-Si-H doped Co1-xO particles are ~(100) and {111} faceted for (hkl)-specific coalescence and contain paracrystalline distribution of defect clusters with interspacing ca. 2.5 times that of the host lattice parameter as well as abundant planar defects, i.e. 1-D 3x and 5x{111} commensurate superstructures occasionally mixed with alternating Co close packed interlayer. UV-visible absorbance spectrum of the resultant colloidal suspension indicates the particles and nanocondensates have multiple absorptions in UV-visible range corresponding to a minimum band gap of 3.1 to 3.7 eV.

In the second part, PLA of Co plate in aqueous solution of ammonium hydroxide (0.25 M NH4OH) caused the predominant formation of N-H-doped Co3-δO4 particulates and nanocondensates with paracrystalline distribution of defect clusters and larger lattice parameter than the ambient value of undoped bulk Co3-δO4, indicating that N enters the interstitial site in the spinel-type structure. The 3x3x3 spinel-type derived superstructure, due to tramp Co3+, N and H+ doping, along with Co3-δO4 and Co1-xO domains were also found in the rapidly solidified particulates. The co-existing Co layer-double hydroxide ribbons are optically birefringent and vulnerable to electron irradiation; whereas the hexagonal Co2O3 and triclinic cobalt nitrate were not favored by the present PLA process in aqueous ammonia. The N-H doped cobalt oxide particulates/nanocondensates showed characteristic bonding states of the constituent elements in the XPS as well as a significant violet absorbance corresponding to a minimum band gap of 2.9 eV for potential optocatalytic applications.
目次 Table of Contents
目錄
論文審定書 i
誌謝 ii
摘要 iii
Abstract iv
目錄 v
圖目錄 viii
表目錄 xiii
附錄目錄 xiii
第一部分 …………………………………………………………………………1
壹、 前言 .1
貳、 實驗流程 5
參、 實驗步驟及方法 6
一、靶材切割 6
二、雷射剝蝕 6
三、X-ray繞射 6
四、UV-Visible吸收光譜 6
五、偏光顯微鏡(POM) 6
六、掃描式電子顯微鏡(SEM) 7
七、穿透式電子顯微鏡(TEM) 7
八、拉曼光譜(Raman) 7
九、光致螢光光譜(Photoluminescence, PL) 7
十、霍氏轉換紅外光譜儀(FR-IR) 7
十一、X光-光電子能譜分析(XPS) 7
肆、 實驗結果 9
一、XRD分析 9
二、UV-Vis吸收光譜分析 9
三、偏光顯微影像分析 9
四、掃描式電子顯微鏡 10
五、穿透式電子顯微鏡觀察 10
六、拉曼、光致螢光光譜及霍氏轉換紅外光譜分析 12
七、X光-光電子能譜分析 12
伍、 討論 14
陸、 結論 17
柒、 參考文獻 18
第二部分 …………………………………………………………………………54
壹、 前言 54
貳、 實驗流程 56
參、 實驗步驟及方法 57
一、靶材切割 57
二、雷射剝蝕 57
三、X-ray繞射 57
四、UV-Visible吸收光譜 57
五、偏光顯微鏡(POM) 57
六、掃描式電子顯微鏡(SEM) 58
七、穿透式電子顯微鏡(TEM) 58
八、X光-光電子能譜分析(XPS) 58
肆、 實驗結果 59
一、XRD分析 59
二、UV-Vis吸收光譜分析 59
三、偏光顯微影像分析 59
四、掃描式電子顯微鏡觀察 60
五、穿透式電子顯微鏡觀察 60
六、X光-光電子能譜分析 63
伍、 討論 64
陸、 結論 68
柒、 參考文獻 69
參考文獻 References
第一部分
Armelao L., Barreca D., Gross S., Tondello E., “Sol-Gel and CVD Co3O4 thin films characterized by XPS,” Surface Science Spectra 8 (2001) 14-23.
Bartůněk, V., Huber S., Sedmidubský D., Sofer Z., Šimek P., Jankovský O., “CoO and Co3O4 nanoparticles with a tunable particle size,” Ceramics International 40 (2014) 12591-12595.
Biesinger M.C., Payne B.P., Grosvenor A.P., Lau L.W.M., Gerson A.R., Smart R.S.C., Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni,” Applied Surface Science 257 (2011) 2717-2730.
Bolis V., Magnacca G., Cerrato G., Morterra C., “Microcalorimetric and IR-spectroscopic study of the room temperature adsorption of CO2 on pure and sulphated t-ZrO2,” Thermochimica Acta, 379 (2001) 147-161.
Carson G.A., Nassir M.H., Langell M.A., “Epitaxial growth of Co3O4 on CoO (100),” J. Vac. Sci. Technol. A 14(3) (1996) 1637-1642.
Dupin J.C., Gonbeau, D., Benqlilou-Moudden, H., Vinatier, P., Levasseur, A., “XPS analysis of new lithium cobalt oxide thin-films before and after lithium deintercalation” Thin Solid Films 384 (2001) 23-32.
Foelske A., Strehblow H.H., “Passivity of cobalt in borate buffer at pH 9.3 studied by x-ray photoelectron spectroscopy” Surf. Interface Anal. 29 (2000) 548-555.
Gallant D., Pézolet M., Simard S., “Optical and physical properties of cobalt oxide films electrogenerated in bicarbonate aqueous media,” J. Phys. Chem. B, 110 (2006) 6871-6880.
Gao H., Wang G., Yang M., Tan L., Yu J., “Novel tunable hierarchical Ni–Co
hydroxide and oxide assembled from two-wheeled units,” Nanotechnology, 23 (2012).
Grosvenor A.P., Wik S.D., Cavell R.G., Mar A., “An examination of the bonding in binary transition-metal monophosphides MP (M = Cr, Mn, Fe, Co) by X-ray photoelectron spectroscopy” Inorg. Chem. 44 (2005) 8988-8998.
Guo Q., Mao H.K., Hu J., Shu J., Hemley R.J., “The phase transitions of CoO under static pressure to 104GPa,” J. Phys.: Condens. Matter 14 (2002) 11369-11374.
Huang C.N., Chen S.Y., Tsai M.H., Shen P., “Laser ablation condensation and phase change of Ni1-xCoxO nanoparticles” J. Cryst. Growth 305 (2007) 285-295.
Kaneko T., Nemoto D., Horiguchi A., Miyakawa N., “FTIR analysis of a-SiC:H films grown by plasma enhanced CVD,” J. Cryst. Growth 275 (2005) e1097–e1101.
Kingery W.D., Bowen H.K., Uhlmann D.R., “Introduction to Ceramics” Wiley-Interscience 2nd ed., (2006) 690.
Kröger F.A.,Vink H.J., “Relations between the concentrations of imperfections in crystalline solids,” Solid State Phys., 3 (1956) 307-435.
Kundu S., Mukadam M.D., Yusuf S.M., Jayachandran M., “Formation of shape-selective magnetic cobalt oxide nanowires: environmental application in catalysis studies,” CrystEngComm 15 (2013) 482-497.
Lee W.H., Shen P., “Co3-δO4 paracrystal: 3-D assembly of nano-size defect clusters in spinel lattice” J. Solid State Chem. 177 (2004) 101-108.
Li M.Y., Shen P., “On the nucleation and paracrystal interspacing of Zr-doped Co3-δO4” Mater. Sci. Eng. B 111 (2004) 82-89.
Lin B.C., Shen P., Chen S.Y., “Core-shell cermet condensates by pulsed laser ablation on Zn in TEOS” Journal of Nanoparticle Research 16 (2014) 2444.
Lin C.C., Shen P., “Sol-gel synthesis of zinc orthosilicate,” J. Noncrystalline Solids 171 (1994) 281-289.
Lin H.K., Wang C.B., Chiu H.C., Chien S.H., “In situ FTIR study of cobalt oxides for the oxidation of carbon monoxide,” Catalysis Letters, 86 (2003) 63-68.
Lin K.T., Shen P., “Interdiffusion-induced phase changes of Co1-xO/Zirconia composites” J. Solid State Chem. 145 (1999) 739-750.
Liu L.G., Bassett W.A., “Elements, oxides, and silicates: High-pressure phases with implications for the Earth’s interior” Oxford University Press, Oxford, (1986).
Mattevi C., Eda G., Agnoli S., Miller S., Mkhoyan K.A., Celik O., Mastrogiovanni D., Granozzi G., Garfunkel E., Chhowalla M., “Evolution of electrical, chemical, and structural properties of transparent and conducting chemically derived graphene thin films,” Adv.Funct. Mater., 19 (2009) 2577-2583.
Mansour N., Momeni A., Karimzadeh R., Amini M., “Blue-green luminescent silicon nanocrystals fabricated by nanosecond pulsed laser ablation in dimethyl sulfoxide,” Optical Materials Express, 2 (2012) 740-748.
Moulder J.F., Stickle W.F., Sobol P.E., Borben K.D., “Handbook of X Ray Photoelectron Spectroscopy,” Physical Electronics, Inc.” 1995.
Oku M., Sato Y., “In-situ X-ray photoelectron spectroscopic study of the reversible phase transition between CoO and Co3O4 in oxygen of 10-3Pa” Appl. Surf. Sci. 55 (1992) 37-41.
Petitto S.C., Langell M.A., “Surface composition and structure of Co3O4 (110) and the effect of impurity segregation,” J. Vac. Sci. Technol. A 22(4) (2004) 1690-1696.
Poirier J.P., Tarantola A., “A logarithmic equation of state,” Physics of the Earth and Planetary Interiors 109 (1998) 1-8.
Remsberg A.R., Liebermann R.C., “A study of the polymorphic transformations in Co2SiO4” Phys. Chem. Mineral 18 (1991) 161-170.
Rubio F., Rubio J., Oteo., J.L., “A FT-IR study of the hydrolysis of tetraethylorthosilicate (TEOS),” SPECTROSCOPY LETTERS, 31(1) (1998) 199-219.
Tang C.W., Leu T.Y., Yu W.Y., Wang C.B., Chien S.H., “Characterization of cobalt oxides studied by FT-IR, Raman, TPR and TG-MS,” 陸軍軍官學校八十三週年校慶基礎學術研討會(2007) CH-18-26.
Tomlinson S.M., Catlow C. R. A., Harding J.H., “Computer modelling of the defect structure of non-stoichiometric binary transition metal oxides” J. Phys. Chem. Solids 51 (1990) 477-506.
Tu K.N., Mayer J.M., “Thin Films-Interdiffusion and Reactions” edited by Poate J.M., Tu K.N. and Mayer J.M (Wiley, New York, 1978) 359.
Ullmann M., Friedlander S.K., Schmidt-Ott A., “Nanoparticle formation by laser ablation” Journal of Nanoparticle Research 4 (2002) 499-509.
Wu C.H., Chen S.Y., Shen P., “Polyynes and flexible Si–H doped carbon nanoribbons by pulsed laser ablation of graphite in tetraethyl orthosilicate” Carbon 67 (2014) 27-37.
Yamaura H., Moriya K., Miura N. Yamazoe N., “Mechanism of sensitivity promotion in CO sensor using indium oxide and cobalt oxide” Sensors and Actuators B: Chemical 65 (2000) 39-41.
Yu T., Zhu Y.W., Xu X. J., Shen Z.X., Chen P., Lim C.T., Thong J.T.L., Sow C.H., “Controlled growth and field-emission properties of cobalt oxide nanowalls” Advanced Materials 17 (2005) 1595-1599.
Zabdyr L.A., Garzel G., Fabrichnaya O.B. Phase equilibria in the CoO-SiO2 system. Calphad - Computer Coupling of Phase Diagrams and Thermochemistry, 27 (2003) 127-132.
Zhang W., Tya H.L., Lim S.S., Wang Y., Zhong Z., Xu R., “Supported cobalt oxide on MgO: Highly efficient catalysts for degradation of organic dyes in dilute solutions” Applied Catalysis B: Environmental 95 (2010) 93-99.
林坤財, “氧化鈷顆粒在氧化釔部分安定氧化鋯晶粒中的轉動與點缺陷聚集, ”國 立中山大學86學年度碩士論文。
林柏丞, “Composite condensates and phase transformations via pulsed laser ablation on Zn, Zn-Cu and Cu-Au targets in liquid or vacuum” 國立中山大學100學年度博士論文。
陳邦盈, “CoO-MgO二元系統之早期燒結與脈衝雷射剝熔蝕” 國立中山大學102學年度碩士論文。

第二部分
Aggarwal P.S., Goswami A., “An oxide of tervalent nickel,” J. Phys. Chem. 65 (1961) 2105.
Andersson B., Sletnes J.O., “Decomposition and ordering in Fe1-xO,” Acta Crystallogra. A 33 (1977) 268-276.
Armelao L., Barreca D., Gross S., Tondello E., “Sol-Gel and CVD Co3O4 thin films characterized by XPS,” Surface Science Spectra 8 (2001) 14-23.
Bai L., Pravica M., Zhao Y., Park C., Meng Y., Sinogeikin S. V, Shen G., “Charge transfer in spinel Co3O4 at high pressures,” J. Phys.: Condens. Matter 24 (2012) 435401.
Bartůněk, V., Huber S., Sedmidubský D., Sofer Z., Šimek P., Jankovský O., “CoO and Co3O4 nanoparticles with a tunable particle size” Ceramics International 40 (2014) 12591-12595.
Carson G.A., Nassir M.H., Langell M.A., “Epitaxial growth of Co3O4 on CoO (100),” J. Vac. Sci. Technol. A 14(3) (1996) 1637-1642.
Chen S., Wang L., Wu Q., Li X., Zhao Y., Lai H., Yang L., Sun T., Li Y., Wang X., Hu Z., “Advanced non-precious electrocatalyst of the mixed valence CoOx nanocrystals supported in N-doped carbon nanocages for oxygen reduction,” Science China Chemistry 58 (2015) 180-186.
Chao P.T., Shen P., Hwang S.L., “Spinelloid in sintered Y-PSZ/Ni2AlTi cermet,” Mat. Sci. Engng. A, 112 (1989) 233-239.
Gallant D., Pézolet M., Simard S., “Optical and physical properties of cobalt oxide films electrogenerated in bicarbonate aqueous media,” J. Phys. Chem. B, 110 (2006) 6871-6880.
Hazen R.M., Jeanloz R., Wüstite (Fe1-xO): A review of its defect structures and physical properties,“ Rev. Geophys. Space Phys. 22 (1984) 37-46.
He Q., Li Q., Khene S., Ren X., López Suárez F.E., Lozano Castelló D., Bueno López A., Wu G., “High-loading cobalt oxide coupled with nitrogen-doped graphene for oxygen reduction in anion-exchange-membrane alkaline fuel cells,” The Journal of Physical Chemistry C. 2013, 117(17): 8697-8707.
Hilton J., Wallwork S.C., “The crystal structure of cobalt (III) nitrate,” Chem. Commun. (London) (1968) 871.
Horiuchi H., Morimoto N., Yamaoka S., “Crystal structure of Li2WO4: A structure related to spinel,” J. Solid State Chem. 30 (1979) 129-135.
Horiuchi, H., Horioka, K., Morimoto, N., “Spinelloids: a systematics of spinel-related structures obtained under high-pressure conditions,” J. Mineral. Soc. Jpn, special issue 2 (1980) 253-264.
Horiuchi H., Akaogi M., Sawamoto H., “Crystal structure studies on spinel-related phases, spinelloids: implications to olivine-spinel phase transformation and systematics,’ in Akimoto S. and Manghnani M.H. (eds.), Advances in Earth and Planetary Sciences 12, High-pressure Research in Geophyscis, Centre for Academic Publications, Tokyo, (1982) p. 391.
Ishihara T., Sato S., Fukushima T., Takita Y., “Capacitive gas sensor of mixed oxide CoO-In2O3 to selectively detect nitrogen monoxide,” J. Electrochem. Soc., 143 (1996) 1908-1914.
Kim S.J., Lee Y., Lee D.K., Lee J.W., Kang J.K., “Efficient Co-Fe layered double hydroxide photocatalysts for water oxidation under visible light,” J. Mater. Chem. A, 2 (2014) 4136-4139.
Koch, F.B., Cohen J.B., “The defect structure of Fe1-xO,” Acta Crystall. B, 25 (1969) 275-287.
Kröger F.A.,Vink H.J., “Relations between the concentrations of imperfections in crystalline solids,” Solid State Phys., 3 (1956) 307-435.
Lee W.H., Shen P., “Co3-δO4 paracrystal: 3-D assembly of nano-size defect clusters in spinel lattice" J. Solid State Chem. 177 (2004) 101-108.
Lee W.H., Shen P., “Interdiffusion induced defect microstructures of Co1-xO near confined zirconia particles,” Micron 33 (2002) 555-559.
Leineweber A, Jacobs H., “Theoretical analysis of occupational ordering in hexagonal interstitial compounds: carbides, nitrides and oxides with “ɛ-type” Superstructures,” Journal of Alloys and Compounds. 308 (2000) 178-188.
Li S., Chen M., Liu Z.D., “Zinc oxide porous nano-cages fabricated by laser ablation of Zn in ammonium hydroxide,” Optics Express, 22 (2014) 18707-18714.
Liu Z, Ma R, Osada M, Iyi N, Ebina Y, Takada K, Sasaki T., “Synthesis, anion exchange, and delamination of Co-Al layered double hydroxide: assembly of the exfoliated nanosheet/polyanion composite films and magneto-optical studies,” J Am Chem Soc. 128 (2006) 4872-4880.
Lourenço M.B., Carvalho M.D., Fonseca P., Gasche T., Evans G., Godinho M., Cruz M.M., “Stability and magnetic properties of cobalt nitrides,” Journal of Alloys and Compounds 612 (2014) 176-182.
Ma C.B., “New orthorhombic phases on the join NiAl2O4 (spinel-analog)-Ni2SiO4 (olivine analog): Stability and implications to mantle mineralogy,” Contrib. Mineral. Petrol., 45 (1974) 257-279.
Manenc J., “Structure du protoxyde de fer. Résultats récent,” Bull Soc Fr Minr Crist 91 (1968) 594-599.
Matsubara S., Kato A., Nagashima K., “Iwakiite, Mn2+(Fe3+,Mn3+)2O4, a new tetragonal spinelloid mineral from the Gozaisho mine, Fukushima Prefecture, Japan,” Jpn. Mineral. J., 9 (1979) 383-391.
Matsuoka M, Ono K. “Crystal structure of sputter-synthesized CoNx thin films,” Applied Physics Letters., 49 (1986) 1644-1646.
Mattevi C., Eda G., Agnoli S., Miller S., Mkhoyan K.A., Celik O., Mastrogiovanni D., Granozzi G., Garfunkel E., Chhowalla M., “Evolution of electrical, chemical, and structural properties of transparent and conducting chemically derived graphene thin films,” Adv.Funct. Mater., 19 (2009) 2577-2583.
Moore P.B., “Manganostibite: a novel cubic close-packed structure type,” Am. Mineral., 55 (1970) 1489-1499.
Morimoto N., Akimoto S., Koto K., Tokonami M., “Modified spinel, beta-manganous orthogermanate: stability and crystal structure,” Science 165 (1969) p.586.
Oku M., Sato Y., “In-situ X-ray photoelectron spectroscopic study of the reversible phase transition between CoO and Co3O4 in oxygen of 10-3Pa,” Appl. Surf. Sci. 55 (1992) 37-41.
Parks G.A., “The isoelectric points of solid oxides, solid hydroxides, and aqueous hydroxo complex systems,” Chemical Reviews 65 (1965) 177-198 and references cited therein.
Petitto S.C., Langell M.A., “Surface composition and structure of Co3O4 (110) and the effect of impurity segregation,” J. Vac. Sci. Technol. A 22(4) (2004) 1690-1696.
Poirier J.-P., Tarantola A., “A logarithmic equation of state,” Physics of the Earth and Planetary Interiors,” 109 (1998) 1-8.
Porter D.A., Easterling K.E., Sherif M.Y., “Phase transformations in metals and alloys,” 3rd edition, CRC Press, Boca Raton, 2009.
Predel B., “Co-N (cobalt-nitrogen),” Ca-Cd – Co-Zr Landolt-Börnstein - Group IV Physical Chemistry Volume 5c,1993,pp 1-3.
Shimotsuma Y., Miura K., Hirao K., “Nanowire formation under femtosecond laser irradiation in liquid,” in “Nanowires –Fundamental Research,” (ed. Hashim A.), InTech, Rijeka, Croatia (2011) 395-438.
Tarte P., Preudhomme J., “Studies of spinels. VI. Antimonates MII4MIIISbO8, a new, large family of spinels presenting order-disorder transitions,” J. Solid State Chem. 29 (1979) 273-284.
Wu C.H., Chen S.Y., Shen P., “Polyynes and flexible Si–H doped carbon nanoribbons by pulsed laser ablation of graphite in tetraethyl orthosilicate” Carbon 67 (2014) 27-37.
Yamaura H., Moriya K., Miura N., Yamazoe N., “Mechanism of sensitivity promotion in CO sensor using indium oxide and cobalt oxide,” Sensors and Actuators B: Chemical 65 (2000) 39-41.
Yu H., Li Y., Li X., Fan L., Yang S., Electrochemical preparation of N-doped cobalt oxide nanoparticles with high electrocatalytic activity for the oxygen-reduction reaction,” Chemistry 20 (2014) 3457-3462.
Zhang Y., Cui B., Zhao C., Lin H., Li J., “Co-Ni layered double hydroxides for water oxidation in neutral electrolyte,” Phys. Chem. Chem. Phys., 15 (2013) 7363-7369.
Zhao C., Yu C., Liu S., Yang J., Fan X., Qiu J., “Facile fabrication of bicomponent CoO/CoFe2O4-N-doped graphene hybrids with ultrahigh lithium storage capacity,” Particle and Particle Systems Characterization 32 (2015) 91-97.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code