Responsive image
博碩士論文 etd-0609115-164054 詳細資訊
Title page for etd-0609115-164054
論文名稱
Title
還原態穀胱苷肽延緩乙烯或NaCl誘導的甘藷葉片老化及可能機制探討
Reduced glutathione mitigates ethephon or NaCl-induced leaf senescence in sweet potato : the possible mechanisms
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
85
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-07-06
繳交日期
Date of Submission
2015-07-09
關鍵字
Keywords
亞硝基化穀胱苷肽還原酶、穀胱苷肽-抗壞血酸循環、一氧化氮、鹽分逆境、葉片老化、益收生長素、甘藷、還原態穀胱苷肽
NaCl, Nitric oxide, Sweet potato, GSNOR, Glutathione-ascorbate cycle, Reduced glutathione, Ethephon, Leaf senescence
統計
Statistics
本論文已被瀏覽 5690 次,被下載 0
The thesis/dissertation has been browsed 5690 times, has been downloaded 0 times.
中文摘要
植物穀胱苷肽-抗壞血酸循環在調節活性氧族或活性氮族平衡與抵禦環境逆境中扮演重要角色。在甘藷中,還原態穀胱苷肽(GSH)與抗壞血酸過氧化酶(SPAPX)已被證明可以透過調節活性氧族訊號與平衡以延緩ethephon誘導的葉片老化。在本研究結果亦顯示,在葉片自然老化、ethephon及NaCl誘導的葉片老化過程中,隨著老化程度增加,老化相關指標會隨之增加,包括葉片黃化、葉綠素降解、光合作用效率Fv/Fm降低、H2O2/丙二醛(MDA)/一氧化氮(NO)含量上升、細胞程式性死亡等。另外,穀胱苷肽-抗壞血酸循環相關基因表現(SPGR, SPAPX, SPMDHAR, SPDHAR)、GSH與GSH:GSSG ratio在自然葉片老化、ethephon及NaCl誘導的葉片老化前期表現量顯著增加,而隨老化程度增加而顯著下降,因而得知穀胱苷肽-抗壞血酸循環與葉片老化呈負相關。外加還原態穀胱苷肽GSH可以延緩ethephon與NaCl誘導的葉片老化程度與老化相關指標表現。在實驗室未發表結果顯示,一氧化氮在ethephon與NaCl誘導的甘藷葉片老化過程中扮演其下游訊息因子之一。因此外加還原態穀胱苷肽GSH可以移除乙烯處理6小時內所產生的一氧化氮波峰或是降低NaCl於24小時內所累積的一氧化氮含量,且其結果與處理一氧化氮清除劑PTIO相似。此外,受ethephon誘導的亞硝基化穀胱苷肽還原酶(GSNOR)之酵素活性及基因表現於ethephon處理三天後明顯降低,外加還原態穀胱苷肽則可以延緩其降低,因而得知亞硝基化穀胱苷肽還原酶酵素活性及基因表現與葉片老化程度及NO變化呈負相關。根據這些結果結論,還原態穀胱苷肽、GSH:GSSG ratio及穀胱苷肽-抗壞血酸循環相關基因表現量與甘藷葉片自然老化、ethephon與NaCl誘導的葉片老化呈現負相關,而外加還原態穀胱苷肽可能透過移除一氧化氮訊息因子或藉由亞硝基化穀胱苷肽還原酶降低一氧化氮產生的傷害之機制以延緩ethephon與NaCl誘導的甘藷葉片老化。
Abstract
Glutathione-ascorbate cycle has been reported to play novel roles in the modulation of reactive oxygen species/reactive nitrogen species (ROS/RNS) homeostasis and protection against environmental stress in plants. In sweet potato, reduced glutathione (GSH) and ascorbate peroxidase SPAPX have been previously demonstrated to modulate ROS signal and homeostasis and protect against ethephon-induced leaf senescence. In this report, enhanced expression of senescence-associated markers such as leaf yellowing, chlorophyll breakdown, Fv/Fm decline, H2O2/malodialdehyde (MDA)/nitric oxide (NO) elevation, and programmed cell death were also observed in natural, ethephon and NaCl-induced leaf senescence. Gene expression levels (including glutathione reductase SPGR, ascorbate peroxidase SPAPX, monodehydroascorbate reductase SPMDHAR and dehydroascorbate reductase SPDHAR), GSH content and GSH/GSSG ratio were all significantly increased at the early stage, however, were drastically reduced at the later stage of natural, ethephon and NaCl-induced senescent leaves. A negative correlation between the glutathione-ascorbate cycle and leaf senescence was also found. Exogenous GSH also mitigated the effects of ethephon and NaCl on leaf senescence and senescence-associated markers. NO has been reported to function as a downstream signal molecule of ethephon and NaCl stress in sweet potato (unpublished data). Exogenous GSH could eliminate the NO peak caused by ethephon within the first 6 h or NO accumulation elicited by NaCl within the first 24 h after treatment similar to the effects of the positive control pTIO, an NO scavenger. In addition, an ethephon-inducible S-nitrosglutathione reductase SPGSNOR expression and enzymatic activity were also much reduced on day 3 after treatment in ethephon-induced senescent leaves, which could be mitigated by exogenous GSH. A negative correlation between SPGSNOR expression/enzymatic activity and leaf senescence/NO levels was also found. Based on these data, GSH, GSH/GSSG ratio and glutathione-ascorbate cycle related gene expression exhibits negative correlation with natural, ethephon and NaCl-induced leaf senescence. Exogenous GSH mitigates ethephon and NaCl-induced leaf senescence possibly by mechanisms partly associated with elimination of NO signal and/or reduction of NO damage by GSNOR.
目次 Table of Contents
目錄
論文審定書………………………………………………………………………….... i
致謝………………………………………………………………………………… ii
中文摘要 ………………………………………………………………………….... iii
英文摘要 …………………………………………………………………………… iv
目錄 ..……………………………………………………………………………….. vi
圖次 ……………………………………………………………………………….... ix
縮寫表 ……………………………………………………………………………… xi
壹、 諸論
甘藷 ……………………………………………………………………………… 1
葉片老化 ………………………………………………………………………… 1
乙烯與葉片老化 ………………………………………………………………… 2
NaCl與葉片老化 ………………………………………………………………... 3
穀胱苷肽-抗壞血酸循環 ………………………………………………………… 4
一氧化氮 …………………………………………………………………………. 7
S-nitosoglutathione reductase (GSNOR) …………………………………………. 9
研究動機與目的 ………………………………………………………………... 10
貳、 材料與方法
實驗材料.
甘藷 …………………………………………………………………………... 11
植物抗氧化系統(Ascorbate-glutathione cycle)之相關基因 ………………... 11
化學試劑 ……………………………………………………………………... 11
實驗方法
甘藷葉片不同生長發育階段與組織專一性表現分析…..…………………... 12
Ethephon處理 ………………………………………………………………... 13
NaCl處理 …………………………………………………………………... 13
GSH前處理 …………………………………...……………………………... 14
葉綠素含量(Chlorophyll content index) ……………………………………... 14
Fv/Fm ……………………………………………………………………….. 15
DAB染色 ……………………………………………………………………. 15
H2O2含量 ……………………………………………………………………. 15
NO含量 ……………………………………………………………………… 16
MDA(丙二醛)含量 …………………………………………………………... 16
Evans blue染色 ……………………………………………………………… 16
還原態穀胱苷肽(Reduced glutathione)含量 ………………………………... 17 S-亞硝基穀胱苷肽還原酶(S-nitrosoglutathione reductase)總酵素活性分析.. 17 RT-PCR分析 ………………………………………………………………… 18
參、 結果
A. 穀胱苷肽-抗壞血酸循環與甘藷自然葉片老化
H2O2、NO、MDA及細胞死亡程度在自然老化葉片皆顯著增加 ………….. 22
穀胱苷肽-抗壞血酸循環相關基因表現量與自然葉片老化程度呈負相關….. 23
GSH含量及GSH:GSSG ratio與自然葉片老化程度呈負相關 ……………… 23
B. 穀胱苷肽-抗壞血酸循環與ethephon誘導的葉片老化
H2O2、NO、MDA及細胞死亡程度在ethephon誘導的老化葉片皆顯著增加... 24
穀胱苷肽-抗壞血酸循環相關基因表現量與ethephon誘導的葉片老化程度呈
負相關………………………………………………...……………………. 25
GSH含量及GSH:GSSG ratio與ethephon誘導的葉片老化程度呈負相關..… 26
外加GSH顯著延緩ethephon誘導的葉片老化 ……………………………… 26
外加GSH可抑制ethephon誘導的訊息因子NO的產生及延緩葉片老化..…. 27
外加GSH增加GSNOR活性、減少NO含量及延緩ethephon誘導的葉片老化
….…………………………………………………………………………….... 28
C. 穀胱苷肽-抗壞血酸循環與NaCl誘導的葉片老化
H2O2、NO、MDA與細胞死亡程度在NaCl誘導的老化葉片顯著增加 ……... 29
穀胱苷肽-抗壞血酸循環相關基因表現量與NaCl誘導的葉片老化程度呈負
相關 ……………………………………………………………………………. 30
GSH含量及GSH:GSSG ratio與NaCl誘導的葉片老化程度呈負相關 …….. 30
外加GSH顯著延緩NaCl誘導的葉片老化 ………………………………….. 31
外加GSH可抑制NaCl誘導的訊號因子NO的產生及延緩葉片老化 …….. 32
肆、 討論
葉片老化程度與H2O2、NO、MDA與細胞死亡程度呈正相關 …………….. 33
穀胱甘肽-抗壞血酸循環相關基因表現量與在自然及誘導的葉片老化呈負
相關 …………………………………………………………………………... 33
GSH含量與GSH:GSSG ratio與自然葉片老化或ethephon/NaCl誘導的葉
片老化呈負相關 ……………………………………………………………... 35
外加GSH有效保護ethephon/NaCl所誘導的葉片老化 ……………………. 36
GSH透過移除NO訊息因子與提高GSNOR活性的機制以延緩ethephon
誘導的葉片老化 ……………………………………………………………... 37
結論 ………………………………………………………………………...… 39
伍、 參考文獻 ……………………………………………………………………... 40
參考文獻 References
伍、參考文獻
沈哲宇,從甘藷老化葉片分子選殖mitogen-activated protein kinase cDNA 及乙烯訊息傳導探討. 2011. 國立中山大學生物科學系研究所碩士論文
黃琴淑,還原態穀胱甘肽及NADPH 氧化酶抑制劑DPI減緩乙烯誘導甘藷葉片老
化、H2O2 含量上升及老化相關基因表現. 2011. 國立中山大學生物科學系
研究所碩士論文
劉純雅,選殖的甘藷抗壞血酸過氧化酶SPAPX延緩ethephon誘導的葉片老化過程. 2014. 國立中山大學生物科學系研究所碩士論文
Afiyanti M, Chen HJ. Catalase activity is modulated by calcium and calmodulin in detached mature leaves of sweet potato. J Plant Physiol 2014; 171: 35– 47
Anderson JP, Badruzsaufari E, Schenk PM, Manners JM, Desmond OJ, Ehlert C, Maclean DJ, Ebert PR, Kazan K. Antagonistic interaction between abscisic acid and jasmonate-ethylene signaling pathways modulates defense gene expression and disease resistance in Arabidopsis. Plant Cell 2004; 16: 3460–3479
Badawi GH, Kawano N, Yamauchi Y, Shimada E, Sasaki R, Kubo A, Tanaka K. Over-expression of ascorbate peroxidase in tobacco chloroplasts enhances the tolerance to salt stress and water deficit. Physiol plantarum 2004; 121: 231–238
Bai X, Yang L, Tian M, Chen J, Shi J, Yang Y, Hu X. Nitric oxide enhances desiccation tolerance of recalcitrant Antiaris toxicaria seeds via protein S-nitrosylation and carbonylation. PLoS ONE 2011a; 6: e20714
Bai X, Yang L, Yang Y, Ahmad P, Yang Y, Hu X. Deciphering the protective role of nitric oxide against salt stress at the physiological and proteomic levels in maize. J Proteome Res 2011b; 10: 4349–4364
Bernstein N, Shoresh M, Xu Y, Huang B. Involvement of the plant antioxidative response in the differential growth sensitivity to salinity of leaves vs roots during cell development. Free Radical Biol Med 2010; 49: 1161–1171
Chen HJ, Hou WC, Yang CY, Huang DJ, Liu JS, Lin YH. Molecular cloning of two metallothionein-like protein genes with differential expression patterns from sweet potato (Ipomoea batatas) leaves. J Plant Physiol 2003; 160: 547–555
Chen HJ, Tsai YJ, Chen WS, Huang GJ, Huang SS and Lin YH. Ethephon-mediated effects on leaf senescence are affected by reduced glutathione and EGTA in sweet potato detached leaves. Bot Stud 2010a; 51: 171-181
Chen HJ, Su CT, Lin CH, Huang GJ, Lin YH. Expression of sweet potato cysteine protease SPCP2 altered developmental characteristics and stress responses in transgenic Arabidopsis plants. J Plant Physiol 2010b; 167: 838–847
Chen HJ, Wu SD, Huang GJ, Shen CY, Afiyanti M, Li WJ, Lin YH. Expression of a cloned sweet potato catalase SPCAT1 alleviates ethephon-mediated leaf senescence and H2O2 elevation. J Plant Physiol 2012a; 169: 86-97
Chen HJ, Lin ZW, Huang GJ, Lin YH. Sweet potato calmodulin SPCAM is involved in salt stress-mediated leaf senescence, H2O2 elevation and senescence-associated gene expression. J Plant Physiol 2012b; 169: 1892– 1902
Chen HJ, Huang CS, Huang GJ, Chow TJ, Lin YH. NADPH oxidase inhibitor diphenyleneiodonium and reduced glutathione mitigate ethephon-mediated leaf senescence, H2O2 elevation and senescence-associated gene expression in sweet potato (Ipomoea batatas). J Plant Physiol 2013; 170: 1471-1483
Choe YH, Kim YS, Kim IS, Bae MJ, Lee EJ, Kim YH, Park HM, Yoon HS. Homologous expression of -glutamylcysteine synthetase increases grain yield and tolerance of transgenic rice plants to environmental stresses. J Plant Physiol 2013; 170: 610– 618
Clark D, Durner J, Navarre DA, Klessig DF. Nitric oxide inhibition of tobacco catalase and ascorbate peroxidase. Mol Plant Microbe Interact 2000; 13: 1380–1384.
Clarke A, Desikan R, Hurst RD, Hancock JT, Neill SJ. NO way back: nitric oxide and programmed cell death in Arabidopsis thaliana suspension cultures. Plant J 2000; 24: 667-677
Dertinger U, Schaz U, Schulze ED. Age-dependence of the antioxidative system in tobacco with enhanced glutathione reductase activity or senescence-induced production of cytokinins. Physiol Plantarum 2003; 119: 19–29
Espunya MC, Diaz M, Jordi MR, Martinez MC. Modification of intracellular levels of glutathione-dependent formaldehyde dehydrogenase alters glutathione homeostasis and root development. Plant Cell Environ 2006; 29: 1002–1011
Fatma M, Asgher M, Masood A, Khan NA. Excess sulfur supplementation improves photosynthesis and growth in mustard under salt stress through increased production of glutathione. Environ Exp Bot 2014; 107: 55–63
Foyer CH, Souriau N, Perret S, Lelandais M, Kunert KJ, Pruvost C, Jouanin L. Overexpression of glutathione reductase but not glutathione synthetase leads to increases in antioxidant capacity and resistance to photoinhibition in poplar trees. Plant Physiol 1995; 109: 1047-1057
Foyer CH and Noctor G. (2011) Ascorbate and Glutathione: The Heart of the Redox
Hub.Plant Physiology, January 2011, Vol. 155, pp. 2–18
Gaber A, Ogata T, Maruta T, Yoshimura K, Tamoi M, Shigeoka S. The involvement of Arabidopsis glutathione peroxidase 8 in the suppression of oxidative damage in the nucleus and cytosol. Plant Cell Physiol 2012; 53: 1596–1606
Gill SS, Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 2010; 48: 909–930
Grill SS, Hasanuzzaman M, Nahar K, Macovei A, Tuteja N. Importance of nitric oxide in cadmium stress tolerance in crop plant. Plant Physiol Biochem 2013; 63: 254–261
Guo FQ, Crawford NM. Arabidopsis nitric oxide synthase 1 is targeted to mitochondria and protects against oxidative damage and dark-induced senescence. Plant Cell 2005; 17: 3436–3450
Hassan FAS, Mahfouz SA. Effect of 1-methylcyclopropene (1-MCP) on the postharvest senescence of coriander leaves during storage and its relation to antioxidant enzyme activity. Sci Hortic 2012; 141: 69–75
Hemmat Kattab. Role of glutathione and polyadenylic acid on the oxidative defense systems of two different cultivars of canola seedlings grown under saine condition. Aust J Basic Appl Sci 2007; 1: 323–334
Hernández JA, Ferrer MA, Jiménez A, Barceló AR, Sevilla F. Antioxidant systems and O2.−/H2O2 production in the apoplast of pea leaves and its relation with salt-induced necrotic lesions in minor veins. Plant Physiol 2001; 127: 817–831
He Y, Fukushige H, Hildebrand DF, Gan S. Evidence supporting a role of jasmonic acid in Arabidopsis leaf senescence. Plant Physiol 2002; 128, 876–884
Hodges DM, Andrews CJ, Johnson DA, Hamilton RI. Antioxidant compound responsesto chilling stress in differentially sensitive inbred maize lines. Physiol Plant 1996; 98: 685–692
Hong K, Gong D, Xu H, Wanh S, Jia Z, Chen, Zhang L.Effects of salicylic acid and nitric oxide pretreatment on the expression of genes involved in the ethylene signalling pathway and the quality of postharvest mango fruit. New Zealand J Crop Hortic Sci 2014; 42: 205–216
Kavitha K, George S, Venkataraman G, Parida A. A salt-inducible chloroplastic monodehydroascorbate reductase from halophyte Avicennia marina confers salt stress tolerance on transgenic plants. Biochimie 2010; 92: 1321-1329
Kopriva S, Rennenberg H. Control of sulphate assimilation and glutathione synthesis: interaction with N and C metabolism. J Exp Bot 2004; 55: 1831–1842
Kuzniak E, Patykowsky J, Urbanek H. Involvement of the antioxidative system in tobacco response to fucaric acid treatment. J Phytopathol 1999; 147: 385–390
Le Van An. (2014) Sweet potato leaves for growing pigs: Biomass yield, digestion and nutritive value. 2004. Doctoral thesis. Swedish University of Agricultural Sciences Uppsala
Leterrier M, Chaki M, Airaki M, Valderrama R, Palma JM, Barroso JB and Corpas F. Function of S-nitrosoglutathione reductase (GSNOR) in plant development and under biotic/abiotic stress. Plant Signaling & Behavior 6:6, 789-793; June 2011; c2011 Landes Bioscience
Li K, Pang CH, Ding F, Sui N, Feng ZT, Wang BS. Overexpression of Suaeda salsa stroma ascorbate peroxidase in Arabidopsis chloroplasts enhances salt tolerance of plants South Afr J Bot 2012; 78: 235–245
Li T, Liu RJ, He XH, Wang BS. Enhancement of superoxide dismutase and catalase activities and salt tolerance of euhalophyte Suaeda salsa L. by mycorrhizal fungus Glomus mosseae. Pedosphere 2012; 22: 217–224
Lim PO, Kim HJ, Nam HG. Leaf Senescence. Plant Biol 2007; 58: 115–136.
Lin Y, Yan L, Paul M, Zu Y, Tang Z. Ethylene promotes germination of Arabidopsis seed under salinity bydecreasing reactive oxygen species: Evidence for the involvement of nitric oxide simulated by sodium nitroprusside. Plant Physiol Biochem 2013; 73: 211–218
Liu G, Kennedy R, Greenshields DL, Peng G, Forseille L, Selvaraj G, Wei Y. Detached and attached Arabidopsis leaf assays reveal distinctive defense responses against hemibiotrophic Colletotrichum spp. Mol Plant Microbe Interact 2007; 20: 1308–1319
Locato V, Climini S and Gara LG. Strategies to increase vitamin C in plants: from plant defense perspective to food biofortification. Frontiers in Plant Science. Plant Physiology 2013; Volume 4; Article 152; 2
Logemann J, Schell J, Willmitzer L. Improved method for the isolation of RNA from plant tissues. Analyt Biochem 1987; 163: 16–20
Lum HK, Butt YKC, Lo SCL. Hydrogen peroxide induces a rapid production of nitric oxide in mung bean (Phaseolus aureus). Nitric Oxide - Biol Chem 2002; 6: 205–213
Magalhaes JR, Monte DC and Durzan D. Nitric oxide and ethylene emission in Arabidopsis thaliana. Physiol Mol Biol Plants 2000; 6: 117–127
Malik SI, Hussain A, Yun BW, Spoel SH, Loake GJ. GSNOR-mediated de-nitrosylation in the plant defence response. Plant Sci 2011; 181: 540–544
Manai J, Gouia H and Corpas FJ. (2014) Redox and nitric oxide homeostasis are affected in tomato (Solanum lycopersicum) roots under salinity-induced oxidative stress. J Plant Physiol 2014; 171: 1028–1035
Misra AN, Misra M, Singh R. Nitric oxide: A ubiquitous signaling molecule with diverse role in plants. Afr J Plant Sci 2011; 5: 57–74
Molassiotis A, Fotopoulos V. Oxidative and nitrosative signaling in plants: Two branches in the same tree? Plant Signal Behav 2011; 6: 210–214
Morris K, Mackerness SAH, Page T, John CF, Murphy AM, Carr JP, Wollaston VB. Salicylic acid has a role in regulating gene expression during leaf senescence. Plant J 2000; 23: 677–685
Niewiadomska E, Polzien L, Desel C, Rozpadek P, Miszalski Z, Krupinska K. Spatial patterns of senescence and development- dependent distribution of reactive oxygen species in tobacco (Nicotiana tabacum) leaves. Journal of Plant Physiol 2009; 166: 1057–1068
Noctor G, Foyer CH. Ascorbate and glutathione: Keeping active oxygen under control. Plant Physiol Plant Mol Biol 1998: 49: 249–79
Ori N, Jarez MT, Jackson D, Yamaguchi J, Banowetz GM, Hake S. Leaf Senescence is delayed in tobacco plants expressing the maize homeobox gene knotted1 under the control of a senescence-activated promoter. Plant Cell 1999; 11: 1073–1080
Ouzounidou G, Giannakoula A, Ilias I. Differential responses of onion and garlic against plant growth regulators. Pak J Bot 2011; 43: 2051–2057
Pinto MC, Locato V, Sgobba A, Romero-Puertas Mdel C, Gadaleta C, Delledonne M, De Gara L. S-nitrosylation of ascorbate peroxidase is part of programmed cell death signaling in tobacco Bright Yellow-2 cells. Plant Physiol 2013; 163: 1766–1775
Qiao W, Fan LM. Nitric oxide signaling in plant responses to abiotic stresses. J Integr Plant Biol 2008; 50: 1238–1246
Rejeb KB, Benzarti M, Debez A, Bailly C, Sacoure A, Abedlly C. NADPH oxidase-dependent H2O2 production is required for salt-induced antioxidant defense in Arabidopsis thaliana. J Plant Physiol 2015; 174: 5–15
Roxas VP, Lodhi SA, Garrett DK, Mahan JR, Allen RD. Stress tolerance in transgenic tobacco Sseedlings that overexpress glutathione S-transferase/ glutathione peroxidase. Plant Cell Physiol 2000; 41: 1229–1234
Sairam RK, Tyagi Aruna. Physiology and molecular biology of salinity stress tolerance in plants. Curr Sci 2004; 86: 407-421
Sakamoto A, Ueda M, Morikawa H. Arabidopsis glutathione-dependent formaldehyde dehydrogenase is an S-nitrosoglutathione reductase. FEBS Lett 2002; 515: 20–24
Satoko Yoshida. Molecular regulation of leaf senescence. Curr Opin Plant biotech 2003; 6: 79–84
Shu DF, Wang LY, Duan M, Deng YS, Meng QW. Antisense-mediated depletion of tomato chloroplast glutathione reductase enhances susceptibility to chilling stress. Plant Physiol Biochem 2011; 49: 1228–1237
Talaat NB. Effective microorganisms enhance the scavenging capacity of the ascorbate-glutathione cycle in common bean (Phaseolus vulgaris L.) plants grown in salty soil. Plant Physiol Biochem 2014; 80: 136–143
Ushimaru T, Nakagawa T, Fujioka Y, Daicho K, Naito M, Yamauchi Y, Nonaka H, Amako K, Yamawaki K, Murata N. Transgenic Arabidopsis plants expressing the rice dehydroascorbate reductase gene are resistant to salt stress. J Plant Physiol 2006; 163: 1179-1184
Wang Y, Loake GJ, Chu C. Cross-talk of nitric oxide and reactive oxygen species in plant programed cell death. Front Plant Sci 2013; 4: 314
Wang Y, Xu F, Feng X, MacArthur RL. Modulation of Actinidia arguta fruit ripening by three ethylene biosynthesis inhibitors. Food Chem 2015; 173: 405–413


Xiang C, Oliver DJ. Glutathione metabolic genes coordinately respond to heavy metals and jasmonic acid in Arabidopsis. Plant Cell 1998; 10: 1539–1550
Xiang C, Werner BL, Christensen EM, Oliver DJ. The biological functions of glutathione revisited in Arabidopsis transgenic plants with altered glutathione levels. Plant Physiol 2001; 126: 564–574
Xia X, Tian Q, Yin G, Chen X, Zhang J, Ng S, Lu X. Reduced mitochondrial and ascorbate–glutathione activity after artificial ageing in soybean seed. J Plant Physiol 2014; 171: 140-147
Yannarelli GG, Alvarez AJF, Cruz DM, Tomaro ML. Glutathione reductase activity and isoforms in leaves and roots of wheat plants subjected to cadmium stress. Phytochemistry 2007; 68: 505–512
Yin G, Xia X, Song C, Chen Z, Zhang J, Wu S, Li R, Liu X, Lu X. Activity levels and expression of antioxidant enzymes in the ascorbate-glutathione cycle in artificially aged rice seed. Plant Physiol Biochem 2014; 80: 1–9
Yin L, Wang S, Eltayeb AE, Uddin MI, Yamamoto Y, Tsuji W, Takeuchi Y, Tanaka K. Overexpression of dehydroascorbate reductase, but not monodehydroascorbate reductase, confers tolerance to aluminum stress in transgenic tobacco. Planta 2010; 231: 609–621
Yoshymura K, Miyao K, Gaber A, Takeda T, Kanaboshi H, Miyasaka H, Shigeoka S. Enhancement of stress tolerance in transgenic tobacco plant overexpressing Chlamydomonas glutathione peroxidase in chloroplast or cytosol. Plant J 2004; 37: 21–33
Zhang W, Wen CK. Preparation of ethylene gas and comparison of ethylene responses induced byethylene, ACC, and ethephon. Plant Physiol Biochem 2010; 48: 45–53
Zou JJ, Zhou Y, Cai X, Wang CY. Increase in DNA fragmentation and the role of ethylene and reactiveoxygen species in petal senescence of Osmanthus fragrans. Postharvest Biol Technol 2014; 93: 97–105
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 54.158.248.39
論文開放下載的時間是 校外不公開

Your IP address is 54.158.248.39
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code