Responsive image
博碩士論文 etd-0609115-190701 詳細資訊
Title page for etd-0609115-190701
論文名稱
Title
適用FlexRay系統之具共模電壓調節與漏電流防護接收器與具有PVTL補償和電壓迴轉率自動校正之2倍VDD輸出緩衝器
A Receiver with Common Mode Voltage Regulation and Leakage Protection for FlexRay Systems and Slew Rate Self-Adjusted 2×VDD Output Buffer with PVTL Compensation
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
84
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-06-29
繳交日期
Date of Submission
2015-07-09
關鍵字
Keywords
PVTL 補償、電壓迴轉率、接收器、過壓保護、輸出緩衝器
slew rate, PVTL compensation, Output Buffer, over-voltage protector, receiver
統計
Statistics
本論文已被瀏覽 5672 次,被下載 0
The thesis/dissertation has been browsed 5672 times, has been downloaded 0 times.
中文摘要
本論文主要係針對傳輸介面電路設計,包含兩個主題: 適用FlexRay 系統之具
共模電壓調節與漏電流防護接收器,與具有製程、溫度、電壓、漏電流(PVTL)
補償和電壓迴轉率自動校正之2 倍VDD 輸出緩衝器。

第一個討論的技術為適用FlexRay 系統之具共模電壓調節與漏電流防護接收
器,主要分為: 共模電壓調節電路、過壓保護電路與判斷電路,共模電壓調節電路
係針對輸入範圍-10 V 至+15 V 所設計,使高於系統電壓的輸入範圍調節成系統
可以正常工作之電壓,並且可以防止漏電流,而過壓保護電路是保護該系統可以
承受±60 V電壓,判斷電路則是用以判斷接收器的當前狀態為何。

第二個提出的技術為具有PVTL 補償和電壓迴轉率自動校正之2 倍VDD 輸
出緩衝器,利用PVTL 補償,可以控制輸出級的電流大小,當電壓迴轉率過低時,
開啟額外的充放電路徑,當電壓迴轉率過高時,關閉額外的充放電路徑,如此一
來可以減少電壓迴轉率的變異。
Abstract
This thesis is mainly aimed at circuit designs for communication interfaces, including two topics, namely a receiver with common mode voltage regulation and leakage protection for FlexRay systems, and slew rate self-adjusted 2×VDD output buffer with PVTL compensation.

The first design is a receiver with common mode voltage regulation and leakage protection for FlexRay systems. It consists of a common-mode voltage adapter circuit, an over-voltage protector and a decision circuit. The input range of the voltage adapter circuit is clamped to -10 V to +15 V. The over-voltage protector ensures the system to sustain ±60 V surges on the input lines. The current state of receiver is determined by the Decision circuit.

The second topic is a slew rate self-adjusted 2×VDD output buffer with PVTL compensation.With proposed PVTL compensation, the driving current of output stage is automatically adjusted. When the slew rate drops, extra paths of charging and discharging will be turned on. By contrast, if the slew rate goes up, certain paths of charging and discharging will be closed. The variation of the slew rate is justified to be reduced.
目次 Table of Contents
[論文審定書+ i]
[中文摘要+ii]
[英文摘要+ iii]
[目錄+ iv]
[圖次+viii]
[表次+xiii]
[1 概論+1]
[1.1 前言+1]
[1.2 相關技術與文獻探討+6]
[1.2.1 FlexRay通訊協定技術分析+6]
[1.2.2 具有PVTL 補償之2 倍VDD輸出緩衝器+10]
[1.3 研究動機+13]
[1.3.1 適用FlexRay系統之具共模電壓調節與漏電流防護接收器+13]
[1.3.2 具有PVTL 補償和電壓迴轉率自動校正之2 倍VDD 輸出緩衝器+13]
[1.4 論文大綱+14]
[2 適用FlexRay 系統之具共模電壓調節與漏電流防護接收器+15]
[2.1 簡介+15]
[2.2 適用FlexRay 系統之具共模電壓調節與漏電流防護接收器+18]
[2.2.1 共模電壓調節電路+19]
[2.2.2 過壓保護電路+20]
[2.2.3 判斷電路+21]
[2.2.4 具磁滯效應之軌對軌共模輸入範圍比較器+22]
[2.3 模擬結果與分析+24]
[2.3.1 晶片佈局+24]
[2.3.2 共壓調節電路模擬+25]
[2.3.3 接收器之閒置與資料傳輸訊號模擬+28]
[2.3.4 過壓保護模擬+32]
[2.3.5 漏電流防護模擬+36]
[2.3.6 預計規格與文獻比較+36]
[2.4 結果與討論+38]
[3 具有PVTL 補償和電壓迴轉率自動校正之2 倍VDD 輸出緩衝器+40]
[3.1 簡介+40]
[3.2 具有PVTL 補償和電壓迴轉率自動校正之2 倍VDD 輸出緩衝器架構+41]
[3.2.1 PVT 偵測器+42]
[3.2.2 2 倍VDD 輸出級+43]
[3.2.3 數位邏輯電路+47]
[3.2.4 漏電流補償電路+48]
[3.3 具有PVTL 補償和電壓迴轉率自動校正之2 倍VDD 輸出緩衝器模擬+50]
[3.3.1 晶片佈局+50]
[3.3.2VPAD電壓訊號可傳輸之最快頻率模擬+51]
[3.3.3 閘極漏電流模擬+52]
[3.3.4 電壓迴轉率變異改善模擬+53]
[3.3.5 預計規格+54]
[3.4 晶片實作與量測+55]
[3.4.1 晶片照相+55]
[3.4.2 量測環境+56]
[3.4.3 晶片量測+56]
[3.5 結果與討論+60]
[4 總結與未來研究方向+62]
[4.1 適用FlexRay 系統之具共模電壓調節與漏電流防護接收器+63]
[4.2 具有PVTL 補償和電壓迴轉率自動校正之2 倍VDD 輸出緩衝器未來規劃+63]
[參考文獻+65]
參考文獻 References
[1] http://www.tsmc.com/chinese/event/chairman/1000902.pdf.
[2] http://download.intel.com/newsroom/kits/22nm/pdfs/22nm-Details_Presentation.pdf.
[3] http://download.intel.com/newsroom/kits/14nm/pdfs/Intel_14nm_New_uArch.pdf.
[4] http://ic.tpex.org.tw/introduce.php?ic=D000.
[5] A. Nutsch, R. Oechsner, U. Schoepka, and L. Pfitzner, “Yield model for estimation of yield impact of semiconductor manufacturing equipment,” in Proc. Int. Symp. on Semiconductor Manufacturing (ISSM), pp. 1–4, Oct. 2010.
[6] F.-S. Altolaguirre and M.-D. Ker, “Power-rail ESD clamp circuit with diode-string ESD detection to overcome the gate leakage current in a 40-nm CMOS process,” IEEE Int. Electron Devices, vol. 60, no. 10, pp. 3500–3507, Oct. 2013.
[7] http://zh.wikipedia.org/wiki/SATA.
[8] “FlexRay.” http://www.ni.com, 2009.
[9] http://web.ee.ccu.edu.tw/~wl/flexray/CH2.pdf.
[10] http://sine.ni.com/np/app/main/p/ap/icomm/lang/zht/pg/1/sn/n17: icomm,n21:9536/fmid/2954/#toc0.
[11] http://www.2cm.com.tw/coverstory_content.asp?sn=0804070011.
[12] https://openclipart.org/detail/21803/vw-scirocco.
[13] http://www.digitimes.com.tw/tw/rpt/rpt_show.asp?cnlid=3&v=20120720-418.
[14] http://www.datasheetarchive.com/V850E/PHO3-datasheet.html.
[15] http://www.elmos.com/fileadmin/2013/02_products/01_interface/06_flexray/e981-57_elmos_ds.pdf.
[16] http://www.nxp.com/documents/data_sheet/TJA1080A.pdf.
[17] “FlexRay Communications System - Electrical Physical Layer Specification V3.0.1.” http://www.flexray.com, 2010.
[18] C.-C. Wang, G.-N. Sung, P.-C. Chen, and C.-L. Wey, “A transceiver front end for electronic control units in FlexRay-based automotive communication systems,” IEEE Trans. on Circuits and Systems I, vol. 57, no. 2, pp. 460–470, Feb. 2010.
[19] C.-C. Wang, C.-L. Chen, T.-H. Yeh, Y. Hu, and G.-N. Sung, “A high speed transceiver front-end design with fault detection for FlexRay-based automotive communication systems ,” in Proc. IEEE Int. Symp. on Circuit and Systems (ISCAS),
pp. 434–437, May 2011.
[20] C.-C. Wang, G.-N. Sung, and P.-C. Chen, “A transceiver design for electronic control unit (ECU) node in FlexRay-based automotive communication systems,” in Proc. IEEE Int. Conf. on Consumer Electronics (ICCE), pp. 1–2, Jan. 2008.
[21] F. Baronti, E. Petri, S. Saponara, L. Fanucci, R. Roncella, R. Saletti, P. D’Abramo, and R. Serventi, “Design and verification of hardware building blocks for highspeed and faulttolerant in-vehicle networks,” IEEE Trans. on Industrial Electronics, vol. 58, no. 3, pp. 792–801, Mar. 2011.
[22] Y. Hu, “A receiver with over-voltage protection for flexray systems and an 8:1 highvoltage analog multiplexer for battery management systems,” Master’s thesis, National Sun Yat-sen University, 2013.
[23] Y.-H. Kwak, I. Jung, H.-D. Lee, Y.-J. Choi, Y. Kumar, and C. Kim, “A one cycle lock time slew-rate-controlled output driver,” in Proc. IEEE Int. Solid-State Circuits Conference, pp. 408–611, Feb. 2007.
[24] C.-L. Chen, H.-Y. Tseng, R.-C. Kuo, and C.-C. Wang, “A slew rate self-adjusting 2×VDD output buffer with PVT compensation,” in Proc. Int. Symp. on VLSI Design Automation and Test (VLSI-DAT), pp. 1–4, Apr. 2012.
[25] J.-Y. Chang and S.-I. Liu, “A phase-locked loop with background leakage current compensation,” IEEE Trans. on Circuits and Systems II, vol. 57, no. 9, pp. 666–670, Sep. 2010.
[26] R. Oh, J.-W. Jang, and M.-Y. Sung, “Design and verification of an all-digital onchip process variation sensor,” in Proc. IEEE Int. Symp. on Circuits and Systems, pp. 1684–1687, May 2013.
[27] J.-H. Yang, G.-F. Li, and H.-L. Liu, “Off-state leakage current in nano-scale MOSFET with Hf-based gate dielectrics,” in Proc. IEEE Int. Nano Electronics Conf. (INEC), pp. 1189–1192, Mar. 2008.
[28] A. Sanyal, A. Rastogi, W. Chen, and S. Kundu, “An efficient technique for leakage current estimation in nanoscaled CMOS circuits incorporating self-loading effect,” IEEE Trans. on Computers, vol. 59, no. 7, pp. 922–932, July 2010.
[29] K. Roy, S. Mukhopadhyay, and H.-M. Meimand, “Leakage current mechanisms and leakage reduction techniques in deep-submicrometer CMOS circuits,” IEEE Proceedings, vol. 91, no. 2, pp. 305–327, Feb. 2003.
[30] R. Rao, A. Srivastava, D. Blaauw, and D. Sylvester, “Statistical estimation of leakage current considering inter- and intra-die process variation ,” in Proc. Int. Symp. on Low Power Electronics and Design (ISLPED), pp. 84–89, Aug. 2003.
[31] R. J. Baker, CMOS Circuit Design, Layout, and Simulation Third Edition. New Jersey: John Wiley & Sons, 2010.
[32] T.-J. Lee, K.-W. Ruan, and C.-C. Wang, “32 % Slew rate and 27 % data rate improved 2×VDD output buffer using PVTL compensatio,” in Proc. IEEE Int. Conf. on IC Design and Technology (ICICDT), pp. 1–4, May 2014.
[33] J.-W. Liu, “3×vdd bidirectional mixed-voltage-tolerarnt i/o buffer and 2×vdd output buffer with process and temperature compensation,” Master’s thesis, National Sun Yat-sen University, 2010.
[34] http://www.http://chendaneyl.pixnet.net/blog/post/31436925.
[35] C.-C. Wang, W.-J. Lu, K.-W. Juan, W. Lin, H.-Y. Tseng, and C.-Y. Juan, “Process corner detection by skew inverters for 500 MHz 2×VDD output buffer using 40-nm CMOS technology,” Microelectronics Journal (MEJ), vol. 46, no. 1, pp. 1–11, Jan. 2015.
[36] M.-D. Ker and P.-Y. Chiu, “Design of 2xVDD -tolerant I/O buffer with PVT compensation realized by only 1xVDD thin-oxide devices,” IEEE Trans. on Circuits and Systems I, vol. 60, no. 10, pp. 2549–2560, Oct. 2013.
[37] C.-C. Wang, T.-J. Lee, and W. Lin, “Slew rate improved 2xVDD output buffer using leakage and delay compensation,” in Proc. IEEE Int. Conf. on Electron Devices and Solid-State Circuits (EDSSC), pp. 1–2, June 2014.
[38] T.-J. Lee, T.-Y. Chang, and C.-C. Wang, “Wide-range 5.0/3.3/1.8-V I/O buffer using 0.35-m 3.3-V CMOS technology,” IEEE Trans. on Circuits and Systems I, vol. 56, no. 4, pp. 763–772, April 2009.
[39] A. Mishra, R.-A. Mishra, and H.-L. Liu, “Leakage current minimization in dynamic circuits using sleep switch,” in Proc. Students Conf. on Engineering and System (SCES), pp. 1–6, Mar. 2012.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.17.150.163
論文開放下載的時間是 校外不公開

Your IP address is 3.17.150.163
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code