Responsive image
博碩士論文 etd-0609115-190814 詳細資訊
Title page for etd-0609115-190814
論文名稱
Title
適用於電池管理系統之高壓電流偵測電路設計
High-Voltage Current Sensing Circuit Designs for Battery Management Systems
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
77
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-06-22
繳交日期
Date of Submission
2015-07-09
關鍵字
Keywords
電流偵測器、公稱電壓、電動車、電池管理系統、高壓
current sensor, battery management system (BMS), nominal voltage, high-voltage, electric vehicles (EVs)
統計
Statistics
本論文已被瀏覽 5658 次,被下載 0
The thesis/dissertation has been browsed 5658 times, has been downloaded 0 times.
中文摘要
電池管理系統是現今電動車發展的關鍵技術之一,其中電池之電流、電壓偵測技術在電池管理系統是安全相關項目。本論文提出適用於電池管理系統之高壓電流偵測器,並以晶片實現相當高精準度之解決方案。

由於電池模組皆由許多電池串聯、並聯組成,因此會需要面對高壓問題,本論文提出適用於電池管理系統中高壓電流偵測器,確保電晶體跨壓不會超過製程廠的電壓限制,並將偵測電阻整合在晶片上,以減少離散元件的使用。模擬結果電壓範圍為20 ~ 40 V、電流範圍為0.5 ~ 1 A,最大誤差為± 2.6 %內。

另外由於行政院環保署制定了電動二輪車電池交換系統共通電池審驗規範,訂定了電動二輪車交換系統中電池組的公稱電壓為48 V,根據此一規範提出一適用於現今法規公稱電壓之高壓電流偵測器,同樣能適用於電池管理系統中。量測結果在電壓範圍為36 ~ 55 V、電流範圍為0.44 ~ 2.2 A的情況下最大誤差在± 1.6 %以內。
Abstract
Battery management system (BMS) is one of the key technologies of electric vehicles (EVs) nowadays. The current sensing technologies are critical factors of the safety of BMS. This thesis presents for high-voltage current sensor designs for BMS. The proposed sensors are realized on silcion to demonstrate high accuracy.

Since the battery modules are composed of many parallel modules with batteries in series. Therefore, it inevitably will face high-voltage and high-current problems. A high-voltage current sensor is demonstrated in this thesis using HV CMOS process for BMS. The voltage of MOSFET is kept under the HV CMOS process limitation. The sensing resistor is integrated on silicon as well to reduce the number of discrete elements on PCB. The current sensor is adeguate in the voltage range from 20 to 40 V and the current range from 0.5 to 1 A. The maximum error is within ± 2.6 % by all-PVT-corner simulation.

Environmental Protection Administration, Executive Yuan, formalized an official specification of battery modules of electric motorcycle battery exchange systems. The nominal voltage of the electric motorcycle battery exchange system is defined as 48 V. According to this regulation, a high-voltage current sensor is proposed for the BMS used in the exchange systems. The maximum error in the voltage range of 36 ~ 55 V and the current range of 0.44 ~ 2.2 A is less than ± 1.6 % by physical measurements.
目次 Table of Contents
[論文口試委員審定書+i]
[論文摘要+ii]
[Abstract+iii]
[目錄+iv]
[圖目錄+vii]
[表目錄+x]
[1 概論+1]
[1.1 前言+1]
[1.2 相關文獻探討與研究+4]
[1.2.1 電阻型電流偵測+4]
[1.2.2 濾波器型電流偵測+7]
[1.2.3 磁感應型電流偵測+9]
[1.2.4 電流映射型電流偵測+11]
[1.2.5 市售電流偵測晶片+13]
[1.3 研究動機+14]
[1.4 論文大綱+16]
[2 適用於電池管理系統之高壓電流偵測器+17]
[2.1 簡介+17]
[2.2 適用於電池管理系統之高壓電流偵測器架構+18]
[2.3 適用於電池管理系統之高壓電流偵測器設計+19]
[2.3.1 兩顆on-chip 電阻選擇+19]
[2.3.2 高壓偵測級+20]
[2.3.3 輸出級+27]
[2.4 電路模擬與預計規格+29]
[2.4.1 晶片佈局+29]
[2.4.2 模擬結果與分析+31]
[2.4.3 預計規格列表與文獻比較+35]
[2.5 晶片實作與量測結果+36]
[2.5.1 晶片量測結果與分析+36]
[2.6 本章結論+38]
[3 適用於現今法規公稱電壓之高壓電流偵測器+39]
[3.1 簡介+39]
[3.2 適用於現今法規公稱電壓之高壓電流偵測器架構+40]
[3.3 適用於現今法規公稱電壓之高壓電流偵測器設計+41]
[3.4 電路模擬與預計規格+46]
[3.4.1 晶片佈局+46]
[3.4.2 模擬結果與分析+47]
[3.4.3 預計規格列表與文獻比較+51]
[3.5 晶片實作與量測結果+52]
[3.5.1 晶片量測結果與分析+54]
[3.5.2 文獻比較+57]
[3.6 本章結論+58]
[4 結論與未來研究方向+59]
[參考文獻+62]
參考文獻 References
[1] C. C. Chan, “The state of the art of electric, hybrid, and fuel cell vehicles,” Proceedings of the IEEE, vol. 95, no. 4, pp. 704–718, Apr. 2007.
[2] B. Frieske, M. Kloetzke, and F. Mauser, “Trends in vehicle concept and key technology development for hybrid and battery electric vehicles,” in Proc. 2013 World Electric Vehicle Symposium and Exhibition (EVS27), pp. 1–12, Nov. 2013.
[3] http://www.porsche.com/.
[4] A. Affanni, A. Bellini, G. Franceschini, P. Guglielmi, and C. Tassoni, “Battery choice and management for new-generation electric vehicles,” IEEE Transactions on Industrial Electronics, vol. 52, no.5, pp. 1343–1349, Oct. 2005.
[5] C.-H. Kim, M.-Y. Kim, and G.-W. Moon, “A modularized charge equalizer using a battery monitoring IC for series-connected Li-Ion battery strings in electric vehicles,” IEEE Transactions on Power Electronics, vol. 28, no.8, pp. 3779–3787, Aug. 2013.
[6] C.-H. Lin, H.-Y. Chao, C.-M. Wang, and M.-H. Hung, “Battery management system with dual-balancing mechanism for LiFePO4 battery module,” in Proc. TENCON 2011 - 2011 IEEE Region 10 Conference, pp. 863–867, Nov. 2011.
[7] K. Kadirvel, J. Carpenter, H. Phuong, J. M. Ross, R. Shoemaker, and B. Lum-Shue-Chan, “A stackable, 6-Cell, Li-Ion, battery management IC for electric vehicles With 13, 12-bit Δ ADCs, cell balancing, and direct-connect current-mode communications,” IEEE Journal of Solid-State Circuits, vol. 49, no.4, pp. 928–934, Apr. 2014.
[8] http://www.emeraldbatt.com/tw/index/.
[9] J. Garche and A. Jossen, “Battery management systems (BMS) for increasing battery life time,” in Proc. The Third International Telecommunications Energy Special Conference, 2000. TELESCON 2000., pp. 81–88, May. 2000.
[10] H. P. Forghani-zadeh and G. A. Rincon-Mora, “Current-sensing techniques for DC-DC converters,” in Proc. The 45th Midwest Symposium on Circuits and Systems (MWSCAS), pp. 577–580, Aug. 2002.
[11] C.-F. Lee and P. K. T. Mok, “A monolithic current-mode CMOS DC-DC converter with on-chip current-sensing technique,” IEEE Journal of Solid-State Circuits, vol. 39, no.1, pp. 3–14, Jan. 2004.
[12] M. Du and H. Lee, “A 2.5MHz, 97%-accuracy on-chip current sensor with dynamically-biased shunt feedback for current-mode switching DC-DC converters,” in Proc. IEEE International Symposium on Circuits and Systems (ISCAS), pp. 3274–3277, May. 2008.
[13] “Application bulletin AB-20 optimum current sensing techniques in CPU converters.” Fairchild Semiconductor, 1999.
[14] “High-side current sensing techniques for power manager devices.” Lattice Semiconductor, 2008.
[15] E. Dallago, M. Passoni, and G. Sassone, “Lossless current sensing in low-voltage high-current DC/DC modular supplies,” IEEE Transactions on Industrial Electronics, vol. 47, no.6, pp. 1249–1252, Dec. 2000.
[16] J. Lin, H. Cheng, and J. Xing, “A high side current sensing circuit with high PSRR based on BCD process,” in Proc. IEEE International Conference on Anti-Counterfeiting, Security and Identification (ASID), pp. 177–179, Jun. 2011.
[17] X. Cheng, Z. Zhang, F. Li, and S. Liu, “Study of magnetic properties for iron core in a closed loop hall current sensor,” in Proc. 13th International Conference on Electronic Packaging Technology and High Density Packaging (ICEPT-HDP), pp. 575–578, Aug. 2012.
[18] X. Yang, H. Liu, Y. Wang, Y. Wang, G. Dong, and Z. Zhao, “A giant magneto resistive (GMR) effect based current sensor with a toroidal magnetic core as flux concentrator and closed-loop configuration,” IEEE Transactions on Applied Superconductivity, vol. 47, no.6, pp. 1249–1252, Dec. 2000.
[19] H. P. Baltes and R. S. Popovic, “Integrated semiconductor magnetic field sensors,” Proceedings of the IEEE, vol. 74, no.8, pp. 1107–1132, Aug. 1986.
[20] R. K. Panda and N. A. Sawade, “Air cored current sensor for digital metering & micro-processor based protection unit,” in Proc. 2012 IEEE Fifth Power India Conference, pp. 1–6, Dec. 2012.
[21] T. P. Chow, D. N. Pattanayak, E. J. Wildi, J. M. Pimbley, B. J. Baliga, and M. S. Adler, “Design of current sensors in IGBT’s,” in Proc. 1992. Digest. 50th Annual Device Research Conference, pp. 156–157, Jun. 1992.
[22] E. R. Motto and J. F. Donlon, “IGBT module with user accessible on-chip current and temperature sensors,” in Proc. 2012 Twenty-Seventh Annual IEEE Applied Power Electronics Conference and Exposition (APEC), pp. 176–181, Feb. 2012.
[23] Y.-C. Liang, G. S. Samudra, A. J. D. Lim, and P.-H. Ong, “Accurate current sensor for lateral IGBT smart power integration,” IEEE Transactions on Power Electronics, vol. 18, no.5, pp. 1238–1243, Sep. 2003.
[24] http://www.molicel.com/.
[25] Y. Hu, “A receiver with over-voltage protection for flexray systems and an 8:1 highvoltage analog multiplexer for battery management system,” Master’s thesis, National Sun Yat-Sen University, Jul. 2013.
[26] Y.-L. Wu, “A high voltage operational amplifier with rail-to-rail input and output ranges and an 8:1 high voltage multiplexer,” Master’s thesis, National Sun Yat-Sen University, Jun. 2014.
[27] http://www.epa.gov.tw/.
[28] C.-C. Wang, W.-J. Lu, and S.-S. Wang, “An on-chip high-voltage current sensor for battery module monitoring,” in Proc. 2014 IEEE International Conference on IC Design Technology (ICICDT), pp. 1–4, May. 2014.
[29] M.-H. Huang and K.-H. Chen, “Single-Inductor Multi-Output (SIMO) DC-DC converters with high light-load efficiency and minimized cross-regulation for portable devices,” IEEE Journal of Solid-State Circuits, vol. 44, no.4, pp. 1099–1111, Apr. 2009.
[30] M. Du and H. Lee, “An integrated speed- and accuracy-enhanced CMOS current sensor with dynamically biased shunt feedback for crrent-mode buck regulators,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 57, no.10, pp. 2804–2814, Oct. 2010.
[31] S. H. Shalmany, D. Draxelmayr, and K. A. A. Makinwa, “A micropower battery current sensor with 0.03% (3 ) inaccuracy from -40 to +85 ◦C,” in Proc. 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), pp. 386–387, Feb. 2013.
[32] H. Wang, X. Hu, Q. Liu, G. Zhao, and D. Luo, “An on-chip high-speed current sensor applied in the current-mode DC-DC converter,” IEEE Transactions on Power Electronics, vol. 29, no.90, pp. 4479–4484, Sep. 2014.
[33] T.-Y. Tsai, “A process compensation and non-linear calibration temperature detector and a hysteresis current-controlled boost converters for battery management systems,” Master’s thesis, National Sun Yat-Sen University, Jun. 2014.
[34] C.-T. Dai and M.-D. Ker, “Study on ESD protection design with stacked low-voltage devices for high-voltage applications,” in Proc. 2014 IEEE International Reliability Physics Symposium, pp. EL.5.1–EL.5.2, Jun. 2014.
[35] Y.-C. Huang and M.-D. Ker, “A latchup-immune and robust SCR device for ESD protection in 0.25 μm 5-V CMOS process,” IEEE Electron Device Letters, vol. 34, no.5, pp. 674–676, May. 2013.
[36] J. F. Witte, J. H. .Huijsing, and K. A. A. Makinwa, “A current-feedback instrumentation amplifier with 5 μV offset for bidirectional high-side current-sensing,” IEEE Journal of Solid-State Circuits, vol. 43, no.42, pp. 2769–2775, Dec. 2008.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.144.189.177
論文開放下載的時間是 校外不公開

Your IP address is 3.144.189.177
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code