Responsive image
博碩士論文 etd-0609115-191126 詳細資訊
Title page for etd-0609115-191126
論文名稱
Title
高輸入頻寬高轉換增益之功率偵測器與雙向功率偵測器研製
Implementation of a Wide Range High Conversion Gain Power Detector and a Bidirectional Power Detector
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
83
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-06-22
繳交日期
Date of Submission
2015-07-09
關鍵字
Keywords
共振頻率、峰值峰谷偵測器、頻移讀取系統、峰值偵測器、功率偵測器
frequency shift readout circuit, peak and valley detector, resonant frequency, power detector, notch filter
統計
Statistics
本論文已被瀏覽 5678 次,被下載 0
The thesis/dissertation has been browsed 5678 times, has been downloaded 0 times.
中文摘要
本論文針對應用於生醫檢測微系統中之頻移讀取電路所需之功率偵測器進行研究,所設計的電路共分為兩個主題,第一個為高輸入頻寬與高轉換增益之低功耗功率偵測器,第二個為高輸入頻寬與高轉換增益之雙向功率偵測器。
第一個主題為高輸入頻寬與高轉換增益之低功耗功率偵測器,電路架構由振幅電壓轉換器、峰值或是峰谷偵測器與帶隙偏壓電路組成。振幅電壓轉換器由兩個RMS功率偵測器組成,具有高輸入頻寬與高轉換增益之特性,並可將輸入電壓振幅轉為相對比例之輸出直流電壓,後級之峰值或是峰谷偵測器會因此偵測出最大或是最小電壓值,此時即輸入訊號之共振頻率點。本電路降低功率消耗電路之方法使用系統之時脈訊號搭配峰值或峰谷偵測器之電源開關,以減少不必要之功率消耗。本設計使用台積電TSMC 0.25 μm CMOS 製程實現,經量測結果,轉換增益可達166 mV/dB、輸入頻率範圍可由500 Hz 至2.5 GHz,最高節省之功率消耗可達39.6 %。
第二個主題為高輸入頻寬與高轉換增益之雙向功率偵測器,電路特點為使用振幅電壓轉換器搭配峰值峰谷偵測器與一判斷器,如此便可使檢測系統不必侷限於特定種類之感測器,使電路應用範圍更加廣泛。振幅電壓轉換器同樣由兩個RMS 功率偵測器組成,並可將輸入電壓振幅轉換為相對比例之直流電壓。然後先以判斷器判斷需要使用峰值或峰谷模式偵測,再利用峰值峰谷偵測器來擷取最大或最小電壓值,以得知輸入訊號之共振頻率點。此電路使用聯電UMC 0.18 μm CMOS 製程實現,經模擬結果,轉換增益可達76 mV/dB、輸入頻率範圍可由500 kHz 至20 GHz。
Abstract
Two circuit designs are proposed for power detectors used in biomedical sensing systems. The first topic is a wide range high conversion gain low-power power detector, and the other one is a bidirectional power detector.
The wide range high conversion gain low-power power detector is composed of an amplitude-to-voltage converter (AVC), a peak or valley detector, and a bandgap bias. Two RMS power detectors consist of an AVC to boost conversion gain and enlarge input frequency range. The AVC converts the input power into a DC voltage proportionally. Peak or valley detector will therefore detect the maximum or minimum voltage value, respectively, where the resonant frequency of the input signal is associated with. The proposed detector reduces power consumption by using a power switch to power-gate the peak or valley detector. The proposed power detector is realized on silicon using a TSMC 0.25 μm CMOS process. Measurement results justify that the conversion gain is 166 mV/dB, the input frequency range is from 500 Hz to 2.5 GHz and the power saving is up to 39.6 %.
The second topic is a wide range high conversion gain bidirectional power detector. To make power detector more robust such that it will not be constrained by the type of sensors, the proposed detector consists of an AVC, a peak and valley detector, a decider and a bandgap bias. The AVC is also composed of two RMS power detectors carrying out the conversion between different amplitude voltage levels and the corresponding DC voltages. Next to the AVC circuit, the decider will determine the direction of the AVC output signal to change the mode of peak or valley detection. This design is carried out on silicon using a UMC 0.18 μm CMOS process. Measurement result shows that the conversion gain is 76 mV/dB and the input frequency range is from 500 kHz to 20 GHz.
目次 Table of Contents
[論文口試委員審定書+ i]
[誌謝+ ii]
[中文摘要+iii]
[英文摘要+ iv]
[目錄+ v]
[圖次+ viii]
[表次+ xiii]
[1 概論+ 1]
[1.1 前言+1]
[1.2 研究動機+4]
[1.3 相關技術與文獻探討+ 6]
[1.3.1 癌抗原CEA 快速生醫檢測微系統+ 6]
[1.3.2 功率偵測器+12]
[1.3.3 峰值偵測器+15]
[1.4 論文大綱+18]
[2 高輸入頻寬與高轉換增益之低功耗功率偵測器+20]
[2.1 簡介+ 20]
[2.2 電路架構+ 22]
[2.3 電路設計與分析+24]
[2.3.1 感測器等效電路設計+24]
[2.3.2 振幅電壓轉換器(Amplitude to voltage converter, AVC)+ 26]
[2.3.3 峰值偵測器(Peak detector) + 28]
[2.3.4 峰谷偵測器(Valley detector) +29]
[2.3.5 輸出級電路(Output stage) + 30]
[2.3.6 非交疊時脈產生器(Non-overlapping clock generation circuit)+ 31]
[2.3.7 帶隙偏壓電路(Bandgap) +32]
[2.4 電路模擬結果與分析+ 33]
[2.4.1 晶片佈局+ 33]
[2.4.2 模擬結果+33]
[2.5 晶片實作與量測結果+ 39]
[2.5.1 晶片照相圖+39]
[2.5.2 晶片量測+ 40]
[2.6 分析與討論+46]
[3 高輸入頻寬與高轉換增益之雙向功率偵測器+ 47]
[3.1 簡介+47]
[3.2 電路架構+48]
[3.3 電路設計與分析+ 49]
[3.3.1 峰值峰谷偵測器(Peak and valley detector)+ 49]
[3.3.2 判斷器(Decider)+ 52]
[3.4 電路模擬與預計規格+ 53]
[3.4.1 晶片佈局+53]
[3.4.2 模擬結果+ 54]
[3.4.3 預計規格+ 60]
[3.5 分析與討論+ 60]
[4 結論與未來研究方向+62]
[4.1 高輸入頻寬與高轉換增益之低功耗功率偵測器+62]
[4.2 高輸入頻寬與高轉換增益之雙向功率偵測器+ 64]
[參考文獻+ 65]
參考文獻 References
[1] 蔡孟男, 展望2014 年全球醫療器材產業概況. 工研院IEK, Jul. 2014.
[2] 張慈映and 蔡孟男, 2014 Medical Devices Industry Yearbook.
[3] http://ieknet.iek.org.tw/.
[4] http://www.ctimes.com.tw/DispArt-tw.asp?O=HJY6G9R0N2OARASTDW.
[5] https://www.itri.org.tw/chi/Content/NewsLetter/Contents.aspx?SiteID=1&M
mmID=620605426331276153&MSid=620616217066766337.
[6] http://www.who.int/mediacentre/factsheets/fs297/zh/.
[7] http://www.iarc.fr/en/publications/books/wcr/wcr-order.php.
[8] http://www.cna.com.tw/news/firstnews/201406255001-1.aspx.
[9] http://www.mohw.gov.tw/cht/DOS/Statistic.aspx?f_list_no=312&fod_list_no=1601.
[10] 王正一, “大腸癌診療之過去,現在及未來,” in 台灣內科醫學院九十九年會員大會學術演講論文, Dec. 2010.
[11] http://www.mmh.org.tw/gi/patient_corner/healthmarker.htm.
[12] http://www.twhealth.org.tw/index.php?option=com_zoo&task=item&item_id=694&Itemid=21.
[13] 吳瑾俐, “癌症篩檢知多少–腫瘤標記,” in 高醫醫訊月刊, vol. 30, no. 10, Mar. 2011.
[14] C.-M. Chang, “A 10-bit process-calibrated current-steering d/a converter and high bandwidth and high conversion gain power detector for frequency-shift readout system,”Master’s thesis, National Sun Yat-sen University, 2014.
[15] C.-H. Liao, “Development of a rapid readout system for cea detection and an sram with leakage sensor and read delay compensation,” Master’s thesis, National Sun Yat-sen University, 2014.
[16] C.-L. Hsiao, “Non-contact optical method for flexural plate wave devices measurement application,” Master’s thesis, National Central University, 2006.
[17] C.-C. Wang, T.-C. Sung, C.-H. Hsu, Y.-D. Tsai, Y.-C. Chen, M.-C. Lee, and I.-Y. Huang, “A protein concentration measurement system using a flexural plate-wave frequency-shift readout technique,” Sensors, vol. 13, no. 1, pp. 86–105, Dec. 2012. [18] http:// www.analog.com/ media/ en/ technical-documentation/ frequently-askedquestions/ 201551981Detector_FAQ.pdf.
[19] http://hittite.com/content/documents/1208_mwj_hmc614lp4.pdf.
[20] http://www.nitehawk.com/rasmit/ras_appl6.pdf.
[21] G.-D. Geronimo, P. O’Connaor, and A. Kandasamy, “Analog CMOS peak detect and hold circuits. part 1. Analysis of the classical configuration,” Nuclear Instruments and Methods in Physics Research, vol. 484, no.1-3, pp. 533–543, May 2002.
[22] S.-B. Park, J.-E. Wilson, and M. Ismail, “Peak detectors for multistandard wireless receivers,” IEEE Circuit and Devices Magazine, vol. 22, no. 6, pp. 6–9, Nov._ Dec.2006.
[23] Y. Aota, S. Tanifuji, H. Oguma, S. Kameda, H. Nakase, T. Takagi, and K. Tsubouchi,“P1H-4 FBAR characteristics with AlN film using MOCVD method and Ru/ Ta electrode,” in Proc. IEEE Int. Ultrasonics Symposium, pp. 1425–1428, Oct. 2007.
[24] 黃仕泓and 柯正浩, “表面聲波感測器之前瞻研究,” 物理雙月刊, vol. 23 no. 6, pp. 512–518, Jun. 2004.
[25] R.-C. Ruby, P. Bradley, Y. Oshmyansky, A. Chien, and J.-D. Larson, “Thin film bulk wave acoustic resonators (FBAR) for wireless applications,” in Proc. IEEE Int. Ultrasonics Symposium, pp. 813–821, Oct. 2001.
[26] T.-S. Song, D.-H. Kwon, and J.-W. Lee, “Rail-to-rail amplifier,” U.S. Patent 8130034 May 20th, 2012.
[27] R.-J. Baker, CMOS circuit design, layout, and simulation. Third edition. Willy-IEEE Press, 2010.
[28] Y. Zhou and Y.-W. Chia, “A low-power ultra-wideband CMOS true RMS power detector,”IEEE Trans. on Microwave Theory and Techniques, vol. 56, no. 5, pp. 1052–1058, May 2008.
[29] K. A. Townsend and J. W. Haslett, “A wideband power detection system optimized for the UWB spectrum,” IEEE Journal of Solid-State Circuits, vol. 44, no. 2, pp. 371–381, Feb. 2009.
[30] S. Sakphrom and A. Tranachayanont, “A low-power CMOS RF power detector,” in Proc. IEEE Int. Conf. on Electronics, Circuits and Systems (ICECS), pp. 177–180, Dec. 2012.
[31] C.-C. Wang, D.-S. Wang, S.-Y. Chen, and C.-M. Chang, “A 20 GHz power detector with 176 mV/dB conversion gain,” in Proc. IEEE Asia Pacific Conf. on Circuits and Systems (APCCAS), pp. 551–554, Nov. 2014.
[32] P.-K. Chan, L. Siek, H.-C. Tay, and J.-H. Su, “A low-offset class-AB CMOS operational amplifier,” in Proc. IEEE Int. Symposium on Circuits and Systems (ISCAS), pp. 455–458, vol. 3, May 2000.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 34.228.240.6
論文開放下載的時間是 校外不公開

Your IP address is 34.228.240.6
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code