Responsive image
博碩士論文 etd-0609115-215843 詳細資訊
Title page for etd-0609115-215843
論文名稱
Title
應用於電池管理系統之低功率跨域高壓資料傳送電路與補償讀取迴轉率之5T靜態隨機存取記憶體
Low Power Cross-Domain High-Voltage Data Transmitters for Battery Management Systems and A 5T SRAM with Readout Slew-Rate Compensation
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
82
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-06-22
繳交日期
Date of Submission
2015-07-10
關鍵字
Keywords
低功率、靜態隨機存取記憶體、高壓傳送器、迴轉率、電池管理系統
battery management systems, static random access memory, high-voltage transmitters, low power, slew-rate
統計
Statistics
本論文已被瀏覽 5712 次,被下載 0
The thesis/dissertation has been browsed 5712 times, has been downloaded 0 times.
中文摘要
本論文包含兩個研究主題,分別提出電池管理系統所需之高壓資料傳送電路,以及補償靜態隨機存取記憶體之讀取迴轉率的方法。

第一個主題為可應用於電池管理系統之低功率跨域高壓資料傳送電路,其系統標的為一13串電池芯的電動摩托車之電池管理系統,電池模組電壓範圍為36.4 V ~ 54.6 V。在前述系統中,電池互連模組的電池相關資訊可傳至低壓側之電源管理系統,以進行管理與分析。為了解決高壓系統與低壓系統間之數位資料傳輸問題,本論文提出一個新的電路架構,包含高壓到低壓之資料傳送電路及低壓到高壓之資料傳送電路,且不使用任何的隔離元件,且功率消耗低及面積小等優點。此一設計是使用台積電TSMC 0.25 μm CMOS High Voltage Mixed Signal General Purpose IIA based BCD製程實現,其量測結果的功率消耗為0.425 mW/Mbps,傳輸延遲為1.9 us,資料傳輸速率為0.32 Mbps。

第二個主題為補償讀取迴轉率之5T靜態隨機存取記憶體,係提出以一補償電路加入到先前研發之單端讀寫無擾動5T無負載式靜態隨機存取記憶體中,以兩個相同1 k位元的記憶體陣列來展現其讀取補償電路的效能。當靜態隨機存取記憶體於低電壓時,由自我調適電壓偵測器開啟提升字元線電壓之電路,將提升電壓後的字元線對記憶體單元進行補償。此一設計是使用台積電TSMC 28 nm CMOS LOGIC Low Power ELK Cu 1P10M製程實現,其佈局後模擬結果平均改善27.077%的讀取迴轉率與13.694%的功率消耗。
Abstract
This thesis consists of two research topics, i.e., a high-voltage data transmitter for Battery Management Systems (BMS) and an SRAM with readout slew-rate compensation.

The first topic demonstrates a low power cross-domain high-voltage transmitter for BMS. The design is aimed at applications to a 13-cell string in E-scooters's BMS. The voltage range of the battery string is from 36.4 V to 54.6 V. The individual battery information is expected to be transmitted to the low voltage side where the BMS will carry out the management and analysis. To resolve the voltage level unmatching issue in digital data between a high voltage domain and a low voltage domain, a novel circuit design consisting of high to low transmitters and low to high transmitters is proposed. The advantages of the proposed transmitters are low power dissipation, small area, and no need of any isolator. Measurement results on silicon using TSMC 0.25 μm CMOS High Voltage Mixed Signal General Purpose IIA based BCD process justify that the power dissipation is 0.425 mW/Mbps, and the propagation delay is 1.9 us.

A 5T SRAM with readout voltage slew-rate compensation is proposed in the second part. When the supply voltage is low, an adaptive voltage detector will switch on the word-line boosting circuit to compensate the readout for the single-ended disturb-free 5T load-less SRAM. Post-layout simulations based on implementation using TSMC 28 nm CMOS LOGIC Low Power ELK Cu 1P10M process demonstrate that the readout slew-rate is enhanced by 27.077%, and the average power dissipation is reduced by 13.694%.
目次 Table of Contents
[論文審定書+ i]
[論文公開授權書+ ii]
[中文摘要+ iii]
[英文摘要+ iv]
[目錄+ v]
[圖次+ viii]
[表次+ xii]
[1 概論+1]
[1.1 前言+ 1]
[1.2 相關研究與文獻探討+ 7]
[1.2.1 電池管理系統傳輸+7]
[1.2.2 靜態隨機存取記憶體與補償方式+12]
[1.3 研究動機+ 16]
[1.4 論文大綱+16]
[2 低功率跨域高壓資料傳送器+ 17]
[2.1 簡介+ 17]
[2.2 高壓資料傳送器整體架構+ 18]
[2.3 高壓資料傳送器電路設計+ 19]
[2.3.1 低壓到高壓資料傳送器+ 19]
[2.3.2 高壓到低壓資料傳送器+ 22]
[2.3.3 參考電流源+ 25]
[2.3.4 鎖存資料電路+27]
[2.4 電路模擬與預計規格+ 28]
[2.4.1 晶片設計與佈局+28]
[2.4.2 高壓傳送器佈局後模擬結果與分析+ 29]
[2.4.3 預計規格與效能比較+ 32]
[2.5 晶片實作與量測結果+ 34]
[2.5.1 晶片量測結果與分析+ 36]
[2.5.2 預計規格與實測結果+ 38]
[2.6 結果與討論+ 40]
[3 補償讀取迴轉率之5T 靜態隨機存取記憶體+ 41]
[3.1 簡介+ 41]
[3.2 補償讀取迴轉率之5T SRAM 架構+ 41]
[3.3 補償讀取迴轉率之5T SRAM 電路設計+ 43]
[3.3.1 單端無擾無負載式之5T SRAM 單元+ 43]
[3.3.2 行解碼器與列解碼器+ 45]
[3.3.3 補償讀取迴轉率電路+ 46]
[3.3.4 內建自我測試電路+ 49]
[3.4 電路佈局後模擬+ 51]
[3.4.1 晶片設計與佈局+ 51]
[3.4.2 SRAM cell 模擬+ 52]
[3.4.3 SRAM 系統模擬+ 54]
[3.5 預計規格與效能比較+ 59]
[3.6 結果與討論+ 60]
[4 結論與未來規劃+61]
[4.1 論文貢獻+ 61]
[4.2 未來研究方向+ 61]
[參考文獻+ 65]
參考文獻 References
[1] Y. Li, R. Kaewpuang, P. Wang, D. Niyato, and Z. Han, “An energy efficient solution:integrating plug-in hybrid electric vehicle in smart grid with renewable energy,” in Proc. IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), pp. 73–78, Mar. 2012.
[2] A. S. O. Yu, L. L. C. Silva, C. L. Chu, P. T. S. Nascimento, and A. S. Camargo, “Electric vehicles: struggles in creating a market,” in Proc. 2011 Proceedings of PICMET’11 : Technology Management in the Energy Smart World (PICMET), pp. 1–13, Jul.2011.
[3] C.-C. Chan and Y.-S. Wong, “Electric vehicles charge forward,” IEEE Power and Energy Magazine, vol. 2, no. 6, pp. 24–33, Nov. 2004.
[4] Y. Li, “Scenario-based analysis on the impacts of plug-in hybrid electric vehicles (PHEV) penetration into the transportation sector,” in Proc. IEEE International Symposium on Technology and Society (ISTAS), pp. 1–6, Jun. 2007.
[5] http://www.artc.org.tw.
[6] http://www.naipo.com.
[7] http://www.cna.com.tw/news/afe/201502200202-1.aspx.
[8] H.-C. Han, H.-P. Xu, Z.-Q. Yuan, and Y.-G. Zhao, “Modeling for Lithium-ion battery used in electric vehicles,” in Proc. IEEE Conference and Expo Transportation Electrification Asia-Pacific (ITEC Asia-Pacific), pp. 1–5, Aug. 2014.
[9] C. Sinkaram, K. Rajakumar, and V. Asirvadam, “Modeling battery management system using the Lithium-ion battery,” in Proc. IEEE International Conference on Control System, Computing and Engineering (ICCSCE), pp. 50–55, Nov. 2012.
[10] K. W. E. Cheng, B. P. Divakar, H. Wu, K. Ding, and H.-F. Ho, “Battery management system (BMS) and SOC development for electrical vehicles,” IEEE Transactions on Vehicular Technology, vol. 60, no. 1, pp. 76–88, Jan. 2011.
[11] H. Rahimi-Eichi, U. Ojha, F. Baronti, and M. Chow, “Battery management system:an overview of its application in the smart grid and electric vehicles,” IEEE Industrial Electronics Magazine, vol. 7, no. 2, pp. 4–16, Jun. 2013.
[12] http://www2.itis.org.tw.
[13] http://mic.iii.org.tw.
[14] http://iknow.stpi.narl.org.tw.
[15] R. Gonzalez, B. M. Gordon, and M. A. Horowitz, “Supply and threshold voltage scaling for low power CMOS,” IEEE Journal of Solid-State Circuits, vol. 32, no. 8, pp. 1210–1216, Aug. 1997.
[16] K. Vanama, R. Gunnuthula, and G. Prasad, “Design of low power stable SRAM cell,”in Proc. International Conference on Circuit, Power and Computing Technologies (ICCPCT), pp. 1263–1267, Mar. 2014.
[17] “Linear Technology, LTC6802-1, Multicell Battery Stack Monitor.”http://www.linear.com.cn, 2009.
[18] “Analog Devices, AD7280, Lithium-Ion Battery Monitor for Hybrid Electric Vehicles.”http://www.analog.com, 2008.
[19] R. Kliger, “Integrated transformer-coupled isolation,” IEEE Instrumentation & Measurement Magazine, vol. 6, no. 1, pp. 16–19, Mar. 2003.
[20] S. Kaeriyama, S. Uchida, M. Furumiya, M. Okada, T. Maeda, and M. Mizuno, “A 2.5 kV isolation 35 kV/us CMR 250 Mbps digial isolator in standard CMOS with a small transformer driving technique,” IEEE Journal of Solid-State Circuits, vol. 47, no. 2, pp. 435–443, Feb. 2012.
[21] M. Kikuchi, T. Sase, M. Inaba, A. Watanabe, N. Akiyama, and F. Murabayashi, “On chip 500V capacitive isolator for 1 Mbps CAN transceiver,” in Proc. International CAN Conference, pp. 03–09 – 03–15, Apr. 2002.
[22] N. Martiny, A. Hornung, M. Schussler, and A. Jossen, “A capacitively coupled
data transmission system for resistance based sensor arrays for in-situ monitoring
of Lithium-ion battery cells,” in Proc. 2014 IEEE SENSORS, pp. 535–538, Nov.
2014.
[23] M. M. Wenger, R. Filimon, V. R. H. Lorentz, and M. Marz, “A robust contactless capacitive communication link for high power battery systems,” in Proc. 2014 IEEE 23rd International Symposium on Industrial Electronics (ISIE), pp. 1766–1772, Jun. 2014.
[24] M. Schneider, S. Ilgin, N. Jegenhorst, R. Kube, S. P¨uttjer, K.-R. Riemschneider, and J. Vollmer, “Automotive battery monitoring by wireless cell sensors,” in Proc. IEEE Inter. Instrumentation and Measurement Technology Conference, pp. 816–820, May. 2012.
[25] A. Jamaluddin, F. Perdana, A. Supriyanto, A. Purwanto, Inayati, and M. Nizam, “Development of wireless battery monitoring for electric vehicle,” in Proc. International Conference on Electrical Engineering and Computer Science (ICEECS), pp. 147–151, Nov. 2014.
[26] K. Kadirvel, J. Carpenter, P. Huynh, J. M. Ross, R. Shoemaker, and B. Lum-Shue-Chan, “A stackable, 6-cell, Li-ion, battery management IC for electric vehicles with13, 12-bitΣ△ ADCs, cell balancing, and directconnect current-mode communications,”IEEE Journal of Solid-State Circuits, vol. 49, no. 4, pp. 928–934, Apr. 2014.
[27] T. Lehmann, “Design of fast low-power floating high-voltage level-shifters,” Electronics Letters, vol. 50, no. 3, pp. 202–204, Jan. 2014.
[28] http://www.eettaiwan.com/ART_8800363813_480202_AN_d052ed69.HTM.
[29] S.-Y. Chen, “Single-ended disturb-free 5T load-less 4kb SRAM with leakage current sensor and compensation circuit,” Master’s thesis, National Sun Yat-sen University, Jun. 2013.
[30] C.-H. Liao, “Development of a rapid readout system for CEA detection and an
SRAM with lakage sensor and read delay compensation,” Master’s thesis, National Sun Yat-sen University, Jul. 2014.
[31] M. H. Abu-Rahma, M. Anis, and S. S. Yoon, “A robust single supply voltage SRAM read assist technique using selective precharge,” in Proc. 34th European Solid-State Circuits Conference (ESSCIRC), pp. 234–237, Sept. 2008.
[32] M. Bhargava, Y.-K. Chong, V. Schuppe, B. Maiti, M. Kinkade, H.-Y. Chen, A.-
W. Chen, S. Mangal, J. Wiatrowski, G. Gouya, A. Baradia, S. Thyagarajan, and
G. Yeung, “Low Vmin 20 nm embedded SRAM with multi-voltage wordline control
based read and write assist techniques,” in Proc. 2014 Symposium on VLSI Circuits
Digest of Technical Papers, pp. 1–2, Jun. 2014.
[33] “高壓側電流檢測.” http://www.eettaiwan.com/, 2005.
[34] B. Calvo, C. Azcona, N. Medrano, S. Celma, and M. R. Valero, “A compact lowvoltage first-order temperature-compensated CMOS current reference,” in Proc.
2013 European Conference on Circuit Theory and Design (ECCTD), pp. 1–4, Sept.
2013.
[35] N.-C. Lien, L.-W. Chu, C.-H. Chen, H.-I. Yang, M.-H. Tu, P.-S. Kan, Y.-J. Hu, C.-T. Chuang, S.-J. Jou, and W. Hwang, “A 40 nm 512 kb cross-point 8T pipeline SRAM with binary word-line boosting control, ripple bit-line and adaptive data-aware writeassist,”IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 61, no. 12, pp. 3416–3425, Dec. 2014.
[36] E. Seevinck, F. J. List, and J. Lohstroh, “Static-noise margin analysis of mos sram cells,” IEEE Journal of Solid-State Circuits, vol. 22, no. 5, pp. 748–754, Oct. 1987.
[37] M.-H. Tu, J.-Y. Lin, M.-C. Tsai, C.-Y. Lu, Y.-J. Lin, M.-H. Wang, H.-S. Huang,
K.-D. Lee, W.-C. Shih, S.-J. Jou, and C.-T. Chuang, “A single-ende disturb-free 9T
subthreshold sram with cross-point data-aware write word-line structure, negative
bit-line, and adaptive read operation timing tracing,” IEEE Journal of Solid-State
Circuits, vol. 47, no. 6, pp. 1469–1482, Jun. 2012.
[38] M.-H. Chang, Y.-T. Chiu, and W. Hwang, “Design and iso-area Vmin analysis of 9T subthreshold SRAM with bit-interleaving scheme in 65-nm CMOS,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 59, no. 7, pp. 429–433, Jul. 2012.
[39] S. Yoshimoto, M. Terada, S. Okumura, T. Suzuki, S. Miyano, H. Kawaguchi, and M. Yoshimoto, “A 40-nm 0.5-V 20.1 μW/MHz 8T SRAM with low-energy disturb mitigation scheme,” in Proc. IEEE Symposium on VLSI Circuits (VLSIC), pp. 72–73, Jun. 2011.
[40] M. Terada, S. Yoshimoto, S. Okumura, T. Suzuki, S. Miyano, H. Kawaguchi, and M. Yoshimoto, “A 40-nm 256-kb 0.6-V operation half-select resilient 8T SRAM with sequential writing technique enabling 367-mV VDDmin reduction,” in Proc. 2012 13th International Symposium on Quality Electronic Design (ISQED), pp. 489–492, Mar. 2012.
[41] C.-Y. Lu, M.-H. Tu, H.-I. Yang, Y.-P. Wu, H.-S. Huang, Y.-J. Lin, K.-D. Lee, Y.-S. Kao, C.-T. Chuang, S.-J. Jou, and W. Hwang, “A 0.33-V, 500-kHz, 3.94-μW 40-nm 72-kb 9T subthreshold SRAM with ripple bit-lin structure and negative bit-line
write-assist,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 59, no. 12, pp. 863–867, Dec. 2012.
[42] C.-C. Wang, C.-L. Chen, and Y.-H. Su, “Low power cross-domain high-voltage transmitters for battery management systems,” in Proc. 2014 International SoC Design Conference (ISOCC), pp. 36–37, Nov. 2014.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.117.73.214
論文開放下載的時間是 校外不公開

Your IP address is 18.117.73.214
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code