Responsive image
博碩士論文 etd-0609118-134727 詳細資訊
Title page for etd-0609118-134727
論文名稱
Title
針對具有致動器衰退之非線性系統設計適應順滑模態控制器
Design of Adaptive Sliding Mode Controllers for Nonlinear Systems with Actuator Degradation
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
60
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-06-28
繳交日期
Date of Submission
2018-07-09
關鍵字
Keywords
適應控制、順滑模態控制、致動器衰退、非匹配擾動、有限時間收斂
mismatched perturbation, finite time convergence, actuator faults, sliding mode control, adaptive control
統計
Statistics
本論文已被瀏覽 5644 次,被下載 0
The thesis/dissertation has been browsed 5644 times, has been downloaded 0 times.
中文摘要
本文針對具有致動器衰退之多輸入非線性系統,提出一種適應順滑模態控制器。首先設計順滑平面,接著再設計相對應的順滑模態控制器。藉由引入適應機制及擾動估測器的架構,進而不需要事先預知擾動及擾動估測誤差的上界。在此控制架構下確實能使狀態在有限時間內到達順滑平面並停留在平衡點上。最後,本論文提供一個數值及一個實際範例來驗證所提出的控制策略其可行性。
Abstract
In this thesis a design methodology of adaptive sliding mode control with consideration of actuator faults is proposed for a class of multi-input nonlinear systems with matched and mismatched perturbations to solve state regulation problems. The sliding surface was introduced first, then the controller which can handle actuator faults was designed. Adaptive and perturbation estimation mechanisms are also embedded in the proposed control scheme, so that there is no need to know the upper bounds of perturbation and perturbation estimation errors beforehand. The proposed fault tolerant control (FTC) scheme is able to drive the controlled states to zero and stay thereafter within a finite time even if the actuator fault occurs. Finally, a numerical example and a practical application are demonstrated using computer simulation for showing the applicability of the proposed FTC scheme.
目次 Table of Contents
Contents
論文審定書 ……………………………………………………………………… i
誌謝 …………………………………………………………………………........ii
中文摘要 ………………………………………………………………………… iii
Abstract …………………………………………………………………………. iv
List of Figures …………………………………………………………............. vii
Chapter 1 Introduction 1
1.1 Motivation …………………………………………………………………… 1
1.2 Brief Sketch of the Contents ……………………………………………… 3
Chapter 2 Design of controllers with actuator fault 4
3.1 System Descriptions and Problem Formulations ……………………….. 4
3.2 Design of Sliding Surface …………………………………………………...6
3.3 Design of Controllers ……………………………………………………….. 8
3.4 Stability Analysis ……………………………………………………............ 11
Chapter 3 Computer Simulation and Practical Application 17
4.1 Numerical Example ……………………………………………………….....17
4.2 Practical Application ……………………………………………………....... 20
Chapter 4 Conclusions 40
Bibliography 40
Appendix 48
Appendix A 48
Appendix B 51
參考文獻 References
[1] A. J. Koshkouei and A. S. I. Zinober, “Sliding mode state observation for non-linear
systems,” International Journal of Control, vol. 77, no. 2, pp. 118-127, 2004.
[2] C. Edwards, and S. K. Spurgeon, Sliding Mode Control: Theory and Applications,
London: Taylor and Francis, 1998.
[3] T. Orlowska-Kowalska, M. Dybkowski and K. Szabat, “Adaptive sliding-mode
neuro-fuzzy control of the two-mass induction motor drive without mechanical sensors,”
IEEE Transactions on Industrial Electronics, vol. 57, no. 2, pp. 553-564,
2010.
[4] M. Defoort, T. Floquetand, A. Kokosy and W. Perruquetti, “Sliding-mode formation
control for cooperative autonomous mobile robots,” IEEE Transactions on Industrial
Electronics, vol. 55, no. 11, pp. 3944-3953, 2008.
[5] B. Beltran, T. A-Ali, M. E. H. Benbouzid, “Sliding mode power control of variablespeed
wind energy conversion systems,” IEEE Transactions on Energy Conversion,
[7] J. Zhang and Y. Xia, “Design of static output feedback sliding mode control for
uncertain linear systems,” IEEE Transactions on Industrial Electronics, vol. 57, no.
6, pp.2161-2170, 2010.
[8] J. Yang, J. Su, S. Li and X. Yu, “High-order mismatched disturbance compensation
for motion control systems via a continuous dynamic sliding-mode approach,” IEEE
Transactions on Industrial Informatics, vol. 10, no. 1, pp. 604-614, 2014.
[9] C. C. Cheng and Y. Chang, “Design of decentralised adaptive sliding mode controllers
for large-scale systems with mismatched perturbations,” International Journal
of Control, vol. 81, no. 10, pp.1507-1518, 2008.
[10] C. C. Wen and C. C. Cheng, “Design of sliding surface for mismatched uncertain
systems to achieve asymptotical stability,” Journal of the Franklin Institute, vol.
345, pp. 926-941, 2008.
[11] C. C. Cheng , C. C. Wen and W. T. Lee, “Design of decentralised sliding surfaces
for a class of large-scale systems with mismatched perturbations,” International
Journal of Control, vol. 82, no. 11, pp. 2013-2025, 2009.
[12] C. Deng and G. H. Yang, “H1 Cooperative adaptive output regulation for linear
multi-agent systems with actuator faults,” IET Control Theory and Applications,
vol. 11, no. 14, pp. 2396-2401, 2017.
[13] C. J. Seot and B. K. Kim, “Robust and reliable H1 control for linear systems
parameter uncertainty and actuator failure,” Automatica, vol. 32, no. 3, pp. 465-467,
1996.
[14] C. H. Xie and G. H. Yang, “Data-based fault-tolerant control for uncertain linear
systems with actuator faults,” IET Control Theory and Applications, vol. 10, no. 3,
pp. 265-272, 2016.
[15] Y. Liu, G. H. Yang and X. J. Li, “Fault-tolerant control for uncertain linear systems
via adaptive and LMI approaches,” International Journal of Systems Science, vol.
48, no. 2, pp. 347-356, 2017.
[16] H. Alwi and C. Edwards, “Fault tolerant control using sliding modes with on-line
control allocation,” Automatica, vol. 44, pp. 1859-1866, 2008.
[17] Y. Niu and X. Wang, “Sliding mode control design for uncertain delay systems with
partial actuator degradation,” International Journal of Systems Science, vol. 40, no.
4, pp. 403-409, 2009.
[18] J. Fu and Y. Niu, “Reliable terminal sliding mode control for uncertain high-order
MIMO systems with actuator faults,” Cogent Engineering, vol. 2, pp. 1-13, 2015.
[19] L. Y. Hao and G. H. Yang, “Robust fault tolerant control based on sliding mode
method for uncertain linear systems with quantization,” ISA Transactions, vol. 52,
pp. 600-610, 2013.
[20] Y. Liu, Y. Niu, Y. Zou and H. R. Karimi, “Adaptive sliding mode reliable control for
switched systems with actuator degradation,” IET Control Theory and Applications,
vol. 9, no. 8, pp. 1197-1204, 2015.
[21] M. Benosman and K. Y. Lum, “Passive actuators fault-tolerant control for affine
nonlinear systems,” IEEE Transactions on Control Systems Technology, vol. 18, no.
1, pp. 152-163, 2010.
[22] Q. Y. Fan, G. H. Yang “Adaptive fault-tolerant control for affine non-linear systems
based on approximate dynamic programming,” IET Control Theory and Applications,
vol. 10, no. 6, pp. 655-663, 2016.
[23] A. Nasiri, S. K. Nguang, A. Swain and D. Almakhles, “Passive actuator fault tolerant
control for a class of MIMO nonlinear systems with uncertainties,” International
Journal of Control, pp. 1-9, 2017.
[24] Y. W. Liang and S. D. Xu, “Reliable control of nonlinear systems via variable
structure scheme,” IEEE Transactions on Automatic Control, vol. 51, no. 10, pp.
1721-1726, 2006.
[25] M. Khalili, X. Zhang, M. M. Polycarpou, T. Parisini and Y. Cao, “Distributed adaptive
fault-tolerant control of uncertain multi-agent systems,” Automatica, vol. 87,
pp. 142-151, 2018.
[26] X. Liua, D. Zhai, J. Dongb and Q. Zhanga, “Adaptive fault-tolerant control with
prescribed performance for switched nonlinear pure-feedback systems,” Journal of
the Franklin Institute, vol. 355, pp. 273-290, 2018.
[27] S. Tong, B. Huo, and Y. Li, “Observer-based adaptive decentralized fuzzy faulttolerant
control of nonlinear large-scale systems with actuator failures,” IEEE Transactions
on Fuzzy Systems, vol. 22, no. 1, pp. 1-15, 2014.
[28] M. Shahriari-kahkeshi1 and F. Sheikholeslam, “Active fault tolerant control design
for uncertain strict-feedback non-linear systems,” International Journal of Control,
vol. 10, no. 11, pp. 1205-1214, 2016.
[29] D. Zhai, L. An, J. Li and Q. Zhang, “Adaptive fuzzy fault-tolerant control with
guaranteed tracking performance for nonlinear strict-feedback systems,” Fuzzy Sets
and Systems, vol. 302, pp. 82-100, 2016.
[30] H. Rios, E. Punta and L. Fridman, “Fault detection and isolation for nonlinear
non-affine uncertain systems via sliding-mode techniques,” International Journal of
Control , vol. 90, no. 2, pp. 218-230, 2017.
[31] Y. W. Liang, L. W. Ting and L. G. Lin, “Study of reliable control via an integral-type
sliding mode control scheme,” IEEE Transactions on Industrial Electronics, vol. 59,
no. 8, pp. 3062-3068, 2012.
[32] S. S. D. Xu, C. C. Chen and Z. L. Wu, “Study of nonsingular fast terminal slidingmode
fault-tolerant control,” IEEE Transactions on Industrial Electronic, vol. 62,
no. 6, pp. 3906-3913, 2015.
[33] C. Wang, C. Wen and Y. Lin, “Decentralized adaptive backstepping control for a
class of interconnected nonlinear systems with unknown actuator failures,” Journal
of the Franklin Institute, vol. 352, pp. 835-850, 2015.
[34] W. Chen and M. Saif, “A sliding mode observer-based strategy for fault detection,
isolation, and estimation in a class of Lipschitz nonlinear systems,” International
Journal of Systems Science, vol. 38, no. 12, pp. 943-955, 2007.
[35] A. Alessandri, M. Caccia and G. Veruggio, “Fault detection of actuator faults in
unmanned underwater vehicles,” Control Engineering Practice, vol. 7, pp. 357-368,
1999.
[36] D. Ye and G. H. Yang, “Adaptive fault-tolerant tracking control against actuator
faults with application to flight control,” IEEE Transactions on Control Systems
Technology, vol. 14, no. 6, pp. 1088-1096, 2006.
[37] Y. Diao and K. M. Passino, “Stable fault-tolerant adaptive fuzzy/neural control for
a turbine engine,” IEEE Transactions on Control Systems Technology, vol. 9, no. 3,
pp. 494-509, 2001.
[38] Z. Li, J. Chen, G. Zhang and M. Gan, “Stabilising tracking of uncertain switched
non-linear systems in semi-strict feedback form,” International Journal of Control,
vol. 6, no. 4, pp.588-595, 2012.
[39] K. S. Miller, “On the inverse of the sum of matrices,” Mathematics Magazine, vol.
54, no. 2, pp.67-72, 1981.
[40] C. C. Cheng and M. W. Chang, “Design of derivative estimator using adaptive
integral variable structure technique,” American Control Conference, Minneapolis,
pp.14-16, 2006.
[41] G. Tao, Adaptive Control Design and Analysis, John Wiley and sons, New Jersey,
2003.
[42] Z. Zhang, S. Xu and Y. Chu, “Adaptive stabilization for a class of non-linear state
time-varying delay systems with unknown time-delay bound,” IET Control Theory
and Applications, vol. 4, no. 10, pp. 1905-1913, 2010.
[43] H. K. Khalil, Nonlinear Systems, Third Edition, New Jersey:Prentice Hall, Inc.,
2000.
[44] Q. Zhao and J. Jiang, “Reliable state feedback control system design against actuator
failures,” Automatica, vol. 34, no. 10, pp.1267-1272, 1998.
[45] Y. Chang and C.C. Cheng, “Design of adaptive sliding surfaces for systems with
mismatched perturbations to achieve asymptotical stability,” IET Control Theory
and Applications, vol. 1, no. 1, pp.417-421, 2007.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 54.196.27.171
論文開放下載的時間是 校外不公開

Your IP address is 54.196.27.171
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code