Responsive image
博碩士論文 etd-0610103-160500 詳細資訊
Title page for etd-0610103-160500
論文名稱
Title
鎘對大豆根部木質素合成之影響
Effect of Cadmium on Lignin Biosynthesis in Soybean Roots
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
40
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2003-05-08
繳交日期
Date of Submission
2003-06-10
關鍵字
Keywords
木質素、過氧化氫、鎘
peroxidase, lignin, cadmium, laccase, hydrogen peroxide, Glycine max
統計
Statistics
本論文已被瀏覽 5716 次,被下載 2847
The thesis/dissertation has been browsed 5716 times, has been downloaded 2847 times.
中文摘要
鎘處理大豆 (Glycine max) 幼苗會明顯抑制根的生長,增加過氧化氫含量以及PODs和laccases活性。PODs (pI 8.8, pI 7.7, pI 5.2, pI 4.5, pI 4.4 and pI 3.7) 和laccases (pI 9.2, pI 8.9 and pI 8.3, pI 5.4, pI 4.2 and pI 3.7) 活性的增加伴隨著鎘處理組織內木質素含量的增加。在我們的結果中,推測laccases作用在鎘處理的早期,而當處理時間延長,laccases和PODs則共同作用在木質素的合成上。
Abstract
The significant root inhibition of growth in Cd-treated soybean (Glycine max) seedling correlated with the increase of H2O2 levels, PODs and laccases activity. The increase of the activities of PODs (pI 8.8, pI 7.7, pI 5.2, pI 4.5, pI 4.4 and pI 3.7) and laccases (pI 9.2, pI 8.9 and pI 8.3, pI 5.4, pI 4.2 and pI 3.7) are accompanied by a rise of lignin contents in Cd-treated tissues. Our results suggested that laccases work during the early stage of Cd treatment. Laccases and peroxidases work cooperatively in lignin synthesis when the time of Cd treatment was prolonged.
目次 Table of Contents
TABLE OF CONTENTS

Abstract in Chinese ------------------------------2

Abstract in English ------------------------------ 3

Table of contents ------------------------------ 4

List of tables and figures --------------------- 5

Introduction ------------------------------------- 6

Materials and Methods ------------------------ 11

Results ------------------------------------------- 17

Discussion --------------------------------------- 21

References --------------------------------------- 25

Tables and figures ------------------------------ 29

List of Tables and Figures

Fig. 1. Effect of Cd on the growth of soybean roots ----------------------- 29

Fig. 2. Effect of Cd on the accumulation of H2O2 in soybean root tips -- 30

Fig. 3. Effect of Cd on the lignin content in soybean root tips ------------ 31

Fig. 4. Effect of Cd on the total peroxidase isozymes in soybean root tips ----------------------------------------------------------------------------- 32

Fig. 5. Effect of Cd on the activity of peroxidase isozymes in soybean root tips ------------------------------------------------------------------------ 33

Fig. 6. Quantification of peroxidase activity in soybean root tips of Cd- treated and control tissue ---------------------------------------------- 34

Fig. 7. Effect of Cd on the transcript accumulation of peroxidase isozymes in the soybean root tips------------------------------------------------- 35

Fig. 8. Quantification of peroxidase transcription level in soybean root tips of Cd-treated and control tissue---------------------------------------- 36

Fig. 9. Effect of Cd on the total laccase isozymes in soybean root tip ---- 37

Fig. 10. Effect of Cd on the activities of laccase isozymes in soybean root tips ----------------------------------------------------------------------- 38

Fig. 11. Quantification of laccase activity in soybean root tips of Cd-treated and control tissue ------------------------------------------------------ 39
參考文獻 References
Reference
Alvarez ME, Lamb C (1997) Oxidative burst mediated defense responses in plant disease resistance. In JG Scandalios, ed, Oxidative Stress and the Molecular Biology of Antioxidant Defenses. Cold Spring Harbor Laboratory Press, New York, pp 815-839
Baccouch S, Chaoui A, Ferjani EE (1998) Nickel-induced oxidative damage and antioxidant responses in Zea mays shoots. Plant Physiology and Biochemistry 36, 689-694.
Bao W, O'Malley DM, Whetten R, Sederoff RR (1993) A laccase associated with lignification in loblolly pine xylem. Science 260, 636-638.
Bazzaz FA, Rolfe GL, Carlson RW (1992) Effect of cadmium on photosynthesis and transpiration of excised leaves of corn and sunflower. Physiologia Plantarum 32, 373–377.
Blom TJM, Sierra M, van Vliet TB, Franke-van Dijk MEI, de Koning P, van Iren F, Verpoorte R, Libbenga KR (1991) Uptake and accumulation of ajmalicine into isolated vacuoles of cultured cells of Catharanthus roseus (L.) G. Don. and its conversion into serpentine. Planta 183, 170-177.
Bradley DJ, Kjellbom P, Lamb CJ (1992) Elicitor-and would-induced oxidative cross-linking of a proline-rich plant cell wall protein: a novel, rapid defense response. Cell 70, 21-30.
Bruce R, West CA (1989) Elicitation of lignin biosynthesis and isoperoxidase activity by pectic fragments in suspension cultures of castor bean. Plant Physiology 91, 889-897.
Carpin S, Crèvecoeur M, Greppin H, Penel C (1999) Molecular cloning and tissue-specific expression of an anionic peroxidase in zucchini. Plant Physiology 120, 799-819.
Chaoui A, Mazhoudi S, Ghorbal MH, El Ferjani E (1997) Cadmium and zinc induction of lipid peroxidation and effects on antioxidant enzyme activities in bean (Phaseolus vulgaris L.). Plant Science 127, 139–147.
Chen EL, Chen YA, Chen LM, Liu ZH (2002) Effect of copper on peroxidase activity and lignin content in Raphanus sativus. Plant Physiology and Biochemistry 40, 439–444.
Cohen CK, Fox TC, Garvin DF, Kochian LV (1998) The role of iron-deficiency stress responses in stimulating heavy-metal transport in plants. Plant Physiology 116, 1063–1072.
Díaz J, Bernal A, Pomar F, Merino F (2001) Induction of shikimate dehydrogenase and peroxidase in pepper (Capsicum annuum L.) seedlings in response to copper stress and its relation to lignification. Plant science 161, 179-188.
Dixit V, Pandey V, Shyam R (2001) Differential antioxidative responses to cadmium in roots and leaves of pea (Pisum sativum L. cv. Azad) Journal of Experimental Botany 52, 1101-1109.
Doke N, Miura Y, Sanchez L, Kawakita K (1994) Involvement of superoxide radical in signal transduction: responses to attack by pathogens, physical and chemical shocks and UV irradiation. In C Foyer, PM Mullineaux, eds, Causes of Photo-oxidative Stress and Amelioration of Defense Systems in Plants. CRC Press, Boca Raton, FL, pp 177-198
Everdeen DS, Kiefer S, Willard JJ, Muldoon EP (1988) Enzymatic cross-linkage of monomeric extensin precursors in vitro. Plant Physiology 87, 616–621.
Foyer CH, Lopez-Delgado H, Dat JF, Scott IM (1997) Hydrogen peroxide- and glutathione-associated mechanisms of acclimatory stress tolerance and signalling. Physiologia Plantarum 100, 241–254.
Fry SC (1983) Feruloyted pectins from the primary cell-wall : their structures and possible functions. Plants 157, 111-123.
Fry SC (1986) Cross-linking of matrix polymers in the growing cell wall of angiosperms. Annual Review of Plant Physiology 37, 165-186.
Gallego SM, Benavides MP, Tomaro ML (1996) Effect of heavy metal ion excess on sunflower leaves: evidence for involvement of oxidative stress. Plant Science 121, 151-159.
Gaspar T, Penel C, Thorpe T, Greppin H (1982) Peroxidases 1970-1980. A Survey of Their Biochemical and Physiological Roles in Higher Plants. University of Geneva, Switzerland.
Gavnholta B, Larsenb K (2002) Molecular biology of plant laccases in relation to lignin formation. Physiologia Plantarum 116, 273–280.
Gavnholta B, Larsenb K, Søren K (2002) Isolation and characterisation of laccase cDNAs from meristematic and stem tissues of ryegrass (Lolium perenne) Plant science 162, 873-885.
Gazaryan IG, Chubar TA, Mareeva EA, Largimini LM, Vanhuystee RB, and Thorneley RNF (1999) Aerobic oxidation of indole-3-acetic acid catalyzed by anionic and cationic peanut peroxidase. Phytochemistry 51, 175-186.
Hart JJ, Welch RM, Norvell WA, Sullivan LA, Kochian LV (1998) Characterization of cadmium binding, uptake and translocation in intact seedlings of bread and durum wheat cultivars. Plant Physiology 116, 1413–1420.
Hatfield R, Vermerris W (2001) Lignin formation in plants: The dilemma of linkage specificity. Plant Physiology 126, 1351–1357.
Jana S, Choudhuri MA (1982 ) Glycolate metabolism of three submerged aquatic angiosperms during aging. Aquatic Botany 12, 345-354.
Kahle H (1993) Response of roots of trees to heavy metals. Environmental and Experimental Botany 33, 99-119.
Karpinski S, Reynolds H, Karpinska B, Wingsle G, Creissen G, Mullineaux P (1999) Systemic signaling and acclimation in response to excess excitation energy in Arabidopsis. Science 284, 654-657.
Levine A, Tenhaken R, Dixon R, Lamb C (1994) H2O2 from oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell 79, 583-593.
Lewis NG, Davin LB, Sarkanen S (1999) The nature and function of lignins. In: Barton DHR, Nakasaki K, Methcohn O (eds) Comprehensive Natural Products Chemistry, Vol. 3, Elsevier Science, New York, pp 617–745.
Lewis NG, Yamamoto E (1990) Lignin: occurrence, biogenesis and biodegradation. Annual Review of Plant Physiology and Molecular Biology 41, 455–496.
Li TC, Feng TY, Chen WS, Liu ZH (2001) The acute effect of copper on the levels of indole-3-acetic acid and lignin in peanut roots. Australian Journal of Plant Physiology 28, 1-6.
Mäder M (1992) Compartmentation of peroxidase isoenzymes in plant cells. In C Penel, T Gaspar, H Greppin, eds, Plant Peroxidases 1980-1990. University of Geneva, Switzerland, pp 37-46
Mazhoudi S, Chaoui A, Habib Ghorbal M, El Ferjani E (1997) Response of antioxidant enzymes to excess copper in tomato (Lycopersicon esculentum, Mill.). Plant Science 127, 129-137.
Mehdy MC (1994) Active oxygen species in plant defense against pathogens. Plant Physiology 105, 467-472.
Müsel G, Schindler T, Bergfeld R, Ruel K, Jacquet G, Lapierre G, Speth V, Schoptfer P (1997) Structure and distribution of lignin in primary and secondary cell walls of maize coleoptiles analyzed by chemical and immunological probes. Planta 201, 146-159.
Nriagu JO, Pacyna JM (1988) Quantitative assessment of worldwide contamination of air, water and soils with trace metals. Nature 333, 134-139.
Prasad TK, Anderson MD, Martin BA, Steward CR (1994) Evidence for chilling-induced oxidative stress in maize seedlings and a regulatory role for hydrogen peroxide. Plant Cell 6, 65-74.
Quiroga M, Guerrero C, Botella MA, Barceló A, Amaya I, Medina MI, Alonso FJ, Forchetti SM, Tigier H, Valpuesta V (2000) A tomato peroxidase involved in the synthesis of lignin and suberin. Plant Physiology 122, 1119-1127.
Ranocha P, McDougall G, Hawkins S, Sterjiades R, Borderies G, Stewart D, Cabanes-Macheteau M, Boudet AM, Goffner D (1999) Biochemical characterization, molecular cloning and expression of laccases—a divergent gene family—in poplar. European Journal of Biochemistry 259, 485–495.
Reinhammer B, Malmstrom BG (1981) ‘Blue’ copper-containing oxidases. In: Spiro TG (ed.) Copper Proteins –– Metal Ions in Biology. John Wiley & Sons, New York. NY, pp 109–149.
Sandalio LM, Dalurzo HC, Gómez M, Romero-Puertas MC, del Río LA (2001) Cadmium-induced changes in the growth and oxidative metabolism of pea plants. Journal of Experimental Botany 52, 2115–2126.
Sanita di Toppi L, Gabbrielli R (1999) Response to cadmium in higher plants. Environmental and Experimental Botany 41, 105-130.
Schützendübel A, Schwanz P, Teichmann T, Gross K, Langenfeld-Heyser R, Godbold DL, Polle A (2001) Cadmium-induced changes in antioxidative systems, hydrogen peroxide content, and differentiation in Scots pine roots. Plant Physiology 127, 887-898.
Shaw BP (1995) Effects of mercury and cadmium on the activities of antioxidative enzymes in the seedlings of Phaseolus aureus. Biologia Plantarum 37, 587–596.
Somashekaraiah BV, Padmaja K, Prasad ARK (1992) Phytotoxicity of cadmium ions on germinating seedlings of mung bean (Phaseolus vulgaris): involvement of lipid peroxides in chlorophyll degradation. Physiologia Plantarum 85, 85–89.
Sterjiades R, Dean JFD, Eriksson K-EL (1992) Laccase from sycamore maple (Acer pseudoplatanus) polymerizes monolignols. Plant Physiology 99, 1162-1168.
Wu GS, Shortt BJ, Lawrence EB, León J, Fitzsimmons KC, Levine EB, Raskin I. Shah DM (1997) Activation of host defense mechanisms by elevated production of H2O2 in transgenic plants. Plant Physiology 115, 427-435.
Stejiades R, Dean JFD, Gamble G, Himmelsbach DS, Eriksson KEL (1993) Extracellular laccase and peroxidase from sycamore maple (Acer pseudoplatanus) cell suspension cultures. Planta 190, 75-87.
Wang WC, Liu ZH (1999) Harpinpss-induced peroxidase and lignin accumulation in tobacco during the hypersensitive response. Australian Journal of Plant Physiology 26, 265-272.
Yamamoto Y, Kobayashi Y, Matsumoto H (2001) Lipid peroxidation is an early symptom triggered by aluminum, but not the primary cause of elongation inhibition in pea roots. Plant Physiology 125, 199-208.
Ye XS, Pan SQ, Kuc J (1990) Activity, isozyme pattern, and cellular localization of peroxidase as related to systemic resistance of tobacco to blue mold (Peronospora tabacina) and to tobacco mosaic virus. Phytopathology 80, 1295-1299.

電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code