Responsive image
博碩士論文 etd-0610113-114220 詳細資訊
Title page for etd-0610113-114220
論文名稱
Title
具有漏電流偵測補償電路之單端讀寫且無擾動的5T無負載式4Kb靜態隨機存取記憶體
Single-ended Disturb-free 5T Load-less 4Kb SRAM with Leakage Current Sensor and Compensation Circuit
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
78
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-06-27
繳交日期
Date of Submission
2013-07-10
關鍵字
Keywords
無負載式、功率延遲乘積、單端讀寫、漏電流偵測、漏電流補償、無擾動
single-ended, leakage current sensor, power-delay product, load-less, disturb-free, leakage current compensation circuit
統計
Statistics
本論文已被瀏覽 5708 次,被下載 604
The thesis/dissertation has been browsed 5708 times, has been downloaded 604 times.
中文摘要
本論文探討兩個研究主題,分別為單端讀寫且無擾動的5T無負載式4Kb靜態隨機存取記憶體,及記憶體所需的漏電流偵測電路與補償電路。

第一個主題為單端讀寫且無擾動的5T無負載式4Kb靜態隨機存取記憶體,其係以五個電晶體組成的無負載式記憶體單元構成,具有字元控制器、單端讀寫功能和寫入輔助迴圈的設計,可以有效地隔絕外部雜訊,因而記憶體單元可操作於低電壓且不受雜訊干擾。另外,位於反位元線和位元線之間的共享式反相器,不僅能隔絕記憶體單元和位元線的雜訊,更可以由多個記憶體單元共用,將記憶體的面積間接成本(Overhead cost)降到最低。此記憶體所內建的自我測試電路,可進行測試模式的讀取與寫入,以瞭解記憶體的讀取與寫入功能是否正常。本電路以量測結果正規化之後與現有靜態隨機存取記憶體技術相較,減少6.53%的面積成本,且功率下降50.99 %。

第二個主題提出一漏電流偵測電路及補償電路,由記憶體單元模型、參考電壓電路、比較器電路和漏電流補償電路組成,並實現於前述的單端讀寫且無擾動之5T無負載式1Kb靜態隨機存取記憶體。當記憶體單元的漏電流足以影響存取結果的時候,漏電流偵測電路會發送一警訊,喚起漏電流補償電路,以達到降低功率消耗、減少讀取延遲時間的目標。本電路以正規化模擬數據與現有之靜態隨機存取記憶體技術比較,平均可改善36.68 %之讀取延遲時間、減少27.86 %之功率消耗,而付出7.48 %的面積成本代價。
Abstract
This thesis consists of two topics, including a single-ended disturb-free 5T load-less 4Kb SRAM, and the leakage current sensor and compensation circuit mainly designed for memories, e.g., the mentioned single-ended disturb-free 5T load-less SRAM.

The first topic presents a single-ended disturb-free 5T load-less 4Kb SRAM. The single-ended load-less SRAM cell consist of 5 transistors, where a write assistant loop and an isolated wordline-controlled transistor (WLC) are integrated therewith. The proposed cell is proved to attain the smallest area and disturb-free during the memory access. A shared bitline inverter is included to boost the read access speed at the minimal expense of area cost. Furthermore, a build-in self-test (BIST) circuit is included in the memory for testable R/W access. Based on the on-silicon measurements, the proposed 5T 4Kb SRAM shows superior performance in terms of power per access after normalization of the technology parameters.

The second topic discloses a leakage current sensor and compensation circuit, consisting of a SRAM cell model, a reference voltage circuit, a comparator and the compensation circuit. The circuit is implemented in the mentioned single-ended disturb-free 5T load-less 1Kb SRAM. When the leakage current seriously endangers the state of the data bit, the sensor will notify a warning message to the compensation circuit and wake it up to refresh the corresponding bit. This circuit is proven to reduce 27.86% of the power consumption and boost 36.68 % of the speed during read access based on all-PVT-corner post-layout simulations results.
目次 Table of Contents
摘要 i
Abstract ii
目錄 iii
圖次 v
表次 viii
第一章 概論 1
1.1 前言 1
1.2 靜態隨機存取記憶體相關介紹 3
1.2.2 雜訊邊際 3
1.2.3 無負載式4T靜態隨機存取記憶體單元 5
1.3 相關文獻與研究討論 9
1.3.1 靜態隨機存取記憶體單元 9
1.3.2 漏電流偵測與補償電路 14
1.4 研究動機 16
1.5 論文大綱 16
第二章 單端讀寫無擾動5T無負載式4Kb靜態隨機存取記憶體 17
2.1 簡介 17
2.2 5T無負載式靜態隨機存取記憶體之電路架構 17
2.3 5T無負載式靜態隨機存取記憶體之子電路設計 19
2.3.1 5T無負載式靜態隨機存取記憶體單元 19
2.3.2 行架構 22
2.3.3 行解碼器與列解碼器 25
2.3.4 控制電路 27
2.3.5 內建自我測試電路 27
2.4 電路模擬與預計規格 29
2.4.1 記憶體單元模擬分析 29
2.4.2 記憶體電路模擬分析 33
2.4.3 預計規格與效能比較 35
2.5 晶片佈局 37
2.6 晶片實作與測量結果 38
2.6.1 晶片量測結果與分析 39
2.6.2 預計規格與實測結果 42
2.7 結果與討論 45
第三章 記憶體的漏電流偵測及補償電路 46
3.1 簡介 46
3.2 漏電流偵測及補償電路架構 47
3.3 漏電流偵測及補償電路設計 47
3.3.1 靜態隨機存取記憶體單元模型 47
3.3.2 參考電壓電路 48
3.3.3 比較器電路 50
3.3.4 漏電流補償電路 52
3.4 電路模擬與效能比較 53
3.4.1 漏電流偵測及補償電路模擬結果 53
3.4.2 效能比較 56
3.5 晶片佈局 57
3.6 結果與討論 59
第四章 結論與未來工作 60
參考文獻 64
參考文獻 References
[1] http://www2.itis.org.tw/PptReport/PPTReport_Detail.aspx?rpno=2714
[2] E. Morifuji, T. Yoshida, M. Kanda, S. Matsuda, S. Yamada, and F. Matsuoka, “Supply and threshold-voltage trends for scaled logic and SRAM MOSFETs,” IEEE Transactions on Electron Devices, vol. 53, no. 6, pp. 1427-1432, June 2006.
[3] http://ares.ee.ncu.edu.tw/ares/index.php?op=research&item=research2
[4] http://www2.itis.org.tw/NetReport/NetReport_Detail.aspx?rpno=232255142
[5] E. Seevinck, F. J. List, and J. Lohstroh, “Static-noise margin analysis of MOS SRAM cells,” IEEE Journal of Solid-State Circuits, vol. SC-22, no. 5, pp. 748-754, Oct. 1987.
[6] C.-C. Wang, Y.-L. Tseng, H.-Y. Leo, and R. Hu, “A 4-Kb 500-MHz 4-T CMOS SRAM using low-VTHN bitline drivers and high-VTHP latches,” IEEE Transactions on Very Large Scale Integration Systems, vol. 12, no. 9, pp. 901-909, Sep. 2004.
[7] C.-C. Wang, C.-L. Lee, and W.-J. Lin, “A 4-Kb low power SRAM design with negative word-line scheme,” IEEE Transactions on Circuits & Systems I: Regular Papers, vol. 54, no. 5, pp. 1069-1076, May 2007.
[8] M.-L. Fan, Y.-S. Wu, V. P.-H. Hu, C.-Y. Hsieh, P. Su, and C.-T. Chuang, “Comparison of 4T and 6T FinFET SRAM cells for subthreshold operation considering variability-a model-based approach,” IEEE Transactions on Electronic Devices, vol. 58, no. 3, pp. 609-616, Mar. 2011.
[9] A. Pavlov and M. Sachdev, CMOS SRAM circuit design and parametric test in nano-scaled technologies-process-aware SRAM design and test, Baker & Taylor Books, 2008.
[10] R. Keerthi and C.-H. Chen, “Stability and static noise margin analysis of low-power SRAM,” in Proc. IEEE International Instrumentation and Measurement Technology Conference, pp. 1681-1684, May 2008.
[11] J. Wang, S. Nalam, and B.-H. Calhoun, “Analyzing static and dynamic write margin for nanometer SRAMs,” in Proc. IEEE International Symposium on Low Power Electronics and Design, pp. 129-134, Aug. 2008.
[12] M.-H. Tu, J.-Y. Lin, M.-C. Tsai, S.-J. Jou, and C.-T. Chuang, “Single-ended subthreshold SRAM with asymmetrical write/read-assist,” IEEE Transactions on Circuits & Systems I: Regular Papers, vol. 57, no. 12, pp. 3039-3047, Dec. 2010.
[13] M.-H. Tu, J.-Y. Lin, M.-C. Tsai, C.-Y. Lu, Y.-J. Lin, M.-H. Wang, H.-S. Huang, K.-D. Lee, W.-C. Shih, S.-J. Jou, and C.-T. Chuang, “A single-ended distrurb-free subthreshold SRAM with cross-point data-ware write wold-line structure, negative bit-line, and adaptive read operation timing tracing,” IEEE Journal of Solid-State Circuit, vol. 47, no. 6, pp. 1469-1480, June 2012.
[14] S. Birla, N. K. Shukla, D. Mukherjee, and R. K. Singh, “Leakage current reduction in 6T single cell SRAM at 90 nm technology,” in Proc. International Conference on Advances in Computer Engineering, pp. 292-294, June 2010.
[15] Y. Tongmu, “A leakage current limited robust SRAM for subthreshold/nearthreshold applications,” in Proc. International Conference on Computer Application and System Modeling, pp. V9 26-29, Oct. 2010.
[16] K. P. Lava and B. Mazhari, “Optimum supply voltages for minimization of leakage currents in SRAM in stand-by mode,” in Proc. International Conference on VLSI Design, pp. 627-631, Jan. 2007.
[17] K. Endo, S. I. O’uchi, Y. Ishikawa, Y. Liu, T. Matsukawa, K. Sakamoto, M. Masahara, J. Tsukada, K. Ishii, H. Yamauchi, and E. Suzuki, “Independent-double-gate FinFET SRAM for leakage current reduction,” IEEE Electron Device Letters, vol. 30, no. 7, pp. 757-759, July 2009.
[18] N. K. Shukla, D. Mukherjee, S. Birla, and R. K. Singh, “Leakage current minimization in deep-submicron conventional single cell SRAM,” in Proc. International Conference on Recent Trends in Information, Telecommunication and Computing, pp. 33-38, Mar. 2010.
[19] Y.-C. Lai and S.-Y. Huang, “X-calibration: a technique for combating excessive bitline leakage current in nanometer SRAM designs,” IEEE Journal of Solid-State Circuits, vol. 43, no. 9, pp. 1964-1971, Sept. 2008.
[20] A. P. Rajeev and S. P. Chandra, “Reduce leakage currents in low power SRAM cell structures,” in Proc. IEEE International Symposium on Parallel and Distributed Processing with Applications Workshops, pp. 33-38, May 2011.
[21] V. Sharma, S. Cosemans, M. Ashouei, J. Huisken, F. Catthoor, and W. Dehaene, “A 4.4 pJ/access 80 MHz, 128 Kbit variability resilient SRAM with multi-sized sense amplifier redundancy,” IEEE Journal of Solid-State Circuit, vol. 46, no. 10, pp. 2416-2430, June 2011.
[22] M.-H. Chang, Y.-T. Chiu, and W. Hwang, “Design and iso-area Vmin analysis of 9T subthreshold SRAM with bit-interleaving scheme in 65-nm CMOS,” IEEE Transactions on Circuits & Systems II: Express Briefs, vol. 59, no. 7, pp. 429-433, July 2012.
[23] R. J. Baker, “Voltage Reference,” in CMOS Circuit Design, Layout, and Simulation, 3rd Edition, John Wiley & Sons, Inc., 2010, ch. 23, sec. 1, pp. 746-754.
[24] P. E. Allen and D. R. Holberg, “Comparator,” in CMOS Analog Circuit Design, 2nd Edition, Oxford University Press, Inc., 2002, ch. 8, sec. 4, pp. 466-475.
[25] S.-Y. Chen and C.-C. Wang, “Single-ended disturb-free 5T loadless SRAM cell using 90 nm CMOS process,” in Proc. IEEE International Conference on IC Design & Technology, pp. 1-4, May 2012.
[26] C.-C. Wang, T.-H. Chen, and R. Hu, “A 4-Kb 667-MHz CMOS SRAM using dynamic threshold voltage wordline transistions,” in Proc. Southwest Symposium on Mixed-Signal Design, pp. 90-93, Feb. 2003.
[27] B.-D. Yang, “A low-power SRAM using bit-line charge-recycling for read and write operations,” IEEE Journal of Solid-State Circuits, vol. 43, no. 2, pp. 2173-2183, Oct. 2010.
[28] A.-T. Do, Z.-H. Kong, K.-S. Yeo, and Y.-S. Low, “Design and sensitivity analysis of a new current-mode sense amplifier for low-power SRAM,” IEEE Transactions on Very Large Scale Integration Systems, vol. 19, no. 2, pp. 196-204, Feb. 2011.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code