Responsive image
博碩士論文 etd-0610113-114950 詳細資訊
Title page for etd-0610113-114950
論文名稱
Title
適用於脊髓電刺激系統之16通道高壓電刺激產生器與脈衝頻率調變升壓轉換器
A 16-channel High-Voltage Stimulation Generator and A Pulse Frequency Modulation Boost Converter for Spinal Cord Stimulation Systems
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
83
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-06-27
繳交日期
Date of Submission
2013-07-10
關鍵字
Keywords
限電流機制、脈衝頻率調變升壓轉換器、脊髓電刺激系統、最小關閉時間單擊電路、電刺激波形產生器
stimulation waveform generator, current-limiting, minimum off time one-shot circuit, PFM boost converter, SCS
統計
Statistics
本論文已被瀏覽 5681 次,被下載 155
The thesis/dissertation has been browsed 5681 times, has been downloaded 155 times.
中文摘要
本論文以一脊髓電刺激系統設計所需之兩個週邊電路為研究主題:16通道高壓電刺激產生器,以及脈衝頻率調變升壓轉換器。

第一個研究主題為一16通道高壓電刺激產生器,係針對植入式脊椎電刺激系統,並搭配由五個電壓倍壓器疊接組成之電荷幫浦電路,將系統電壓升壓至高於10伏特,以符合脊髓電刺激系統之需求。而此16通道高壓電刺激產生器共採用16組電刺激波形產生器,以驅動相對應之16組電極,每一組電刺激波形產生器係由一高壓運算放大器與高壓類比開關組成。和現有之技術與市售產品相比,本設計能夠以更低之成本與更好的靈活性來達到脊髓電刺激系統之規格。整體電路以TSMC 0.25 µm CMOS high voltage mixed-signal based BCD 1P5M salicide 2.5/5/60 V製程實現,並以實際晶片量測驗證本設計之正確性。

第二個研究主題為一脈衝頻率調變升壓轉換器,其採用限電流機制與最小關閉時間單擊電路,以控制脈衝頻率調變之運作。此升壓轉換器電路係操作於非連續導通模式,並且利用脈衝頻率調變模式之控制,能夠達到更高的轉換效率、更小的輸出電壓漣波、與更好的調節率。整體電路同樣以TSMC 0.25 µm CMOS high voltage mixed-signal based BCD 1P5M salicide 2.5/5/60 V製程進行設計與模擬,量測結果顯示此升壓轉換器電路之輸入電壓範圍為2.5 ~ 4.2伏特,輸出電壓可穩定於12.1伏特。輸出電壓漣波約為130毫伏特,轉換效率為85 %。
Abstract
This thesis consists of two topics, i.e., a 16-channel high-voltage stimulation generator and a pulse frequency modulation (PFM) boost converter, which are mainly designed for spinal cord stimulation (SCS) system applications.

The first topic presents a 16-channel high-voltage stimulation generator to enlarge the stimulation signal swing on high-impedance electrodes of the SCS systems. Particularly, a charge pump composed of 5 cascaded voltage doublers is used to boost the core voltage (2.5 V) to higher than 10 V for the SCS system requirement. A total of 16 stimulation waveform generators are included to drive 16 corresponding sets of electrodes, where each generator is composed of high-voltage operational amplifier and high-voltage analog switch. Compared with existing reports and commercial products, the proposed 16-channel high-voltage stimulation generator attains better flexibility and lower cost to meet the SCS system specifications. This design is realized using TSMC 0.25 µm CMOS high voltage mixed-signal based BCD 1P5M salicide 2.5/5/60 V technology.

The second topic discloses a pulse frequency modulation (PFM) boost converter, particularly controlled by a current-limiting design and a minimum off time one-shot circuit. The boost converter is operated in a discontinuous conduction mode. The converter controlled by this PFM approach has higher efficiency, smaller output ripple, and better regulation. The converter is designed and simulated using TSMC 0.25 µm CMOS high voltage mixed-signal based BCD 1P5M salicide 2.5/5/60 V technology. Measurement results show that the converter can accommodate with an input voltage from 2.5 V to 4.2 V, and the boosted voltage is up to around 12.1 V. The output ripple is about 130 mV, and the efficiency is as high as 85%.
目次 Table of Contents
摘要 i
Abstract ii
圖次 v
表次 viii
第一章 概論 1
1.1 研究動機 1
1.2 相關文獻與研究討論 3
1.2.1 脊髓電刺激系統 3
1.2.2 植入式電刺激產生器 6
1.2.3 脈衝頻率調變升壓轉換器 8
1.3 論文大綱 10
第二章 16通道高壓電刺激產生器 11
2.1 簡介 11
2.2 16通道高壓電刺激產生器 12
2.3 16通道高壓電刺激產生器電路設計 14
2.3.1 電荷幫浦電路 14
2.3.2 電流式數位類比轉換器 17
2.3.3 16通道取樣電路 18
2.3.4 電刺激波形產生器 19
2.3.5 高壓運算放大器 21
2.3.6 高壓類比開關電路 22
2.4 電路模擬與預計規格 24
2.4.1 電路佈局後之模擬結果 24
2.4.2 電路佈局 29
2.4.3 預計規格 31
2.5 晶片實作與測量結果 32
2.5.1 晶片照相圖 32
2.5.2 晶片量測結果 33
2.5.3 效能比較 38
2.6 結果與討論 39
第三章 脈衝頻率調變升壓轉換器 40
3.1 簡介 40
3.2 脈衝頻率調變升壓轉換器 41
3.3 脈衝頻率調變升壓轉換器電路設計 44
3.3.1 高壓功率N型電晶體開關 44
3.3.2 閘極驅動電路 44
3.3.3 單擊電路 45
3.3.4 比較器電路 47
3.4 電路模擬與預計規格 48
3.4.1 電路佈局後之模擬結果 48
3.4.2 電路佈局 52
3.4.3 預計規格 53
3.5 晶片實作與測量結果 54
3.5.1 晶片照相圖 54
3.5.2 晶片量測結果 55
3.5.3 效能比較 61
3.6 結果與討論 63
第四章 結論與未來工作 65
參考文獻 68
參考文獻 References
[1] R. Melzack and P.-D. Wall, “Pain Mechanisms: A New Theory,” Science, vol. 150, no. 699, pp. 971-979, Nov. 1965.
[2] C.-H. Hsu, S.-B. Tseng, Y.-J. Hsieh, and C.-C. Wang, “One-time implantable spinal cord stimulation system prototype,” IEEE Trans. Biomed. Circuits Syst., vol. 5, no. 5, pp. 490-498, Oct. 2011.
[3] Medtronic, Inc., Networks, [Online]. Available: http://www.medtronic.com
[4] Boston Scientific Co., Networks, [Online]. Available: http://www.bostonscientific.com/home.bsci
[5] St. Jude Medical, Inc., Networks, [Online]. Available: http://www.sjm.com/
[6] S. Ethier, M. Sawan, E. M. Aboulhamid, and M. N. El-Gamal, “A ±9 V fully integrated CMOS electrode driver for high-impedance microstimulation,” in Proc. IEEE Inter. Midwest Symp. Circuit and Syst. (MWSCAS), pp. 192-195, Aug. 2009.
[7] P. Nadeau and M. Sawan, “A flexible high voltage biphasic current-controlled stimulator,” in Proc. IEEE Conf. Biomed. Circuit and Syst. (BioCAS), pp. 206-209, Nov. 2006.
[8] S. Ethier, M. Sawan, and M. N. El-Gamal, “A novel energy-efficient stimuli generator for very-high impedance intracortical microstimulation,” in Proc. IEEE Inter. Symp. Circuit and Syst. (ISCAS), pp. 961-964, May 2010.
[9] S. Ethier and M. Sawan, “Exponential current pulse generation for efficient very high-impedance multisite stimulation,” IEEE Trans. Biomed. Circuits Syst., vol. 5, no. 1, pp. 30-38, Feb. 2011.
[10] L.-Y. Lin, C.-C. Chen, and K.-T. Tang, “A 10V neuron stimulator in 0.18µm CMOS process with voltage clothing and folding voltage techniques,” in Proc. Inter. Symp. Bioelectronics and Bioinformatics (ISBB), pp. 13-16, Nov. 2011.
[11] C.-C. Chen and K.-T. Tang, “A 12V-500µA neuron stimulator with current calibration mechanism in 0.18µm standard CMOS process,” in Proc. IEEE Conf. Biomed. Circuit and Syst. (BioCAS), pp. 57-60, Nov. 2011.
[12] C.-Y. Lin, Y.-J. Li, and M.-D. Ker, “High-voltage-tolerant stimulator with adaptive loading consideration for electronic epilepsy prosthetic SoC in a 0.18-µm CMOS process,” in Proc. IEEE Inter. New Circuits and Syst. (NEWCAS), pp. 125-128, June 2012.
[13] Q. Xu, J. Li, W. Han, and H. Zhou, “A fully implantable stimulator with wireless power and data transmission for experimental use in epidural spinal cord stimulation,” in Proc. IEEE Inter. Engineering in Medicine and Biology Society (EMBC), pp. 7230-7233, Aug. 2011.
[14] Q. Xu, T. Huang, J.-P. He, Y. Wang, and H. Zhou, “A programmable multi-channel stimulator for array electrodes in transcutaneous electrical stimulation,” in Proc. IEEE Inter. Complex Medical Engineering (CME), pp. 652-656, May 2011.
[15] Q. Xu, J. He, Y. Ang, T. Xu, and J. Huang, “A versatile microprocessor-based multichannel stimulator for experimental use in epidural spinal cord stimulation,” in Proc. IEEE Inter. Neural Interface and Control, pp. 205-208, May 2005.
[16] E. Jalilian, L. Turner, G. Jullien, and M.-P. Mintchev, “Design of an implantable multichannel neurostimulator for restoring impaired gastrointestinal motility,” in Proc. 9th Annual Conference of the International Functional Electrical Stimulation Society, pp. 1-3, Sep. 2004.
[17] M. Ghovanloo, “Switched-capacitor based implantable low-power wireless microstimulating systems,” in Proc. IEEE Inter. Symp. Circuit and Syst. (ISCAS), pp. 2197-2200, May 2006.
[18] C.-H. Chang, H.-M. Chen, and Robert C. Chang, “A 2.3V CMOS monolithic, 84% efficiency PFM control DC-DC boost converter for whillte LEDs driver IC,” in Proc. IEEE Inter. Power Electronics and Drives Systems (PEDS), pp. 833-837, Nov. 2005.
[19] X. Liu, S.-X. Guo, S. Wang, F. Xu, G.-T. Du, and Y.-C. Chang, “Analysis and design of a high efficiency boost DC-DC converter based on pulse-frequency modulation,” in Proc. Inter. Symp. Integrated Circuits (ISIC), pp. 398-401, Sep. 2007.
[20] D. Ge and Z. Chen, “On-chip boost DC-DC converter in color OLED driver & controller ICs for mobile application,” in Proc. IEEE Asia Pacific Conf. (ASIC), pp. 459-463, Oct. 2005.
[21] R. Pelliconi, D. Iezzi, A. Baroni, M. Pasotti, and P. L. Rolandi, “Power efficient charge pump in deep submicron standard CMOS technology,” IEEE Journal of Solid-State Circuits, vol. 38, no. 6, pp. 1068-1071, June 2003.
[22] N. Li, Z.-C. Huang, M. Jiang, and Y. Inoue, “High efficiency four-phase all PMOS charge pump without body effects,” in Proc. IEEE Inter. Conf. on Communications, Circuits and Syst. (ICCCAS), pp. 1083-1087, May 2008.
[23] Z.-H. Hsieh, N.-X. Huang, M.-S. Shiau, H.-C. Wu, S.-Y. Yang, and D.-G. Liu, “A novel mixed-structure design for high-efficiency charge pump,” in Proc. IEEE Inter. Mixed Design of Integrated Circuits and Syst. (MIXDES), pp. 210-214, June 2009.
[24] R. J. Baker, CMOS Circuit Design, Layout, and Simulation, 3rd ed. Piscataway, NJ: IEEE Press, 2010.
[25] C.-H. Hsu, S.-B. Tseng, Y.-J Hsieh, and C.-C. Wang, “One-time implantable SCS system,” in Proc. Inter. Conf. on Bioinformatics and Biomedical Engineering (ICBBE), pp. 1-4, May 2011.
[26] T. S. Meloy and J. Martin, “Spinal cord stimulation,” U.S. Patent No. 6,169,924, Jan. 2, 2001.
[27] S.-H. Yang and C.-C. Wang, “Domestic Indirect Feedback Compensation of multiple-stage amplifiers for multiple-voltage level-converting amplification,” in Proc. IEEE Inter. Conf. on IC Design and Technology (ICICDT), pp. 1-4, May 2011.
[28] D. Harnack, W. Meissner, R. Paulat, H. Hilgenfeld, W.-D. Muller, C. Winter, R. Morgenstern, and A. Kupsch, “Continuous high-frequency stimulation in freely moving rats: development of an implantable microstimulation system,” Journal of Neuroscience Methods, vol. 167, no. 2, pp. 278-291, Jan. 2008.
[29] B. Sahu and G. A. Rincón-Mora, “An accurate, low-voltage, CMOS switching power supply with adaptive on-time pulse-frequency modulation (PFM) control,” IEEE Trans. on Circuits and Syst. I: Regular Papers, vol. 54, no. 2, pp. 312-321, Feb. 2007.
[30] ON Semiconductor, Inc., Networks, [Online]. Available: http://www.onsemi.cn/pub_link/Collateral/NCP1403-D.PDF
[31] C.-C. Wang, T.-C. Sung, Y.-H. Wu, C.-H. Hsu, and D. Shmilovitz, “A reconfigurable 16-channel HV stimulator ASIC for spinal cord stimulation systems,” IEEE Asia Pacific Conf. on Circuits and Syst. (APCCAS), pp. 300-303, Dec. 2012.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code