Responsive image
博碩士論文 etd-0610114-193319 詳細資訊
Title page for etd-0610114-193319
論文名稱
Title
甲氰咪胍和乙醯胺酚對人類醇及醛脫氫酶族之抑制 −以酶動力學機制方程式量化模擬其對酒精代謝的影響
Inhibition of Human Alcohol Dehydrogenases and Aldehyde Dehydrogenases by Cimetidine and Acetaminophen: Quantitative Simulations for the Inhibition of Ethanol Metabolism by Mechanism-based Kinetic Equations
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
137
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-05-29
繳交日期
Date of Submission
2014-07-10
關鍵字
Keywords
乙醇脫氫酶、乙醛脫氫酶、甲氰咪胍、乙醯胺酚、酒精代謝、初越代謝、代謝抑制
metabolism inhibition, alcohol metabolism, first-pass metabolism, acetaminophen, aldehyde dehydrogenase, cimetidine, alcohol dehydrogenase
統計
Statistics
本論文已被瀏覽 5721 次,被下載 791
The thesis/dissertation has been browsed 5721 times, has been downloaded 791 times.
中文摘要
醇脫氫酶族(alcohol dehydrogenase, ADH, family)及醛脫氫酶族(aldehyde dehydrogenase, ALDH, family)是人體酒精代謝主要的二個酶系統。甲氰咪胍(cimetidine)為組織胺第二型受體拮抗劑,廣泛用來治療消化性潰瘍;乙醯胺酚(acetaminophen)為廣泛使用的止痛退燒藥,二種藥物是相當常見的非處方用藥。過去文獻報告指出,甲氰咪胍或乙醯胺酚為胃ADH代謝乙醇氧化的抑制劑,服用會造成飲酒後血液中酒精濃度的提高;臨床上亦顯示大量服用乙醯胺酚同時與酒類併用,會造成嚴重肝細胞壞死。本研究重點在於探討(1)重組人類ADH族及ALDH族三同功酶ALDH1A1、ALDH2*1和ALDH3A1在生理條件下的甲氰咪胍或乙醯胺酚和乙醇/乙醛交互作用之酶動力學機制及常數,(2)依酶動力學機制及常數,建立人類ADH族及ALDH族三同功酶的甲氰咪胍或乙醯胺酚和乙醇/乙醛交互作用之數值型酶動力學方程式,(3)依各數值型酶動力學方程式,量化模擬分析生理條件下不同濃度之甲氰咪胍或乙醯胺酚對不同濃度乙醇/乙醛代謝之影響,(4)藉由電腦分子模擬系統探究甲氰咪胍或乙醯胺酚與醇脫氫酶和醛脫氫酶巨分子接合情形。
實驗結果顯示(1)甲氰咪胍對 ADH 族/ALDH族三同功酶的乙醇/乙醛氧化之抑制型和常數:第一類 ADH1A、ADH1B1、ADH1C1、ADH1C2及第四類 ADH4和第二類 ALDH2及第三類 ALDH3A1 為競爭性抑制;第一類 ADH1B2、ADH1B3、第二類ADH2及第三類ADH3和第一類ALDH1A1為非競爭性抑制。對ADH族的抑制常數範圍,Kis = 0.21−7.0 mM,Kii = 0.27−4.4 mM;對ALDH族的抑制常數範圍 Kis = 0.84−12 mM,Kii = 1.1 mM。乙醯胺酚對 ADH 族/ALDH族三同功酶的乙醇/乙醛氧化之抑制型和常數:第一類至第四類ADH和第二類 ALDH2為非競爭性抑制;第一類ALDH1A1 為競爭性抑制;第三類 ALDH3A1 為不抑制。對ADH族的抑制常數範圍,Kis = 0.9−20 mM,Kii = 1.4−19 mM;對ALDH族的抑制常數範圍 Kis = 0.96−3.0 mM,Kii = 2.2mM。(2)甲氰咪胍或乙醯胺酚抑制人類ADH/ALDH之乙醇/乙醛的氧化反應之動力學機制為可競爭酶-NAD+ /酶-NADH二元複合物的基質結合位。(3)量化模擬生理可達之藥物、乙醇和乙醛濃度條件下:甲氰咪胍(0.2 mM)對 ADH1B2/3 (在肝中)、ADH1C1/2和ADH2 (在肝和小腸中)及ADH4(在胃中)和ALDH3A1 (在上述三種中) 達抑制效果,其抑制範圍為5.1−44%;乙醯胺酚(0.5 mM)對ADH1B3、ADH1C1/2、ADH2及ADH4和ALDH1A1及ALDH2 (在上述三種中)達抑制效果,其抑制範圍為8.3−33%。(4)分子模擬藥物與醇脫氫酶接合,第二類ADH2之殘基Y-94和F-146及第四類 ADH4之殘基F-93和M-140可穩定甲氰咪胍或乙醯胺酚接合於酶-NAD+ 二元複合物的基質結合位而可顯著影響乙醇氧化。所以甲氰咪胍或乙醯胺酚能有效抑制胃黏膜細胞及肝細胞的酒精初越代謝(first-pass metabolism; FPM),造成乙醇生體可用性(bioavailability)的增加,可影響酒精之器官傷害和酒後駕車的安全。
Abstract
Human alcohol dehydrogenase (ADH) family and aldehyde dehydrogenase (ALDH) isozymes are two principal enzyme systems responsible for alcohol metabolism in humans. Cimetidine, an H2-receptor antagonist for peptic ulcers treatment, and acetaminophen for antipyretic and analgesic medications, are two widely used over-the-counter drugs. It has been reported that cimetidine or acetaminophen can elevate blood ethanol level after ingestion of alcohol and might affect bioavailability of ethanol by inhibiting gastric ADH. The purpose of this dissertation is to (1) characterize kinetic properties of recombinant human ADH/ALDH isozymes/allozymes, (2) determine inhibition patterns and inhibition constants for ethanol/acetaldehyde oxidation by cimetidine or acetaminophen, (3) quantitatively simulate in vivo inhibition of ethanol/acetaldehyde oxidation by the drug, and (4) model the drug binding to the binary complexes of NAD+ with ADH/ALDH X-ray structure for auxiliary analysis of inhibition pattern.
The investigations were done at near physiological pH 7.5 and with a cytoplasmic coenzyme concentration of 0.5 mM NAD+. Cimetidine acted as a competitive inhibitor against ethanol oxidation for ADH1A, ADH1B1,ADH1C1, ADH1C2 and ADH4 as well as against acetaldehyde oxidation for ALDH2 and ALDH3A1, but as a noncompetitive inhibitor against the substrate for ADH1B2, ADH1B3, ADH2, ADH3 and ALDH1A1. The inhibition constants of cimetidine for ADH isozymes/allozymes were range of Kis = 0.21−7.0 mM, Kii = 0.27−4.4 mM and that for ALDH isozymes were Kis = 0.84−12 mM, Kii = 1.1 mM. Acetaminophen acted as a noncompetitive inhibitor for all ADH enzymes and ALDH2, with inhibition constants range of Kis = 0.9−20 mM, Kii = 1.4−19 mM for ADHs and Kis = 3.0 mM, Kii = 2.2 mM for ALDH2, but as a competitive inhibitor for ALDH1A1, with Kis = 0.96 mM, and existed no inhibition for ALDH3A1. The metabolic interactions between cimetidine or acetaminophen and ethanol/acetaldehyde were assessed by computer simulation using the inhibition equations and the determined kinetic constants. At physiologically reachable drug level and relevant concentrations of ethanol and acetaldehyde in target tissues, cimetidine (0.2 mM) could inhibit the activities of ADH1B2/3 in the liver, ADH1C1/2 and ADH2 in the liver and small intestine, ADH4 in the stomach, and ALDH3A1 in all three tissues, with inhibition range of 5.1−44%, and acetaminophen (0.5 mM) also could inhibit the activities of ADH1C allozymes (12−26%), ADH2 (14−28%), ADH4 (15−31%), and ALDH1A1 (16−33%) and ALDH2 (8.3−19%) in three tissues. With the assistance of computer molecular modellings showed that the residues of amino acid of ADH2, Y-94 and F-146, and that of ADH4, F-93 and M-140, were the key residues for jostling cimetidine or acetaminophen against ethanol reaction with zinc and nicotinamide ring of NAD+. The results suggest that inhibition by cimetidine or acetaminophen of hepatic and gastrointestinal FPM (first-pass metabolism) of ethanol through ADH and ALDH pathways might become significant at higher, subtoxic levels of the drug and thus ethanol bioavailability may be significantly increased after ingesting both the drug and alcoholic beverages. Elevation of alcohol availability may enhance the potential toxicity and impair the driving performance.
目次 Table of Contents
中文摘要……………i
英文摘要……………iii
內容目錄……………v
表目錄……………viii
圖目錄……………ix
附錄目錄……………xi
縮寫與符號說明……………xii
I、前 言……………1
壹、人類醇脫氫酶族……………2
一、第一類醇脫氫酶……………3
二、第二類醇脫氫酶……………5
三、第三類醇脫氫酶……………5
四、第四類醇脫氫酶……………6
五、第五類醇脫氫酶……………6
貳、人類醛脫氫酶族……………7
ALDH 基因巨族(superfamily)……………7
一、第一類醛脫氫酶……………8
二、第二類醛脫氫酶……………9
三、第三類醛脫氫酶……………11
四、其它類醛脫氫酶……………11
參、酒精初越代謝……………12
肆、藥物對酒精代謝之影響……………14
伍、研究主題……………14
II、材料與方法……………15
壹、實驗材料……………15
一、化學藥品……………15
二、試劑配方……………16
三、主要儀器……………16
四、載體與大腸桿菌宿主品系……………17
五、其他用品……………17
貳、實驗方法……………17
一、人類重組醇脫氫酶族的誘導表現及純化……………17
二、人類重組ALDH族之純化……………20
三、電泳……………21
四、蛋白質染色 ……………22
五、ADH pI之測定……………22
六、蛋白質濃度之測定……………23
七、ADH活性之測定……………23
八、比活性之計算……………23
九、動力學測定及常數分析……………23
十、X-ray 繞射晶體結構之分析和藥物與分子對接模擬……………24
III、實驗結果……………25
壹、重組人類 ADH 和ALDH族之動力學特性……………25
一、重組人類 ADH 族之動力學常數……………25
二、重組人類 ALDH 族之動力學常數……………26
貳、甲氰咪胍對重組人類ADH和ALDH族之死巷抑制實驗……………26
一、重組人類ADH族之死巷抑制實驗……………26
二、重組人類ALDH族之死巷抑制實驗……………28
參、乙醯胺酚對重組人類ADH和ALDH族之死巷抑制實驗……………28
一、重組人類ADH族之死巷抑制實驗……………28
二、重組人類ALDH族之死巷抑制實驗……………31
肆、數值化分析生理條件下甲氰咪胍、乙醯胺酚對重組人類ADH和ALDH族酒精代謝之影響 ……………31
一、甲氰咪胍對重組人類ADH族乙醇氧化和ALDH族乙醛氧化之影響……………31
二、乙醯胺酚對重組人類ADH族乙醇氧化和ALDH族乙醛氧化之影響……………33
伍、人類ADH族和ALDH族三維X-ray繞射晶體之基質結合位結構分析……………34
一、人類 ADH isozymes/allozymes之基質結合位結構特徵……………35
二、ALDH isozymes之基質結合位結構特徵……………36
陸、甲氰咪胍、乙醯胺酚對人類ADH族和ALDH族之晶體分子對接模擬……………37
一、甲氰咪胍和乙醯胺酚與ADH1A 之分子對接……………38
二、甲氰咪胍和乙醯胺酚與ADH1B1 之分子對接……………38
三、甲氰咪胍和乙醯胺酚與ADH1C2之分子對接……………38
四、甲氰咪胍和乙醯胺酚與ADH2之分子對接……………38
五、甲氰咪胍和乙醯胺酚與ADH4之分子對接……………39
六、甲氰咪胍和乙醯胺酚與綿羊ALDH1A1之分子對接……………39
七、甲氰咪胍和乙醯胺酚與ALDH2之分子對接……………39
IV、討論……………40
壹、甲氰咪胍和乙醯胺酚與人類酒精代謝之酶動力學的比較……………40
一、對ADH族乙醇氧化的差異……………40
二、對ALDH族乙醛氧化的差異……………41
貳、甲氰咪胍和乙醯胺酚與人類酒精代謝之醇/醛脫氫酶對接的比較…………… 41
一、對ADH族對接的差異 ……………41
二、對ALDH族對接的差異 ……………42
參、甲氰咪胍和乙醯胺酚與人類酒精代謝抑制之數值模擬的比較……………44
一、對ADH族乙醇氧化抑制的差異……………44
二、對ALDH族乙醛氧化抑制的差異……………45
肆、甲氰咪胍和乙醯胺酚對人類酒精初越代謝的影響……………45
V、結論……………47
VI、參考文獻……………50
VII、圖表……………62
VIII、附錄(A~P)……………99
參考文獻 References
Agarwal, D. P. (2001). Genetic polymorphisms of alcohol metabolizing enzymes. Pathol. Biol. (Paris). 49, 703–709.
Ambroziak, W., Izaguirre, G., and Pietruszko, R. (1999). Metabolism of retinaldehyde and other aldehydes in soluble extracts of human liver and kidney. J. Biol. Chem. 274, 33366–33373.
Ammon, E., Schäfer, C., Hofmann, U., and Klotz, U. (1996). Disposition and first-pass metabolism of ethanol in humans: is it gastric or hepatic and does it depend on gender? Clin. Pharmacol. Ther. 59, 503–513.
Anonymous. (1989). Nomenclature of mammalian aldehyde dehydrogenases. Prog. Clin. Biol. Res. 290, xix–xxi.
Anvret, A., Ran, C., Westerlund, M., Gellhaar, S., Lindqvist, E., Pernold, K., Lundströmer, K., Duester, G., Felder, M. R., Galter, D., and Belin, A. C. (2012). Adh1 and Adh1/4 knockout mice as possible rodent models for presymptomatic Parkinson’s disease. Behav. Brain Res. 227, 252–257.
Auld, D. S., and Bergman, T. (2008). Medium- and short-chain dehydrogenase/reductase gene and protein families : The role of zinc for alcohol dehydrogenase structure and function. Cell. Mol. Life Sci. 65, 3961–3970.
Baraona, E., Abittan, C. S., Dohmen, K., Moretti, M., Pozzato, G., Chayes, Z. W., Schaefer, C., and Lieber, C. S. (2001). Gender differences in pharmacokinetics of alcohol. Alcohol. Clin. Exp. Res. 25, 502–750.
Baraona, E., Yokoyama, A., Ishii, H., Hernández-Muñoz, R., Takagi, T., Tsuchiya, M., and Lieber, C. S. (1991). Lack of alcohol dehydrogenase isoenzyme activities in the stomach of Japanese subjects. Life Sci. 49, 1929–1934.
Beisswenger, T. B., Holmquist, B., and Vallee, B. L. (1985). chi-ADH is the sole alcohol dehydrogenase isozyme of mammalian brains: implications and inferences. Proc. Natl. Acad. Sci. U. S. A. 82, 8369–9373.
Beretta, M., Gruber, K., Kollau, A., Russwurm, M., Koesling, D., Goessler, W., Keung, W. M., Schmidt, K., and Mayer, B. (2008). Bioactivation of nitroglycerin by purified mitochondrial and cytosolic aldehyde dehydrogenases. J. Biol. Chem. 283, 17873–17880.
Bosron, W. F., Crabb, D. W., and Li, T. K. (1983). Relationship between kinetics of liver alcohol dehydrogenase and alcohol metabolism. Pharmacol. Biochem. Behav. 18 Suppl 1, 223–227.
Bosron, W. F., Ehrig, T., and Li, T. K. (1993). Genetic factors in alcohol metabolism and alcoholism. Semin. Liver Dis. 13, 126–35.
Brooks, P. J., Enoch, M. A., Goldman, D., Li, T. K., and Yokoyama, A. (2009). The alcohol flushing response: an unrecognized risk factor for esophageal cancer from alcohol consumption. PLoS Med. 6, e50.
Cederbaum, A. I. (2012). Alcohol metabolism. Clin. Liver Dis. 16, 667–685.
Chen, Y. C., Peng, G. S., Tsao, T. P., Wang, M. F., Lu, R. B., and Yin, S. J. (2009a). Pharmacokinetic and pharmacodynamic basis for overcoming acetaldehyde-induced adverse reaction in Asian alcoholics, heterozygous for the variant ALDH2*2 gene allele. Pharmacogenet. Genomics 19, 588–599.
Chen, Y. C., Peng, G. S., Wang, M. F., Tsao, T. P., and Yin, S. J. (2009b). Polymorphism of ethanol-metabolism genes and alcoholism: correlation of allelic variations with the pharmacokinetic and pharmacodynamic consequences. Chem. Biol. Interact. 178, 2–7.
Chen, Y., Koppaka, V., Thompson, D. C., and Vasiliou, V. (2012). Focus on molecules: ALDH1A1: from lens and corneal crystallin to stem cell marker. Exp. Eye Res. 102, 105–106.
Chen, Y., Thompson, D. C., Koppaka, V., Jester, J. V, and Vasiliou, V. (2013). Ocular aldehyde dehydrogenases: protection against ultraviolet damage and maintenance of transparency for vision. Prog. Retin. Eye Res. 33, 28–39.
Chiang, C. P., Jao, S. W., Lee, S. P., Chen, P. C., Chung, C. C., Lee, S. L., Nieh, S., and Yin, S. J. (2012a). Expression pattern, ethanol-metabolizing activities, and cellular localization of alcohol and aldehyde dehydrogenases in human large bowel: association of the functional polymorphisms of ADH and ALDH genes with hemorrhoids and colorectal cancer. Alcohol 46, 37–49.
Chiang, C. P., Wu, C. W., Lee, S. P., Ho, J. L., Lee, S. L., Nieh, S., and Yin, S. J. (2012b). Expression pattern, ethanol-metabolizing activities, and cellular localization of alcohol and aldehyde dehydrogenases in human small intestine. Alcohol. Clin. Exp. Res. 36, 2047–2058.
Chiang, C.-P., Jao, S.-W., Lee, S.-P., Chen, P.-C., Chung, C.-C., Lee, S.-L., Nieh, S., and Yin, S.-J. (2012). Expression pattern, ethanol-metabolizing activities, and cellular localization of alcohol and aldehyde dehydrogenases in human large bowel: association of the functional polymorphisms of ADH and ALDH genes with hemorrhoids and colorectal cancer. Alcohol 46, 37–49.
Cleland, W. W. (1979). Statistical analysis of enzyme kinetic data. Methods Enzymol. 63, 103–138.
Crabb, D. W., Matsumoto, M., Chang, D., and You, M. (2004). Overview of the role of alcohol dehydrogenase and aldehyde dehydrogenase and their variants in the genesis of alcohol-related pathology. Proc. Nutr. Soc. 63, 49–63.
Dayhoff, M. O. (1976). The origin and evolution of protein superfamilies. Fed. Proc. 35, 2132–2138.
Deitrich, R. A., Petersen, D., and Vasiliou, V. (2007). Removal of acetaldehyde from the body. Novartis Found. Symp. 285, 23–40; discussion 40–51, 198–9.
Deitrich, R., Zimatkin, S., and Pronko, S. (2006). Oxidation of ethanol in the brain and its consequences. Alcohol Res. Health 29, 266–273.
Deltour, L., Foglio, M. H., and Duester, G. (1999). Metabolic deficiencies in alcohol dehydrogenase Adh1, Adh3, and Adh4 null mutant mice. Overlapping roles of Adh1 and Adh4 in ethanol clearance and metabolism of retinol to retinoic acid. J. Biol. Chem. 274, 16796–16801.
Deng, S., Yang, X., Lassus, H., Liang, S., Kaur, S., Ye, Q., Li, C., Wang, L.-P., Roby, K. F., Orsulic, S., Connolly, D. C., Zhang, Y., Montone, K., Bützow, R., Coukos, G., and Zhang, L. (2010). Distinct expression levels and patterns of stem cell marker, aldehyde dehydrogenase isoform 1 (ALDH1), in human epithelial cancers. PLoS One 5, e10277.
Dong, Y. J., Peng, T. K., and Yin, S. J. (1996). Expression and activities of class IV alcohol dehydrogenase and class III aldehyde dehydrogenase in human mouth. Alcohol 13, 257–262.
Duester, G. (1998). Alcohol dehydrogenase as a critical mediator of retinoic acid synthesis from vitamin A in the mouse embryo. J. Nutr. 128, 459S–462S.
Duester, G., Farrés, J., Felder, M. R., Holmes, R. S., Höög, J. O., Parés, X., Plapp, B. V, Yin, S. J., and Jörnvall, H. (1999). Recommended nomenclature for the vertebrate alcohol dehydrogenase gene family. Biochem. Pharmacol. 58, 389–395.
Duester, G., Farres, J., Felder, M. R., Holmes, R. S., Hoog, J. O., Pares, X., Plapp, B. V., Yin, S. J., and Jornvall, H. (1999). Recommended nomenclature for the vertebrate alcohol dehydrogenase gene family. Biochem. Pharmacol. 58, 389–395.
Edenberg, H. J., and Bosron, W. F. (2010). Alcohol dehydrogenases. In C. A. McQueen (Ed.), Comprehensive Toxicology, Vol. 4 (pp. 111–130). Oxford: Academic Press.
Edenberg, H. J., and Foroud, T. (2006). The genetics of alcoholism: identifying specific genes through family studies. Addict. Biol. 11, 386–96.
Engeland, K., and Maret, W. (1993). Extrahepatic, differential expression of four classes of human alcohol dehydrogenase. Biochem. Biophys. Res. Commun. 193, 47–53.
Estey, T., Piatigorsky, J., Lassen, N., and Vasiliou, V. (2007). ALDH3A1: a corneal crystallin with diverse functions. Exp. Eye Res. 84, 3–12.
Estonius, M., Svensson, S., and Höög, J. O. (1996). Alcohol dehydrogenase in human tissues: localisation of transcripts coding for five classes of the enzyme. FEBS Lett. 397, 338–342.
Farrés, J., Moreno, A., Crosas, B., Peralba, J. M., Allali-Hassani, A., Hjelmqvist, L., Jörnvall, H., and Parés, X. (1994). Alcohol dehydrogenase of class IV (sigma sigma-ADH) from human stomach. cDNA sequence and structure/function relationships. Eur. J. Biochem. 224, 549–557.
Forte-McRobbie, C. M., and Pietruszko, R. (1986). Purification and characterization of human liver “high Km” aldehyde dehydrogenase and its identification as glutamic gamma-semialdehyde dehydrogenase. J. Biol. Chem. 261, 2154–2163.
Ghenbot, G., and Weiner, H. (1992). Purification of liver aldehyde dehydrogenase by p-hydroxyacetophenone-sepharose affinity matrix and the coelution of chloramphenicol acetyl transferase from the same matrix with recombinantly expressed aldehyde dehydrogenase. Protein Expr. Purif. 3, 470–478.
Han, C. L., Liao, C. S., Wu, C. W., Hwong, C. L., Lee, A. R., and Yin, S. J. (1998). Contribution to first-pass metabolism of ethanol and inhibition by ethanol for retinol oxidation in human alcohol dehydrogenase family−implications for etiology of fetal alcohol syndrome and alcohol-related diseases. Eur. J. Biochem. 254, 25–31.
Haseba, T., Duester, G., Shimizu, A., Yamamoto, I., Kameyama, K., and Ohno, Y. (2006). In vivo contribution of Class III alcohol dehydrogenase (ADH3) to alcohol metabolism through activation by cytoplasmic solution hydrophobicity. Biochim. Biophys. Acta 1762, 276–283.
Haselbeck, R. J., and Duester, G. (1997). Regional restriction of alcohol/retinol dehydrogenases along the mouse gastrointestinal epithelium. Alcohol. Clin. Exp. Res. 21, 1484–1490.
Hempel, J., Kaiser, R., and Jörnvall, H. (1984). Human liver mitochondrial aldehyde dehydrogenase: a C-terminal segment positions and defines the structure corresponding to the one reported to differ in the Oriental enzyme variant. FEBS Lett. 173, 367–373.
Hempel, J., Kaiser, R., and Jörnvall, H. (1985). Mitochondrial aldehyde dehydrogenase from human liver. Primary structure, differences in relation to the cytosolic enzyme, and functional correlations. Eur. J. Biochem. 153, 13–28.
Higuchi, S., Matsushita, S., Murayama, M., Takagi, S., and Hayashida, M. (1995). Alcohol and aldehyde dehydrogenase polymorphisms and the risk for alcoholism. Am. J. Psychiatry 152, 1219–1221.
Homann, N., König, I. R., Marks, M., Benesova, M., Stickel, F., Millonig, G., Mueller, S., and Seitz, H. K. (2009). Alcohol and colorectal cancer: the role of alcohol dehydrogenase 1C polymorphism. Alcohol. Clin. Exp. Res. 33, 551–556.
Höög, J. O. (1991). Mammalian class II alcohol dehydrogenase: species and class comparisons at genomic and protein levels. Adv. Exp. Med. Biol. 284, 285–922.
Höög, J. O., and Östberg, L. J. (2011). Mammalian alcohol dehydrogenases: a comparative investigation at gene and protein levels. Chem. Biol. Interact. 191, 2–7.
Höög, J. O., Strömberg, P., Hedberg, J. J., and Griffiths, W. J. (2003). The mammalian alcohol dehydrogenases interact in several metabolic pathways. Chem. Biol. Interact. 143-144, 175–181.
Höög, J. O., von Bahr-Lindström, H., Hedén, L. O., Holmquist, B., Larsson, K., Hempel, J., Vallee, B. L., and Jörnvall, H. (1987). Structure of the class II enzyme of human liver alcohol dehydrogenase: combined cDNA and protein sequence determination of the pi subunit. Biochemistry 26, 1926–1932.
Hsu, L. C., and Chang, W. C. (1991). Cloning and characterization of a new functional human aldehyde dehydrogenase gene. J. Biol. Chem. 266, 12257–12265.
Hurley, T. D., Bosron, W. F., Stone, C. L., and Amzel, L. M. (1994). Structures of three human beta alcohol dehydrogenase variants. Correlations with their functional differences. J. Mol. Biol. 239, 415–429.
Hwu, H. G., Yeh, E. K., Yeh, Y. L., and Chang, L. Y. (1988). Alcoholism by Chinese diagnostic interview schedule: a prevalence and validity study. Acta Psychiatr. Scand. 77, 7–13.
Jackson, B., Brocker, C., Thompson, D. C., Black, W., Vasiliou, K., Nebert, D. W., and Vasiliou, V. (2011). Update on the aldehyde dehydrogenase gene (ALDH) superfamily. Hum. Genomics 5, 283–303.
Janson, C.A. and Cleland, W.W. (1974) The kinetic mechanism of glycerokinase. J. Biol. 239, 415-429.
Jelski, W., Orywal, K., and Szmitkowski, M. (2008). [Effects of H2-blockers on alcohol dehydrogenase (ADH) activity]. Pol. Merkur. Lekarski 25, 531–3.
Jones, A. W. (2010). Evidence-based survey of the elimination rates of ethanol from blood with applications in forensic casework. Forensic Sci. Int. 200, 1–20.
Jörnvall, H., and Höög, J. O. (1995). Nomenclature of alcohol dehydrogenases. Alcohol 30, 153–161.
Kaiser, R., Holmquist, B., Hempel, J., Vallee, B. L., and Jörnvall, H. (1988). Class III human liver alcohol dehydrogenase: a novel structural type equidistantly related to the class I and class II enzymes. Biochemistry 27, 1132–1140.
Kalant, H. (1996). Pharmacokinetics of ethanol: absorption, distribution, and elimination. In H. Begleiter, & B. Kissin (Eds.), The Pharmacology of Alcohol and Alcohol Dependence (pp. 15–58). Oxford: Oxford University Press.
Kaphalia, B. S., and Ansari, G. A. (2001). Fatty acid ethyl esters and ethanol-induced pancreatitis. Cell. Mol. Biol. (Noisy-le-grand). 47 Online, OL173–179.
Koppaka, V., and Thompson, D. (2012). Aldehyde dehydrogenase inhibitors: a comprehensive review of the pharmacology, mechanism of action, substrate specificity, and clinical application. Pharmacol. 64, 520–539.
Kuroda, T., Hirohashi, Y., Torigoe, T., Yasuda, K., Takahashi, A., Asanuma, H., Morita, R., Mariya, T., Asano, T., Mizuuchi, M., Saito, T., and Sato, N. (2013). ALDH1-high ovarian cancer stem-like cells can be isolated from serous and clear cell adenocarcinoma cells, and ALDH1 high expression is associated with poor prognosis. PLoS One 8, e65158.
Lai, C.-L., Yao, C.-T., Chau, G.-Y., Yang, L.-F., Kuo, T.-Y., Chiang, C.-P., and Yin, S.-J. (2014). Dominance of the inactive asian variant over activity and protein contents of mitochondrial aldehyde dehydrogenase 2 in human liver. Alcohol. Clin. Exp. Res. 38, 44–50.
Lee, S. L., Chau, G. Y., Yao, C. T., Wu, C. W., and Yin, S. J. (2006). Functional assessment of human alcohol dehydrogenase family in ethanol metabolism: significance of first-pass metabolism. Alcohol. Clin. Exp. Res. 30, 1132–1142.
Lee, S. L., Wang, M. F., Lee, A. I., and Yin, S. J. (2003). The metabolic role of human ADH3 functioning as ethanol dehydrogenase. FEBS Lett. 544, 143–147.
Lee, S.-L., Höög, J.-O., and Yin, S.-J. (2004). Functionality of allelic variations in human alcohol dehydrogenase gene family: assessment of a functional window for protection against alcoholism. Pharmacogenetics 14, 725–732.
Lee, S.-L., Shih, H.-T., Chi, Y.-C., Li, Y.-P., and Yin, S.-J. (2011). Oxidation of methanol, ethylene glycol, and isopropanol with human alcohol dehydrogenases and the inhibition by ethanol and 4-methylpyrazole. Chem. Biol. Interact. 191, 26–31.
Lee, S.-L., Wang, M.-F., Lee, A.-I., and Yin, S.-J. (2003). The metabolic role of human ADH3 functioning as ethanol dehydrogenase. FEBS Lett. 544, 143–147.
Levitt, M. D., and Levitt, D. G. (1994). The critical role of the rate of ethanol absorption in the interpretation of studies purporting to demonstrate gastric metabolism of ethanol. J. Pharmacol. Exp. Ther. 269, 297–304.
Li, T. K., Bosron, W. F., Dafeldecker, W. P., Lange, L. G., and Vallee, B. L. (1977). Isolation of pi-alcohol dehydrogenase of human liver: is it a determinant of alcoholism? Proc. Natl. Acad. Sci. U. S. A. 74, 4378–4381.
Lieber, C. S. (2004). The discovery of the microsomal ethanol oxidizing system and its physiologic and pathologic role. Drug Metab. Rev. 36, 511–529.
Lieber, C. S., Gentry, R. T., and Baraona, E. (1994). First pass metabolism of ethanol. Alcohol Alcohol Suppl. 2, 163–169.
Liu, L., Hausladen, A., Zeng, M., Que, L., Heitman, J., and Stamler, J. S. (2001). A metabolic enzyme for S-nitrosothiol conserved from bacteria to humans. Nature 410, 490–494.
Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265–275.
Marchitti, S. A., Brocker, C., Stagos, D., and Vasiliou, V. (2008). Non-P450 aldehyde oxidizing enzymes: the aldehyde dehydrogenase superfamily. Expert Opin. Drug Metab. Toxicol. 4, 697–720.
Matsumoto, M., Yokoyama, H., Suzuki, H., Shiraishi-Yokoyama, H., and Hibi, T. (2005). Retinoic acid formation from retinol in the human gastric mucosa: role of class IV alcohol dehydrogenase and its relevance to morphological changes. Am. J. Physiol. Gastrointest. Liver Physiol. 289, G429–433.
Molotkov, A., and Duester, G. (2003). Genetic evidence that retinaldehyde dehydrogenase Raldh1 (Aldh1a1) functions downstream of alcohol dehydrogenase Adh1 in metabolism of retinol to retinoic acid. J. Biol. Chem. 278, 36085–90.
Moreno, A., and Parés, X. (1991). Purification and characterization of a new alcohol dehydrogenase from human stomach. J. Biol. Chem. 266, 1128–1133.
Mori, O., Haseba, T., Kameyama, K., Shimizu, H., Kudoh, M., Ohaki, O., Arai, Y., Yamazaki, M., and Asano, G. (2000). Histological distribution of class III alcohol dehydrogenase in human brain. Brain Res. 852, 186–190.
Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., and Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 30, 2785–2791.
Murphy, T. C., Arntzen, R., and Picklo, M. J. (2005). Nitrate-based vasodilators inhibit multiple vascular aldehyde dehydrogenases. Cardiovasc. Toxicol. 5, 321–32.
Niederreither, K., and Dollé, P. (2008). Retinoic acid in development: towards an integrated view. Nat. Rev. Genet. 9, 541–553.
Pappa, A., Brown, D., Koutalos, Y., DeGregori, J., White, C., and Vasiliou, V. (2005). Human aldehyde dehydrogenase 3A1 inhibits proliferation and promotes survival of human corneal epithelial cells. J. Biol. Chem. 280, 27998–28006.
Parés, X., Farrés, J., and Vallee, B. L. (1984). Organ specific alcohol metabolism: placental chi-ADH. Biochem. Biophys. Res. Commun. 119, 1047–1055.
Persson, B., Zigler, J. S., and Jörnvall, H. (1994). A super-family of medium-chain dehydrogenases/reductases (MDR). Sub-lines including zeta-crystallin, alcohol and polyol dehydrogenases, quinone oxidoreductase enoyl reductases, VAT-1 and other proteins. Eur. J. Biochem. 226, 15–22.
Riordan, S. M., and Williams, R. (2002). Alcohol exposure and paracetamol-induced hepatotoxicity. Addict. Biol. 7, 191–206.
Roine, R., Rosman, A., Gentry, R. T., Baraona, E., and Lieber, C. S. (1991). Effects of aspirin and acetaminophen on gastric ethanol metabolism in men and women. Gastroenterology 100, A789.
Seitz, H. K., and Homann, N. (2007). The role of acetaldehyde in alcohol-associated cancer of the gastrointestinal tract. Novartis Found. Symp. 285, 110–9; discussion 119–4, 198–199.
Sládek, N. E. (2003). Human aldehyde dehydrogenases: potential pathological, pharmacological, and toxicological impact. J. Biochem. Mol. Toxicol. 17, 7–23.
Sládek, N. E., Low, J. E., and Landkamer, G. J. (1985). Collateral sensitivity to cross-linking agents exhibited by cultured L1210 cells resistant to oxazaphosphorines. Cancer Res. 45, 625–629.
Sund, H. and Theorell, H. (1963) The Enzymes (2nd ed.) 7, 23-83.
Vallee, B. L., and Bazzone, T. J. (1983). Isozymes of human liver alcohol dehydrogenase. Isozymes Curr. Top. Biol. Med. Res. 8, 219–244.
Stone, C. L., Hurley, T. D., Peggs, C. F., Kedishvili, N. Y., Davis, G. J., Thomasson, H. R., Li, T. K., and Bosron, W. F. (1995). Cimetidine inhibition of human gastric and liver alcohol dehydrogenase isoenzymes: identification of inhibitor complexes by kinetics and molecular modeling. Biochemistry 34, 4008–4014.
Vasiliou, V., Pappa, A., and Petersen, D. R. (2000). Role of aldehyde dehydrogenases in endogenous and xenobiotic metabolism. Chem. Biol. Interact. 129, 1–19.
Voss, N. R., and Gerstein, M. (2010). 3V: cavity, channel and cleft volume calculator and extractor. Nucleic Acids Res. 38, W555–5562.
Wang, X., Sheikh, S., Saigal, D., Robinson, L., and Weiner, H. (1996). Heterotetramers of human liver mitochondrial (class 2) aldehyde dehydrogenase expressed in Escherichia coli. A model to study the heterotetramers expected to be found in Oriental people. J. Biol. Chem. 271, 31172–31178.
Weiner, H., and Ho, K. K. (2007). Can we change the rate-limiting step of an aldehyde dehydrogenase? In H. Weiner, E. Maser, R. Lindahl, & B. V. Plapp (Eds.), Enzymology and Molecular Biology of Carbonyl Metabolism 13 (pp. 3–8). West Lafayette: Purdue University Press.
Xiao, Q., Weiner, H., and Crabb, D. W. (1996). The mutation in the mitochondrial aldehyde dehydrogenase (ALDH2) gene responsible for alcohol-induced flushing increases turnover of the enzyme tetramers in a dominant fashion. J. Clin. Invest. 98, 2027–2032.
Yang, M.-J. (2002). The Chinese drinking problem: a review of the literature and its implication in a cross-cultural study. Kaohsiung J. Med. Sci. 18, 543–550.
Yao, C.-T., Lai, C.-L., Hsieh, H.-S., Chi, C.-W., and Yin, S.-J. (2010). Establishment of steady-state metabolism of ethanol in perfused rat liver: the quantitative analysis using kinetic mechanism-based rate equations of alcohol dehydrogenase. Alcohol 44, 541–551.
Yasunami, M., Chen, C. S., and Yoshida, A. (1991). A human alcohol dehydrogenase gene (ADH6) encoding an additional class of isozyme. Proc. Natl. Acad. Sci. U. S. A. 88, 7610–7614.
Yin, S. J., Lee, S. L., Yao, C. T., and Lai, C. L. (2007). Functional roles of alcohol dehydrogenases in human ethanol metabolism. In H. Weiner, E. Maser, R. Lindahl, & B. V. Plapp (Eds.), Enzymology and Molecular Biology of Carbonyl Metabolism 13 (pp. 134–143). West Lafayette: Purdue University Press.
Yin, S. J., and Agarwal, D. P. (2001). Functional polymorphism of alcohol and aldehyde dehydrogenases: alcohol metabolism, alcoholism, and alcohol-induced organ damage. In D. P. Agarwal, & H. K. Seitz (Eds.), Alcohol in Health and Disease (pp. 1–26). New York: Marcel Dekker, Inc.
Yin, S. J., Chou, F. J., Chao, S. F., Tsai, S. F., Liao, C. S., Wang, S. L., Wu, C. W., and Lee, S. C. (1993). Alcohol and aldehyde dehydrogenases in human esophagus: comparison with the stomach enzyme activities. Alcohol. Clin. Exp. Res. 17, 376–381.
Yin, S. J., Han, C. L., Lee, A. I., and Wu, C. W. (1999). Human alcohol dehydrogenase family. Functional classification, ethanol/retinol metabolism, and medical implications. Adv. Exp. Med. Biol. 463, 265–274.
Yin, S. J., Liao, C. S., Chen, C. M., Fan, F. T., and Lee, S. C. (1992). Genetic polymorphism and activities of human lung alcohol and aldehyde dehydrogenases: implications for ethanol metabolism and cytotoxicity. Biochem. Genet. 30, 203–15.
Yin, S. J., Liao, C. S., Wu, C. W., Li, T. T., Chen, L. L., Lai, C. L., and Tsao, T. Y. (1997). Human stomach alcohol and aldehyde dehydrogenases: comparison of expression pattern and activities in alimentary tract. Gastroenterology 112, 766–775.
Yin, S. J., and Peng, G. S. (2005). Overview of ALDH polymorphism: relation to cardiovascular effects of alcohol. In V. R. Preedy, & R. R. Watson (Eds.), Comprehensive Handbook of Alcohol Related Pathology, Vol. 1 (pp. 409–424). London: Elsevier Academic Press.
Yin, S. J., Wang, M. F., Liao, C. S., Chen, C. M., and Wu, C. W. (1990). Identification of a human stomach alcohol dehydrogenase with distinctive kinetic properties. Biochem. Int. 22, 829–835.
Yin, S.-J., Chou, C.-F., Lai, C.-L., Lee, S.-L., and Han, C.-L. (2003). Human class IV alcohol dehydrogenase: kinetic mechanism, functional roles and medical relevance. Chem. Biol. Interact. 143-144, 219–227.
Yoshida, A., Rzhetsky, A., Hsu, L. C., and Chang, C. (1998). Human aldehyde dehydrogenase gene family. Eur. J. Biochem. 251, 549–57.
Zacny, J., Zamakhshary, M., Sketris, I., and Veldhuyzen van Zanten, S. (2005). Systematic review: the efficacy of intermittent and on-demand therapy with histamine H2-receptor antagonists or proton pump inhibitors for gastro-oesophageal reflux disease patients. Aliment. Pharmacol. Ther. 21, 1299–3112.
Zheng, C. F., Wang, T. T., and Weiner, H. (1993). Cloning and expression of the full-length cDNAS encoding human liver class 1 and class 2 aldehyde dehydrogenase. Alcohol. Clin. Exp. Res. 17, 828–831.
Zimmerman, H. J., and Maddrey, W. C. (1995). Acetaminophen (paracetamol) hepatotoxicity with regular intake of alcohol: analysis of instances of therapeutic misadventure. Hepatology 22, 767–773.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code