Responsive image
博碩士論文 etd-0610115-094707 詳細資訊
Title page for etd-0610115-094707
論文名稱
Title
利用基因晶片操作平台鑑別可預測大腸直腸癌「化學治療合併放射治療」療效之分子標記
Identification of predictive biomarkers for the efficacy of concurrent chemoradiotherapy for patients with colorectal cancer by genechip operation platform
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
63
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-06-04
繳交日期
Date of Submission
2015-07-10
關鍵字
Keywords
放療合併化療反應相關基因、分子標記、放療合併化療之療效、基因晶片、大腸直腸癌
Colorectal cancer, Concurrent chemoradiotherapy response-related genes, Molecular markers, Gene chip, Efficacy of concurrent chemoradiotherapy
統計
Statistics
本論文已被瀏覽 5662 次,被下載 49
The thesis/dissertation has been browsed 5662 times, has been downloaded 49 times.
中文摘要
大腸直腸癌為常見的消化道惡性腫瘤,對於局部進行期的中低位直腸癌的臨床醫療方式,經常事先以手術前放射治療合併化學治療(Concurrent chemoradiotherapy CCRT)對病患腫瘤組織進行處理。但是接受CCRT的病患,卻常因個體間的差異性而產生不同的治療效果,因此,預先評估病患癌組織對於CCRT的敏感差異性,進一步制定個人化的CCRT療程,便成了這類患者治療計畫設計的重要參考指標。此研究主要利用本實驗室先前成功開發的專利平台-加權酵素型晶片操作平台(WEnCA),來分析大腸直腸癌患者在接受CCRT後,患者腫瘤細胞中與CCRT療效相關候選基因群的表現,並將候選基因表現結果與患者實際的臨床療效作統計分析,鑑別可作為預測病患對於CCRT是否具有感受性的分子標記。研究方法首先選擇與CCRT療效相關的候選基因共27個,包括來自本研究團隊先前的研究成果,以及近幾年來,國內外學者所發表透過比較放射敏感性及放射抗性細胞而篩選出與放射治療感受性有關之基因群,其中17個與腫瘤缺氧相關、6個與腫瘤惡性化相關以及4個基因先前已經臨床測試證實為放射線敏感性基因。接著,分別設計此27個候選基因的寡核甘酸片段,經過濃度的連續稀釋,找出每一基因最佳在晶片上的點漬濃度,繼而設計矩陣排列建構測試晶片,再利用WEnCA操作平台一一分析臨床所收集的66位大腸直腸癌病患血液檢體中CCRT療效候選基因的表現情況,並將實驗數據與臨床治療結果進行生物統計分析。在實驗結果中,我們發現27個候選基因中,有6個基因 PTMA(P =0.045)、GLUT1(P =0.001)、 BNIP3L(P =0.047)、 KCTD11(P =0.038)
、 PFKFB3(P =0.045)、 DDB2(P =0.045) 在大腸直腸癌病患有效及無效兩個族群間的差異表現,具有統計上的意義。其中,PTMA、GLUT1及PFKFB3三個基因在CCRT無效的族群中過度表現,而BNIP3L、KCTD11和DDB2三個基因則是在CCRT有效的族群中呈現過度表現。另外,也證實DDB2的過度表現與癌症患者的淋巴浸潤有關。進一步,我們將以本研究結果做為基礎,結合多種加權方式,並透過不同基因群的組合,確認最佳的候選基因群以及個別基因最適合的加權值,以建置臨床上實用的「化學治療合併放射治療療效預測晶片」,提供臨床醫師準確的療效預測結果,作為治療規劃的重要參考依據。
Abstract
Colorectal cancer (CRC) is a common gastrointestinal malignancy tumor. Combined with radiation and chemotherapy (Concurrent Chemoradiation Therapy; CCRT) before surgery is often used as a therapeutic strategy for tumor tissue of patients with low CRC. However, response to CCRT differs among individual tumors. Therefore, applying the individual cancerous tissue variability of radiation sensitivity to predict CCRT efficacy before treatment will become an important guideline for designing personalized treatment plans. In this study, we used Weighted Enzymatic Chip Array platform (WEnCA) to analyze candidate genes expression in CRC patient's tumor cells after treatment with CCRT. Then, we combined the results of candidate genes expression with clinical response of patients after CCRT for statistical analysis to validate the molecular markers that can predict clinical sensitivity for CCRT. Twenty-seven CCRT candidate genes were selected from our previous results and published references in which the radiation response-related genes were determined by analyzing differential gene expression between radiosensitive and radio-resistant cells. In 27 CCRT candidate genes, 17 genes are related to tumor hypoxia, 6 genes are related to tumor malignancy and 4 genes have been validated as radiation-sensitive genes by clinical testing. Subsequently, we designed oligonucleotides fragment from 27 candidate genes, and identified the used oligonucleotide concentration for each gene on chip by serial dilution. The peripheral blood samples of 66 CRC patients treated with preoperative CCRT were collected for analyzing 27 CCRT related genes expression in CRC patients. Then the association between CCRT related gene expression and clinical efficacy of CCRT was analyzed using statistical software. Our results show that among the 27 CCRT candidate
genes, PTMA (P =0.045), GLUT1 (P =0.001), BNIP3L (P =0.047), KCTD11 (P =0.038), PFKFB3 (P =0.045) and DDB2 (P =0.045) expression significantly differ between CCRT response group and non- response group. PTMA, GLUT1 and PFKFB3 are highly expressed in CCRT non-response group compared to there in CCRT response group, while BNIP3L, KCTD11 and DDB2 genes are highly expressed in CCRT response group compared to there in CCRT non-response group. We also confirmed that increased DDB2 expression is related to lymphoid infiltration of cancer patients. Based on the results of the present study, we will further design a variety of weighting methods for different combinations of genes to validate the best combination of candidate genes and the most appropriate weighted value for each gene. Establishment of the clinically useful CCRT efficacy prediction chip would improve the accuracy of prediction of CCRT efficacy, and provide a reference for improving CRC therapy.
目次 Table of Contents
論文審定書 i
論文公開授權書 ii
致謝 iii
中文摘要 iv
Abstract vi
目次 viii
圖次 xi
表次 xii
第一章、緒論 1
1.1 研究背景及文獻回顧 1
1.1.1 大腸直腸癌的發生率 1
1.1.2 大腸直腸癌的診斷 1
1.2 病史 1
1.2.1 大腸直腸癌的症狀 2
1.2.2 糞便潛血檢查(Fecal occult blood test, FOBT) 2
1.2.3 理學指診檢查(Digital rectal examination) 2
1.2.4 乙狀結腸鏡檢查(Flexible sigmoidoscopy) 3
1.2.5 全大腸鏡檢查(Colonoscopy) 3
1.2.6 大腸鋇劑攝影(Bariun enema) 3
1.2.7 實驗室檢查 3
1.2.8 病理學檢查 4
1.3 大腸直腸癌的治療 4
1.3.1 手術切除為主要治療方式 4
1.3.2 輔助性治療 4
1.3.3 手術前放射治療 5
1.3.4 化學治療 5
1.3.5 合併放射與化學藥物輔助性治療 5
1.4 影響病患對於化學治療合併放射治療療效之因素 6
1.4.1 腫瘤的異型性 6
1.4.2 腫瘤之基因表現的差異 7
1.5 個人化醫療 7
1.6 CCRT相關分子標記研究之文獻回顧 8
1.7 腫瘤分子標記之偵測 9
1.8 研究目的 10
1.9 研究流程 11
1.10 研究流程說明 12
第二章、實驗材料與方法 13
2.1 CCRT療效檢測晶片之設計與製備 13
2.1.1 基因群篩選與寡核苷酸設計 13
2.1.2 基因晶片製作流程 13
2.1.3 CCRT療效檢測晶片測試 13
2.1.4 CCRT療效檢測晶片核苷酸濃度調整 14
2.2 檢體收集 14
2.2.1 病患選擇 14
2.2.2 病患檢體收集 15
2.2.3 CCRT療程設計 15
2.2.4 療效判定標準 16
2.2.5 病理資料收集 16
2.2.6 對照組的血液檢體 16
2.3 WEnCA實驗操作流程 16
2.3.1 血液之核糖核酸萃取(RNA isolation) 17
2.3.2 由核糖核酸反轉錄為互補去氧核糖核酸(cDNA) 17
2.3.3 探針標記(Probe Synthesis) 17
2.3.4 晶片雜合反應(Pre-Hybridization and Hybridization) 17
2.3.5 清洗與呈色(Wash and Detection) 18
2.4 個別基因表現量校正 18
2.5 生物統計分析 19
第三章、結果 20
3.1 CCRT療效檢測晶片之製備 20
3.1.1 基因群篩選 20
3.1.2 寡核苷酸設計結果 20
3.1.3 CCRT療效檢測晶片核苷酸濃度調整結果 20
3.2 大腸直腸癌檢體分析結果 21
3.3 大腸直腸癌病患基因表現分析結果 21
3.4 六個CCRT相關基因表現與大腸直腸癌病患臨床病理表徵之關聯性 22
3.5 合併多重基因表現與大腸直腸癌病患CCRT療效之關聯性 22
第四章、討論 24
結論與展望 29
圖表 30
參考文獻 44
參考文獻 References
Amundson, S. A., Do, K. T., Vinikoor, L. C., Lee, R. A., Koch-Paiz, C. A., Ahn, J., Reimers, M., Chen Y., Scudiero D. A., Weinstein J. N., Trent J. M., Bittner M. L., Meltzer, P. S.,  Fornace, A. J., Jr. (2008). Integrating global gene expression and radiation survival parameters across the 60 cell lines of the National Cancer Institute Anticancer Drug Screen. Cancer Res, 68(2), 415-424.

Bosset, J. F., Calais, G., Mineur, L., Maingon, P., Radosevic-Jelic, L., Daban, A., Bardet, E., Beny, A., Briffaux, A., Collette, L. (2005). Enhanced tumorocidal effect of chemotherapy with preoperative radiotherapy for rectal cancer: preliminary results--EORTC 22921. J Clin Oncol, 23(24), 5620-5627.

Burchill, S. A., Lewis, I. J., & Selby, P. (1999). Improved methods using the reverse transcriptase polymerase chain reaction to detect tumour cells. Br J Cancer, 79(5-6), 971-977.

Chung, F. Y., Huang, M. Y., Yeh, C. S., Chang, H. J., Cheng, T. L., Yen, L. C., Wang, J. Y., Lin, S. R. (2009). GLUT1 gene is a potential hypoxic marker in colorectal cancer patients. BMC Cancer, 9, 241.

Clem, B. F., O'Neal, J., Tapolsky, G., Clem, A. L., Imbert-Fernandez, Y., Kerr, D. A., 2nd, Klarer, A. C., Redman, R., Miller, D. M., Trent JO, Telang S, Chesney, J. (2013). Targeting 6-phosphofructo-2-kinase (PFKFB3) as a therapeutic strategy against cancer. Mol Cancer Ther, 12(8), 1461-1470.

Correa, C. R., & Cheung, V. G. (2004). Genetic variation in radiation-induced expression phenotypes. Am J Hum Genet, 75(5), 885-890.

Dairkee, S. H., Ji, Y., Ben, Y., Moore, D. H., Meng, Z., & Jeffrey, S. S. (2004). A molecular 'signature' of primary breast cancer cultures; patterns resembling tumor tissue. BMC Genomics, 5(1), 47.

Dworak, O., Keilholz, L., & Hoffmann, A. (1997). Pathological features of rectal cancer after preoperative radiochemotherapy. Int J Colorectal Dis, 12(1), 19-23.

Eilers, M., Schirm, S., & Bishop, J. M. (1991). The MYC protein activates transcription of the alpha-prothymosin gene. EMBO J, 10(1), 133-141.

Fei, P., Wang, W., Kim, S. H., Wang, S., Burns, T. F., Sax, J. K., Buzzai, M., Dicker, D. T., McKenna W. G., Bernhard E. J.,  El-Deiry, W. S. (2004). Bnip3L is induced by p53 under hypoxia, and its knockdown promotes tumor growth. Cancer Cell, 6(6), 597-609.

Frykholm, G. J., Pahlman, L., & Glimelius, B. (2001). Combined chemo- and radiotherapy vs. radiotherapy alone in the treatment of primary, nonresectable adenocarcinoma of the rectum. Int J Radiat Oncol Biol Phys, 50(2), 427-434
.
Gerard, A., Buyse, M., Nordlinger, B., Loygue, J., Pene, F., Kempf, P., Bosset, J. F., Gignoux, M., Arnaud, J. P., Desaive, C. (1988). Preoperative radiotherapy as adjuvant treatment in rectal cancer. Final results of a randomized study of the European Organization for Research and Treatment of Cancer (EORTC). Ann Surg, 208(5), 606-614.

Ghadimi, B. M., Grade, M., Difilippantonio, M. J., Varma, S., Simon, R., Montagna, C., Füzesi, L., Langer, C., Becker, H., Liersch, T, Ried, T. (2005). Effectiveness of gene expression profiling for response prediction of rectal adenocarcinomas to preoperative chemoradiotherapy. J Clin Oncol, 23(9), 1826-1838.

Goldberg, P. A., Nicholls, R. J., Porter, N. H., Love, S., & Grimsey, J. E. (1994). Long-term results of a randomised trial of short-course low-dose adjuvant pre-operative radiotherapy for rectal cancer: reduction in local treatment failure. Eur J Cancer, 30a(11), 1602-1606.

Hacibekiroglu, I., Kodaz, H., Erdogan, B., Turkmen, E., Esenkaya, A., Uzunoglu, S., & Cicin, I. (2015). Comparative Analysis of the Efficacy and Safety of Oxaliplatin Plus 5-Fluorouracil/Leucovorin (Modified FOLFOX6) with Advanced Gastric Cancer Patients having a Good or Poor Performance Status. Asian Pac J Cancer Prev, 16(6), 2355-2359.

Han, C., Zhao, R., Liu, X., Srivastava, A., Gong, L., Mao, H., Qu, M., Zhao, W., Yu, J., Wang, Q. E. (2014). DDB2 suppresses tumorigenicity by limiting the cancer stem cell population in ovarian cancer. Mol Cancer Res, 12(5), 784-794.

Hendlisz, A., Van den Eynde, M., Peeters, M., Maleux, G., Lambert, B., Vannoote, J., De Keukeleire, K., Verslype, C., Defreyne, L., Van Cutsem, E., Delatte, P., Delaunoit, T., Personeni, N., Paesmans, M., Van Laethem, J. L., Flamen, P. (2010). Phase III trial comparing protracted intravenous fluorouracil infusion alone or with yttrium-90 resin microspheres radioembolization for liver-limited metastatic colorectal cancer refractory to standard chemotherapy. J Clin Oncol, 28(23), 3687-3694.

Huang, M. Y., Wang, J. Y., Chang, H. J., Kuo, C. W., Tok, T. S., & Lin, S. R. (2011). CDC25A, VAV1, TP73, BRCA1 and ZAP70 gene overexpression correlates with radiation response in colorectal cancer. Oncol Rep, 25(5), 1297-1306.

International Union Against Cancer. TNM Classification of Malignant Tumors, 6th ed.; Wiley-Liss, Inc.: New York, NY, USA, 2002.

Ioannou, K., Samara, P., Livaniou, E., Derhovanessian, E., & Tsitsilonis, O. E. (2012). Prothymosin alpha: a ubiquitous polypeptide with potential use in cancer diagnosis and therapy. Cancer Immunol Immunother, 61(5), 599-614.

Ito, S., Nakanishi, H., Hirai, T., Kato, T., Kodera, Y., Feng, Z., Kasai, Y., Ito, K., Akiyama, S., Nakao, A., Tatematsu, M. (2002). Quantitative detection of CEA expressing free tumor cells in the peripheral blood of colorectal cancer patients during surgery with real-time RT-PCR on a LightCycler. Cancer Lett, 183(2), 195-203.

Koong, A. C., Chen, E. Y., & Giaccia, A. J. (1994). Hypoxia causes the activation of nuclear factor kappa B through the phosphorylation of I kappa B alpha on tyrosine residues. Cancer Res, 54(6), 1425-1430.

Koukourakis, M. I., Giatromanolaki, A., Chong, W., Simopoulos, C., Polychronidis, A., Sivridis, E., & Harris, A. L. (2004). Amifostine induces anaerobic metabolism and hypoxia-inducible factor 1 alpha. Cancer Chemother Pharmacol, 53(1), 8-14.

Kozono, S., Ohuchida, K., Ohtsuka, T., Cui, L., Eguchi, D., Fujiwara, K., Zhao, M., Mizumoto, K., Tanaka, M. (2013). S100A4 mRNA expression level is a predictor of radioresistance of pancreatic cancer cells. Oncol Rep, 30(4), 1601-1608.
Krohn, A., Ahrens, T., Yalcin, A., Plones, T., Wehrle, J., Taromi, S., Wollner, S., Follo, M., Brabletz, T., Mani, S. A., Claus, R., Hackanson, B., Burger, M. (2014). Tumor cell heterogeneity in Small Cell Lung Cancer (SCLC): phenotypical and functional differences associated with Epithelial-Mesenchymal Transition (EMT) and DNA methylation changes. PLoS One, 9(6), e100249.

Lehnert, S. (2000). Prediction of tumor response to therapy: molecular markers and the microenvironment. Apoptosis and chips: an overview of the proceedings. Radiat Res, 154(2), 121-124.

Le Mercier, M., Lefranc, F., Mijatovic, T., Debeir, O., Haibe-Kains, B., Bontempi, G., Decaestecker, C., Kiss, R., Mathieu, V. (2008). Evidence of galectin-1 involvement in glioma chemoresistance. Toxicol Appl Pharmacol, 229(2), 172-183.

Liang, J., Fazio, V., Lavery, I., Remzi, F., Hull, T., Strong, S., & Church, J. (2015). Primacy of surgery for colorectal cancer outcomes. Br J Surg.

Lohsiriwat, V., Prapasrivorakul, S., & Suthikeeree, W. (2012). Colorectal cancer screening by double contrast barium enema in Thai people. Asian Pac J Cancer Prev, 13(4), 1273-1276.

Lu, H., Liang, K., Lu, Y., & Fan, Z. (2012). The anti-EGFR antibody cetuximab sensitizes human head and neck squamous cell carcinoma cells to radiation in part through inhibiting radiation-induced upregulation of HIF-1α. Cancer Lett, 322(1), 78-85.

Magdalena, C., Dominguez, F., Loidi, L., & Puente, J. L. (2000). Tumour prothymosin alpha content, a potential prognostic marker for primary breast cancer. Br J Cancer, 82(3), 584-590.

Meijer, T. W., Kaanders, J. H., Span, P. N., & Bussink, J. (2012). Targeting hypoxia, HIF-1, and tumor glucose metabolism to improve radiotherapy efficacy. Clin Cancer Res, 18(20), 5585-5594.

Miles, A., Rodrigues, V., & Sevdalis, N. (2013). The effect of information about false negative and false positive rates on people's attitudes towards colorectal cancer screening using faecal occult blood testing (FOBt). Patient Educ Couns, 93(2), 342-349.

Nikendei, C., Diefenbacher, K., Kohl-Hackert, N., Lauber, H., Huber, J., Herrmann-Werner, A., Herzog, W., Schultz, J. H., Jünger, J., Krautter, M. (2015). Digital rectal examination skills: first training experiences, the motives and attitudes of standardized patients. BMC Med Educ, 15(1), 7.

Ojima, E., Inoue, Y., Miki, C., Mori, M., & Kusunoki, M. (2007). Effectiveness of gene expression profiling for response prediction of rectal cancer to preoperative radiotherapy. J Gastroenterol, 42(9), 730-736.

Papagrigoriadis, S., Arunkumar, I., Koreli, A., & Corbett, W. (2004). Evaluation of flexible sigmoidoscopy as an investigation for "left sided" colorectal symptoms. Postgrad Med J, 80(940), 104-106.

Papandreou, I., Lim, A. L., Laderoute, K., & Denko, N. C. (2008). Hypoxia signals autophagy in tumor cells via AMPK activity, independent of HIF-1, BNIP3, and BNIP3L. Cell Death Differ, 15(10), 1572-1581.

Regge, D., Iussich, G., Senore, C., Correale, L., Hassan, C., Bert, A., Montemezzi, S., Segnan, N. (2014). Population screening for colorectal cancer by flexible sigmoidoscopy or CT colonography: study protocol for a multicenter randomized trial. Trials, 15, 97-97.

Rodningen, O. K., Overgaard, J., Alsner, J., Hastie, T., & Borresen-Dale, A. L. (2005). Microarray analysis of the transcriptional response to single or multiple doses of ionizing radiation in human subcutaneous fibroblasts. Radiother Oncol, 77(3), 231-240.

Rodriguez, P., Vinuela, J. E., Alvarez-Fernandez, L., Buceta, M., Vidal, A., Dominguez, F., & Gomez-Marquez, J. (1998). Overexpression of prothymosin alpha accelerates proliferation and retards differentiation in HL-60 cells. Biochem J, 331 ( Pt 3), 753-761.

Sasaki, H., Nonaka, M., Fujii, Y., Yamakawa, Y., Fukai, I., Kiriyama, M., & Sasaki, M. (2001). Expression of the prothymosin-a gene as a prognostic factor in lung cancer. Surg Today, 31(10), 936-938.

Semenza, G. L. (2009). Regulation of cancer cell metabolism by hypoxia-inducible factor 1. Semin Cancer Biol, 19(1), 12-16.

Shiiba, M., Saito, K., Fushimi, K., Ishigami, T., Shinozuka, K., Nakashima, D., Kouzu, Y., Koike, H., Kasamatsu, A., Sakamoto, Y., Ogawara, K., Uzawa, K., Takiguchi, Y., Tanzawa, H. (2013). Lipocalin-2 is associated with radioresistance in oral cancer and lung cancer cells. Int J Oncol, 42(4), 1197-1204.

Toustrup, K., Sorensen, B. S., Nordsmark, M., Busk, M., Wiuf, C., Alsner, J., & Overgaard, J. (2011). Development of a hypoxia gene expression classifier with predictive impact for hypoxic modification of radiotherapy in head and neck cancer. Cancer Res, 71(17), 5923-5931.

Tredan, O., Galmarini, C. M., Patel, K., & Tannock, I. F. (2007). Drug resistance and the solid tumor microenvironment. J Natl Cancer Inst, 99(19), 1441-1454.

Tripathi, S. C., Matta, A., Kaur, J., Grigull, J., Chauhan, S. S., Thakar, A., Shukla, N. K., Duggal, R., Choudhary, A. R., Dattagupta, S., Sharma, M. C., Ralhan, R., Siu, K. W. (2011). Overexpression of prothymosin alpha predicts poor disease outcome in head and neck cancer. PLoS One, 6(5), e19213.

Tsai, Y. S., Jou, Y. C., Lee, G. F., Chen, Y. C., Shiau, A. L., Tsai, H. T., , Wu, C. L., Tzai, T. S. (2009). Aberrant prothymosin-alpha expression in human bladder cancer. Urology, 73(1), 188-192.

Vecchio, R., Marchese, S., Famoso, S., La Corte, F., Marletta, S., Leanza, G., Zanghì, G., Leanza, V., Intagliata, E. (2015). Colorectal cancer in aged patients. Toward the routine treatment through laparoscopic surgical approach. G Chir, 36(1), 9-14.

Verne, J. E. C. W., Aubrey, R., Love, S. B., Talbot, I. C., & Northover, J. M. A. (1998). Population based randomised study of uptake and yield of screening by flexible sigmoidoscopy compared with screening by faecal occult blood testing. BMJ, 317(7152), 182-185.
Vukobrat-Bijedic, Z., Husic-Selimovic, A., Sofic, A., Bijedic, N., Bjelogrlic, I., Gogov, B., & Mehmedovic, A. (2013). Cancer Antigens (CEA and CA 19-9) as Markers of Advanced Stage of Colorectal Carcinoma. Med Arch, 67(6), 397-401.

Wang, J. Y., Yeh, C. S., Chen, Y. F., Wu, C. H., Hsieh, J. S., Huang, T. J., Huang, S. Y., Lin, S. R. (2006). Development and evaluation of a colorimetric membrane-array method for the detection of circulating tumor cells in the peripheral blood of Taiwanese patients with colorectal cancer. Int J Mol Med, 17(5), 737-747.

Watanabe, T., Komuro, Y., Kiyomatsu, T., Kanazawa, T., Kazama, Y., Tanaka, J., Tanaka, T., Yamamoto, Y., Shirane, M., Muto, T., Nagawa, H. (2006). Prediction of sensitivity of rectal cancer cells in response to preoperative radiotherapy by DNA microarray analysis of gene expression profiles. Cancer Res, 66(7), 3370-3374.

Weljie, A. M., & Jirik, F. R. (2011). Hypoxia-induced metabolic shifts in cancer cells: moving beyond the Warburg effect. Int J Biochem Cell Biol, 43(7), 981-989.

Yen, L. C., Yeh, Y. S., Chen, C. W., Wang, H. M., Tsai, H. L., Lu, C. Y., Chang, Y. T., Chu, K. S., Lin, S. R., Wang, J. Y. (2009). Detection of KRAS oncogene in peripheral blood as a predictor of the response to cetuximab plus chemotherapy in patients with metastatic colorectal cancer. Clin Cancer Res, 15(13), 4508-4513.

Zazzeroni, F., Nicosia, D., Tessitore, A., Gallo, R., Verzella, D., Fischietti, M., Vecchiotti, D., Ventura, L., Capece, D., Gulino, A., Alesse, E. (2014). KCTD11 tumor suppressor gene expression is reduced in prostate adenocarcinoma. Biomed Res Int, 2014, 380398.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code