Responsive image
博碩士論文 etd-0610115-122136 詳細資訊
Title page for etd-0610115-122136
論文名稱
Title
靜電紡絲之製程特性分析與數值方法的探討
Characteristic analysis of electrospinning process using experimental & computational method
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
130
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-06-26
繳交日期
Date of Submission
2015-07-10
關鍵字
Keywords
流體體積法、錐體-射流、聚己內酯、靜電紡絲製程、磁流體動力學
MHD, volume of fluid, PCL, electrospinning process, Cone-jet
統計
Statistics
本論文已被瀏覽 5922 次,被下載 342
The thesis/dissertation has been browsed 5922 times, has been downloaded 342 times.
中文摘要
本論文研究應用實驗與數值方法研究靜電紡絲 (Electrospinning) 製程行為,藉由分析高分子材料聚己內酯 (Polycaprolactone, PCL) 的不同重量百分比30-55 (wt%) 其黏度、流變特性、導電度、表面張力與接觸角之間相互關係,最後透過掃描式電子顯微鏡 (Scanning Electron Microscope, SEM) 拍攝不同濃度纖維織表面形貌,實驗結果發現,PCL之濃度與黏度成正比關係,符合牛頓流體趨勢,且濃度在 30 (wt%) 時導電率最高,值為1.24 μS/cm ,表面張力隨濃度增加而提升,其接觸角平均值落在73°左右,顯示其為疏水性材料,而從SEM結果可發現PCL濃度越低時,電紡絲纖維珠狀物較容易產生,濃度30 (wt%) 時有最小線徑0.06 μm ;濃度55 (wt%) 時纖維線徑為整體濃度範圍最大。數值方法採用ANSYS Fluent套裝軟體中的多相流模組分析靜電紡絲製程中的泰勒錐,利用流體體積法 (Volume of Fluid) 計算並搭配電磁流體模組 (Magnetohydrodynamics, MHD) 模擬靜電紡絲中氣-液介面受電場作用之影響,藉由更改操作電壓、流率、黏度、導電度與表面張力,探討在泰勒錐形成時錐體-射流之影響,模擬結果發現,當電壓越大時,泰勒錐長度會有長到短的趨勢,當流率與黏度越大時,泰勒錐長度則會越長,表面張力越大時泰勒錐越短,導電度大小則對泰勒錐長度無明顯變化,因此藉由模擬的泰勒錐長度與實驗結果比對可知,本研究成功模擬出泰勒錐產生的錐體-射流現象,並且提供實驗前期調配參數上的參考依據。
Abstract
In this thesis, experimental and numerical methods are applied to study electrospinning process. The interaction between viscosity, rheological properties, electric conductivity, surface tension and contact angle of PCL (Polycaprolactone) polymer from 30 wt% to 50 wt% are analyzed. Then, SEM is used to measure the surface of fiber woven with different concentrations. The experimental results show that the solution weight percentage is proportional to the viscosity; and the highest electric conductivity, 1.24 μS/cm, is measured at 30 wt%. Surface tension is proportional to solution weight percent; the average contact angle is around 73° that indicated PCL is a hydrophobicity material. According to the SEM results, the lower the PCL concentration is used, the more easily the beads on the fibers are produced, and when the fiber diameters for concentration of min. and max. are 0.06 μm of 30 wt% and overall of 55 wt%, respectively. Simulation is based on the multiphase flows module of ANSYS Fluent to analyze the Taylor cone of electrospinning process. Volume of Fluid (VOF) method and Magnetohydrodynamics (MHD) are applied to simulate the influence of liquid-gas interface affected by electrical potential. The influence of changing of operating voltage, flow rate, viscosity, electric conductivity and surface tension was explored. The simulation result shows that when the voltage was increased more, the length of Taylor cone become shorter. The length of Taylor cone become longer as the flow rate and viscosity are increased more. In addition, the length of Taylor cone decreased while the surface tension increased. The electric conductivity shows less influence on the length of Taylor cone. In this study, the Cone-jet of Taylor cone is simulated which can support the measured data of experimental can be the reference for the future application.
目次 Table of Contents
致謝 ii
摘要 iii
Abstract iv
符號說明 v
目錄 vi
圖目錄 ix
表目錄 xiv
第一章 緒論 1
1-1前言 1
1-2 研究背景與動機 3
1-3 文獻回顧 5
1-3-1聚己內酯(PCL) 5
1-3-2 靜電紡絲 8
1-4 研究目的 11
第二章 理論基礎 12
2-1靜電紡絲理論分析 12
2-2 影響靜電紡絲製程的參數 15
2-3 靜電紡絲的收集方式 22
2-4 聚合物溶液流變原理 24
2-4-1 聚合物的黏度 24
2-4-2 牛頓與非牛頓流體 25
2-4-3 聚合物的流變行為 26
2-5 軟體介紹 27
2-5-1 計算流體力學簡介 27
2-5-2 ANSYS Fluent介紹 28
2-5-3 Gambit介紹 30
第三章 數值模擬原理與數值方法 32
3-1基本假設條件 32
3-2統御方程式(Governing equation) [67-69] 32
3-3流體體積法(Volume of Fluid) [67, 68, 70] 33
3-3-1物理屬性(Properties)運算 34
3-4連續表面力法(Continuum Surface Force) [67, 71] 35
3-5帕松方程式(Poisson's equation) [74] 37
3-6磁流體動力學(Magnetohydrodynamics, MHD) [75] 37
3-7數值方法 38
3-8 PISO演算法 40
3-9幾何尺寸 46
3-10邊界設定 48
第四章 實驗方法與儀器介紹 50
4-1 PCL溶液調配流程 51
4-1-1 相關材料準備 51
4-1-2 聚合物溶液調配 52
4-2靜電紡絲製程與原理 54
4-3靜電紡絲之設備 55
4-4實驗用測量設備 57
4-4-1流變儀 58
4-4-2導電度計 59
4-4-3表面張力計 60
4-4-4接觸角測量儀 61
4-4-5掃描式電子顯微鏡 63
第五章 結果與討論 64
5-1問題定義 64
5-2電壓變化對錐體-射流影響 66
5-3流率變化對錐體-射流影響 69
5-4黏度變化對錐體-射流影響 72
5-5導電度變化對錐體-射流影響 75
5-6表面張力變化對錐體-射流影響 78
5-7高分子溶液之黏度量測 81
5-8高分子溶液之導電度量測 83
5-9高分子溶液之表面張力量測 85
5-10高分子溶液之接觸角量測 87
5-11高分子溶液濃度與纖維線徑之關係 92
第六章 結論與展望 104
6-1 結論 104
6-2 展望 106
文獻回顧 107
參考文獻 References
[1] S. Ramakrishna, An Introduction to Electrospinning and Nanofibers: World Scientific, 2005.
[2] J. S. N Tucker, M P Staiger, H Razzaq, and K Hofman, “The History of the Science and Technology of Electrospinning from 1600 to 1995,”Journal of Engineered Fibers and Fabrics, Vol. 7, pp. 63-73, 2012.
[3] 丁家展, “電紡成形條件對紡絲之形貌與直徑之影響,” 碩士論文, 機械工程學系, 國立交通大學, 2010.
[4] Z.-M. Huang, Y. Z. Zhang, M. Kotaki, and S. Ramakrishna, “A review on polymer nanofibers by electrospinning and their applications in nanocomposites,” Composites Science and Technology, Vol. 63, pp. 2223-2253, 2003.
[5] 黃世偉, “高分子材料與醫療器材,” 科學發展, pp. 14-19, 2010.
[6] 潘勁屹, “聚己內酯表面活化與表面奈米化對細胞生長之研究,” 碩士論文, 化學工程系, 國立雲林科技大學, 2004.
[7] 蔡珮琳, “電紡絲聚己內酯多元醇(PCL)纖維支架中纖維特性對細胞貼附與增生影響之研究,” 碩士論文, 工程科技研究所, 私立萬能科技大學, 2010.
[8] 王基信, “以電氣紡絲法製備PLA╱PCL小管徑人工血管支架之性質及其細胞生長研究,” 碩士論文, 機械工程系, 國立交通大學, 2012.
[9] F. J. v. Natta, J. W. Hill, and W. H. Carothers, “Studies of Polymerization and Ring Formation. XXIII.1 ε-Caprolactone and its Polymers,” Journal of the American Chemical Society, Vol. 56, pp. 455-457, 1934.
[10] M. A. Woodruff and D. W. Hutmacher, “The return of a forgotten polymer—Polycaprolactone in the 21st century,” Progress in Polymer Science, Vol. 35, pp. 1217-1256, 2010.
[11] R. Chandra and R. Rustgi, “Biodegradable polymers,” Progress in Polymer Science, Vol. 23, pp. 1273-1335, 1998.
[12] M. Okada, “Chemical syntheses of biodegradable polymers,” Progress in Polymer Science, Vol. 27, pp. 87-133, 2002.
[13] L. S. Nair and C. T. Laurencin, “Biodegradable polymers as biomaterials,” Progress in Polymer Science, Vol. 32, pp. 762-798, 2007.
[14] Y. Zhu, C. Gao, and J. Shen, “Surface modification of polycaprolactone with poly(methacrylic acid) and gelatin covalent immobilization for promoting its cytocompatibility,” Biomaterials, Vol. 23, pp. 4889-4895, 2002.
[15] K. Fujihara, M. Kotaki, and S. Ramakrishna, “Guided bone regeneration membrane made of polycaprolactone/calcium carbonate composite nano-fibers,” Biomaterials, Vol. 26, pp. 4139-4147, 2005.
[16] N. T. Dai, M. R. Williamson, N. Khammo, E. F. Adams, and A. G. A. Coombes, “Composite cell support membranes based on collagen and polycaprolactone for tissue engineering of skin,” Biomaterials, Vol. 25, pp. 4263-4271, 2004.
[17] J. Venugopal and S. Ramakrishna, “Biocompatible Nanofiber Matrices for the Engineering of a Dermal Substitute for Skin Regeneration,” Tissue Engineering, Vol. 11, pp. 847-854, 2005.
[18] J. F. Cooley, “Improved methods of and apparatus for electrically separating the relatively volatile liquid component from the component of relatively fixed substances of composite fluids,” United Kingdom Patent, 1900.
[19] E. F. a. W. Burton, W. B. XII., “Effect of electricity on streams of water drops,” Philosophical Magazine., Vol. 23, pp. 148-65, 1912.
[20] J. Zeleny, “The electrical discharge from liquid points, and a hydrostatic method of measuring electrical intensity at their surfaces,” The Physical Review, Vol. 3, pp. 69-91, 1914.
[21] J. Zeleny, “On the conditions of instability of electrified drops, with applications to the electrical discharge from liquid points,” Proceedings of the Cambridge Philosophical Society: Mathematical and Physical Sciences, pp. 71-83, 1914.
[22] J. Zeleny, “Instability of electrified liquid surfaces,” The Physical Review, Vol. 10, pp. 1-6, 1917.
[23] J. Zeleny, “Electrical discharges from pointed conductors,” The Physical Review, Vol. 16, pp. 102-25, 1920.
[24] A. Formhals, “Process and apparatus for preparing artificial threads,” US Patent 1975504, 1934.
[25] A. Formhals, “Production of artificial fibers,” US Patent 2077373, 1937.
[26] A. Formhals, “Artificial fiber construction,” US Patent 2109333, 1938.
[27] A. Formhals, “Method and apparatus for the production of fibers,” US Patent 2116942, 1938.
[28] A. Formhals, “Method of producing artificial fibers,” US Patent 2158415, 1939.
[29] A. Formhals, “Artificial thread and method of producing same,” US Patent 2187306, 1940.
[30] A. Formhals, “Production of artificial fibers from fiber forming liquids,” 1943.
[31] G. Taylor, “Disintegration of Water Drops in an Electric Field,” Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, Vol. 280, pp. 383-397, 1964.
[32] G. Taylor, “Studies in Electrohydrodynamics. I. The Circulation Produced in a Drop by Electrical Field,” Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, Vol. 291, pp. 159-166, 1966.
[33] G. Taylor, “Electrically Driven Jets,” Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, Vol. 313, pp. 453-475, 1969.
[34] P. K. Baumgarten, “Electrostatic spinning of acrylic microfibers,” Journal of Colloid and Interface Science, Vol. 36, pp. 71-79, 1971.
[35] J. Doshi and D. H. Reneker, “Electrospinning process and applications of electrospun fibers,” Journal of Electrostatics, Vol. 35, pp. 151-160, 1995.
[36] H. Fong and D. H. Reneker, “Elastomeric nanofibers of styrene-butadiene-styrene triblock copolymer,” Journal of Polymer Science Part B-polymer Physics, Vol. 37, pp. 3488-3493, 1999.
[37] Q. Ye, T. Steigleder, A. Scheibe, and J. Domnick, “Numerical simulation of the electrostatic powder coating process with a corona spray gun,” Journal of Electrostatics, Vol. 54, pp. 189-205, 2002.
[38] G. Kim, Y.-S. Cho, and W. D. Kim, “Stability analysis for multi-jets electrospinning process modified with a cylindrical electrode,” European Polymer Journal, Vol. 42, pp. 2031-2038, 2006.
[39] Y. C. Zeng, Y. Wu, Z. G. Pei, and C. W. Yu, “Numerical Approach to Electrospinning,” in International Journal of Nonlinear Sciences and Numerical Simulation Vol. 7, pp. 385, 2006.
[40] L. K. Lim, J. Hua, C.-H. Wang, and K. A. Smith, “Numerical simulation of cone-jet formation in electrohydrodynamic atomization,” AIChE Journal, Vol. 57, pp. 57-78, 2011.
[41] X. Wu, R. D. Oleschuk, and N. M. Cann, “Characterization of microstructured fibre emitters: in pursuit of improved nano electrospray ionization performance,” Analyst, Vol. 137, pp. 4150-4161, 2012.
[42] 吳大誠,杜仲良,高緒珊, 奈米纖維: 五南圖書, 2004.
[43] M. M. Hohman, M. Shin, G. Rutledge, and M. P. Brenner, “Electrospinning and electrically forced jets. I. Stability theory,” Physics of Fluids (1994-present), Vol. 13, pp. 2201-2220, 2001.
[44] D. H. Reneker and A. L. Yarin, “Electrospinning jets and polymer nanofibers,” Polymer, Vol. 49, pp. 2387-2425, 2008.
[45] X. Zong, K. Kim, D. Fang, S. Ran, B. S. Hsiao, and B. Chu, “Structure and process relationship of electrospun bioabsorbable nanofiber membranes,” Polymer, Vol. 43, pp. 4403-4412, 2002.
[46] R. Kessick, J. Fenn, and G. Tepper, “The use of AC potentials in electrospraying and electrospinning processes,” Polymer, Vol. 45, pp. 2981-2984, 2004.
[47] X. Yuan, Y. Zhang, C. Dong, and J. Sheng, “Morphology of ultrafine polysulfone fibers prepared by electrospinning,” Polymer International, Vol. 53, pp. 1704-1710, 2004.
[48] R. V. N. Krishnappa, K. Desai, and C. Sung, “Morphological study of electrospun polycarbonates as a function of the solvent and processing voltage,” Journal of Materials Science, Vol. 38, pp. 2357-2365, 2003.
[49] X. Wang, I. C. Um, D. Fang, A. Okamoto, B. S. Hsiao, and B. Chu, “Formation of water-resistant hyaluronic acid nanofibers by blowing-assisted electro-spinning and non-toxic post treatments,” Polymer, Vol. 46, pp. 4853-4867, 2005.
[50] C. Y. Xu, R. Inai, M. Kotaki, and S. Ramakrishna, “Aligned biodegradable nanofibrous structure: a potential scaffold for blood vessel engineering,” Biomaterials, Vol. 25, pp. 877-886, 2004.
[51] R. Kessick and G. Tepper, “Microscale electrospinning of polymer nanofiber interconnections,” Applied Physics Letters, Vol. 83, pp. 557-559, 2003.
[52] C. S. Ki, D. H. Baek, K. D. Gang, K. H. Lee, I. C. Um, and Y. H. Park, “Characterization of gelatin nanofiber prepared from gelatin–formic acid solution,” Polymer, Vol. 46, pp. 5094-5102, 2005.
[53] C. J. Buchko, L. C. Chen, Y. Shen, and D. C. Martin, “Processing and microstructural characterization of porous biocompatible protein polymer thin films,” Polymer, Vol. 40, pp. 7397-7407, 1999.
[54] K. Jun, O. Reid, Y. Yanou, C. David, M. Robert, W. C. Geoffrey, et al., “A scanning tip electrospinning source for deposition of oriented nanofibres,” Nanotechnology, Vol. 14, p. 1124, 2003.
[55] Q. Yang, Z. Li, Y. Hong, Y. Zhao, S. Qiu, C. Wang, et al., “Influence of solvents on the formation of ultrathin uniform poly(vinyl pyrrolidone) nanofibers with electrospinning,” Journal of Polymer Science Part B: Polymer Physics, Vol. 42, pp. 3721-3726, 2004.
[56] J. S. Choi, S. W. Lee, L. Jeong, S.-H. Bae, B. C. Min, J. H. Youk, et al., “Effect of organosoluble salts on the nanofibrous structure of electrospun poly(3-hydroxybutyrate-co-3-hydroxyvalerate),” International Journal of Biological Macromolecules, Vol. 34, pp. 249-256, 2004.
[57] H. Chaobo, C. Shuiliang, L. Chuilin, H. R. Darrell , Q. Haiyan, Y. Ying, et al., “Electrospun polymer nanofibres with small diameters,” Nanotechnology, Vol. 17, p. 1558, 2006.
[58] C. Mit-uppatham, M. Nithitanakul, and P. Supaphol, “Ultrafine Electrospun Polyamide-6 Fibers: Effect of Solution Conditions on Morphology and Average Fiber Diameter,” Macromolecular Chemistry and Physics, Vol. 205, pp. 2327-2338, 2004.
[59] D. Li, G. Ouyang, J. T. McCann, and Y. Xia, “Collecting Electrospun Nanofibers with Patterned Electrodes,” Nano Letters, Vol. 5, pp. 913-916, 2005.
[60] C. L. Casper, J. S. Stephens, N. G. Tassi, D. B. Chase, and J. F. Rabolt, “Controlling Surface Morphology of Electrospun Polystyrene Fibers:  Effect of Humidity and Molecular Weight in the Electrospinning Process,” Macromolecules, Vol. 37, pp. 573-578, 2004.
[61] W. E. Teo and S. Ramakrishna, “A review on electrospinning design and nanofibre assemblies,” Nanotechnology, Vol. 17, p. R89, 2006.
[62] F. Li, Y. Zhao, and Y. Song, Core-Shell Nanofibers: Nano Channel and Capsule by Coaxial Electrospinning, 2010.
[63] N. Zhu and X. Chen, Biofabrication of Tissue Scaffolds, 2013.
[64] 劉士榮, 高分子加工: 滄海書局,二版, 2010.
[65] 劉士榮, 高分子流變學: 滄海書局,二版, 2005.
[66] 劉大佼, 高分子加工原理與應用: 國立編譯館,揚智文化, 1997.
[67] “ANSYS Fluent Theory Guide 15.0,” ed: ANSYS Inc, November, 2013.
[68] D. Merrouche, K. Mohammedi, and I. Belaidi, “Coupling the VOF and the MHD models for the simulation of bubble rising in a metallic liquid,” International Journal of Material Forming, Vol. 1, pp. 1107-1110, 2008.
[69] Y. Liu, J. Li, Y. Tian, X. Yu, J. Liu, and B.-M. Zhou, “CLSVOF method to study the formation process of taylor cone in crater-like electrospinning of nanofibers,” J. Nanomaterials, Vol. 2014, pp. 6-6, 2014.
[70] C. W. Hirt and B. D. Nichols, “Volume of fluid (VOF) method for the dynamics of free boundaries,” Journal of Computational Physics, Vol. 39, pp. 201-225, 1981.
[71] J. U. Brackbill, D. B. Kothe, and C. Zemach, “A continuum method for modeling surface tension,” Journal of Computational Physics, Vol. 100, pp. 335-354, 1992.
[72] J. W. Whalen, “Physical chemistry of surfaces, fourth edition (Adamson, Arthur W.),” Journal of Chemical Education, Vol. 60, p. A322, 1983.
[73] B. A. Nichita, I. Zun, and J. R. Thome, “A VOF method coupled with a dynamic contact angle model for simulation of two-phase flows with partial wetting,” presented at the 7th International Conference on Multiphase Flow, ICMF 2010.
[74] “ANSYS Fluent User's Guide 15.0,” ed: ANSYS Inc, November, 2013.
[75] “ANSYS Fluent Magnetohydrodynamics (MHD) Module Manual,” ed: ANSYS Inc, November, 2013.
[76] R. I. Issa, “Solution of the implicitly discretised fluid flow equations by operator-splitting,” J. Comput. Phys., Vol. 62, pp. 40-65, 1986.
[77] M. Enayati, Z. Ahmad, E. Stride, and M. Edirisinghe, “Size mapping of electric field-assisted production of polycaprolactone particles,” J R Soc Interface, Vol. 7, pp. S393-402, 2010.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code