Responsive image
博碩士論文 etd-0610115-155010 詳細資訊
Title page for etd-0610115-155010
論文名稱
Title
中溫固態氧化物燃料電池披覆式複合陰極之製備及性能研究
Preparation and characterization of infiltration type composite cathode for intermediate temperature solid oxide fuel cells
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
95
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-06-29
繳交日期
Date of Submission
2015-07-27
關鍵字
Keywords
PrBaCo2O5+δ (PBC)、Ce0.9Gd0.1O2−δ (CGO)、Sm0.5Sr0.5CoO3−δ (SSC)、界面阻抗、披覆、陰極
Ce0.9Gd0.1O2−δ (CGO), Sm0.5Sr0.5CoO3−δ (SSC), PrBaCo2O5+δ (PBC), Area specific resistance, Infiltration, Cathodes
統計
Statistics
本論文已被瀏覽 5692 次,被下載 32
The thesis/dissertation has been browsed 5692 times, has been downloaded 32 times.
中文摘要
本研究以披覆式製備兩種類型的電極,其一為以混合導體材料做為骨架,另一為以離子導體作為骨架。混合導體骨架類型的電極主要披覆PrBaCo2O5+δ (PBC) 或Ce0.9Gd0.1O2-δ (CGO) 在Sm0.5Sr0.5CoO3−δ (SSC) 陰極骨架上,而離子導體骨架類型的電極主要披覆Sm0.5Sr0.5CoO3−δ (SSC) 或PrBaCo2O5+δ (PBC)在Ce0.9Gd0.1O2-δ (CGO) 陰極骨架上,披覆的溶液以金屬硝酸鹽類作為前驅物並加入乙醇作為潤濕劑。結果顯示隨著披覆材料的含量增加,界面阻抗(area specific resistance, ASR)值先減小再增加,而SSC形成的陰極骨架中披覆15 wt.% PBC和10 wt.% CGO其界面阻抗值相對較低,在量測溫度650ºC空氣氣氛下,SSC形成的陰極骨架中披覆15 wt.% PBC的界面阻抗值達0.0341 Ω cm2,而披覆10 wt.% CGO的界面阻抗值達0.107 Ω cm2。另外在離子導體骨架類型,CGO形成的陰極骨架中披覆50 wt.% SSC和50 wt.% PBC其界面阻抗值相對較低,在量測溫度650ºC空氣氣氛下,在50 wt.% SSC和50 wt.% PBC披覆式陰極分別獲得界面阻抗值達0.0227和0.0136 Ω cm2。然而PBC披覆在CGO陰極骨架上為較優越的陰極表現,因PBC對氧具有快速的表面交換速率和離子擴散的特性,並且CGO陰極骨架使電極與電解質間有良好的鍵結。
Abstract
Two types of electrodes are constructed by the infiltration method in this study. One is mixed conducting backbone type, while the other is ionic conducting backbone type. Mixed conducting backbone type is infiltrating PrBaCo2O5+δ (PBC) and Ce0.9Gd0.1O2-δ (CGO) into Sm0.5Sr0.5CoO3−δ (SSC) backbones respectively, while the ionic conducting backbone type is infiltrating Sm0.5Sr0.5CoO3−δ (SSC) and PrBaCo2O5+δ (PBC) into Ce0.9Gd0.1O2-δ (CGO) backbones respectively. Infiltrated solutions are prepared using metal nitrates as precursors and ethanol as wetting agent. The results indicate that area specific resistance (ASR) value decreases and then increases with infiltrate loading and minimum values occur at 15 wt.% and 10 wt.% loading for PBC and CGO infiltrated on SSC backbones, respectively. In particular ASR values as low as 0.0341 and 0.107 Ω cm2 are obtained at 650ºC in air for 15 wt.% PBC and 10 wt.% CGO infiltrated cathodes, respectively. In ionic conducting backbone type, ASR minimum values occur at 50 wt.% loading for both SSC and PBC infiltrates on CGO backbones. In particular ASR values as low as 0.0227 and 0.0136 Ω cm2 are obtained at 650ºC in humidified air for 50 wt.% SSC and 50 wt.% PBC infiltrated cathodes, respectively. The superior cathode performance of PBC infiltrated into CGO backbones is due to its faster surface exchange rate and ion diffusivity of oxygen and good bonding between the electrode and electrolyte.
目次 Table of Contents
論文審定書 i
誌謝 ii
摘要 iii
Abstract iv
目錄 v
圖目錄 ix
表目錄 xiii
第一章 前言 1
1-1 研究背景 1
1-2 研究動機 2
第二章 理論基礎與文獻回顧 4
2-1 燃料電池的發展 4
2-2 固態氧化物燃料電池結構 6
2-3 固態氧化物燃料電池工作原理 6
2-4 陰極類型 9
2-5電極電化學反應位置 11
2-6 電解質材料Ce0.9Gd0.1O2−δ (Cerium Gadolinium Oxygen, CGO) 12
2-7 披覆式陰極(infiltrated cathode) 14
2-8 陰極材料 17
2-8-1 Sm0.5Sr0.5CoO3-δ (SSC)材料 17
2-8-1-1 Sm0.5Sr0.5CoO3-δ晶體結構 17
2-8-1-2 Sm0.5Sr0.5CoO3-δ材料導電性 18
2-8-1-3 Sm0.5Sr0.5CoO3-δ對氧的表面交換及氧的擴散特性 20
2-8-2 PrBaCo2O5+δ (PBC)材料 21
2-8-2-1 PrBaCo2O5+δ晶體結構 21
2-8-2-2 PrBaCo2O5+δ材料導電性 23
2-8-2-3 PrBaCo2O5+δ對氧的表面交換及氧的擴散特性 24
2-9 電化學理論 25
2-9-1 燃料電池的極化現象 25
2-9-2 內電流損失 25
2-9-3 歐姆極化 26
2-9-4 活性極化 26
2-9-5 電極界面的濃度極化 27
2-9-6 頻率分析 28
第三章 實驗步驟與規劃 30
3-1 實驗藥品 30
3-2 實驗規劃 31
3-3 實驗流程 31
3-4 CGO電解質基材製備 32
3-5 製備SSC陰極粉末 32
3-6 製備SSC陰極骨架 33
3-7 製備CGO陰極骨架 34
3-8 披覆溶液 35
3-9 X光繞射儀分析 35
3-10 掃描式電子顯微鏡分析 36
3-11 電化學特性量測 36
第四章 結果與討論 38
4-1 Sm0.5Sr0.5CoO3-δ (SSC)陰極骨架披覆結果 38
4-1-1 SSC/CGO/SSC對稱電池分析結果 38
4-1-1-1 SSC陰極在CGO基材上之XRD分析 38
4-1-1-2 SSC陰極在CGO基材上之SEM分析 39
4-1-1-3 SSC/CGO/SSC對稱電池之EIS分析 40
4-1-2 PBC-SSC/CGO/SSC-PBC對稱電池分析結果 41
4-1-2-1 披覆PBC材料的SSC陰極在CGO基材上之XRD分析 41
4-1-2-2 披覆PBC材料的SSC陰極在CGO基材上之SEM分析 42
4-1-2-3 PBC-SSC/CGO/SSC-PBC對稱電池之EIS分析 45
4-1-3 CGO-SSC/CGO/SSC-CGO對稱電池分析結果 49
4-1-3-1 附著CGO材料的SSC粉末之XRD分析 49
4-1-3-2 披覆CGO材料的SSC陰極在CGO基材上之SEM分析 50
4-1-3-3 CGO-SSC/CGO/SSC-CGO對稱電池之EIS分析 52
4-2 Ce0.9Gd0.1O2-δ (CGO)陰極骨架披覆結果 56
4-2-1 CGO陰極骨架分析結果 56
4-2-1-1 CGO陰極在CGO基材上之XRD分析 56
4-2-1-2 CGO陰極在CGO基材上之SEM分析 57
4-2-2 SSC-CGO/CGO/CGO-SSC對稱電池分析結果 58
4-2-2-1 披覆SSC材料的CGO陰極在CGO基材上之XRD分析 58
4-2-2-2 披覆SSC材料的CGO陰極在CGO基材上之SEM分析 59
4-2-2-3 SSC-CGO/CGO/CGO-SSC對稱電池之EIS分析 61
4-2-3 PBC-CGO/CGO/CGO-PBC對稱電池分析結果 66
4-2-3-1 披覆PBC材料的CGO陰極在CGO基材上之XRD分析 66
4-2-3-2 披覆PBC材料的CGO陰極在CGO基材上之SEM分析 68
4-2-3-3 PBC-CGO/CGO/CGO-PBC對稱電池之EIS分析 70
4-3 本研究四種對稱電池之性能比較 75
第五章 結論 77
參考文獻 78
參考文獻 References
[1] O. Yamamoto, Electrochim. Acta, 45 (2000) 2423-2435.
[2] I. Park, J. Choi, H. Lee, D. Shin, Ceram. Int., 39 (2013) 5561-5569.
[3] C. Zhu, X. Liu, C. Yi, L. Pei, D. Wang, D. Yan, K. Yao, T. Lü, W. Su, J. Power Sources, 195 (2010) 3504-3507.
[4] F. Zhao, R. Peng, C. Xia, Mater. Res. Bull., 43 (2008) 370-376.
[5] S. P. Jiang, Int. J. Hydrogen Energy, 37 (2012) 449-470.
[6] C. Y. Fu, C. L. Chang, C. S. Hsu, B. H. Hwang, Mater. Chem. Phys., 91 (2005) 28-35.
[7] C. S. Hsu, B. H. Hwang, J. Electrochem. Soc., 153 (2006) A1478-A1483.
[8] C. Xia, W. Rauch, F. Chen, M. Liu, Solid State Ionics, 149 (2002) 11-19.
[9] C. L. Chang, C. S. Hsu, B. H. Hwang, J. Power Sources, 179 (2008) 734-738.
[10] C. H. Chen, C. L. Chang, B. H. Hwang, Mater. Chem. Phys., 115 (2009) 478-482.
[11] Y. Wang, H. Zhang, F. Chen, C. Xia, J. Power Sources, 203 (2012) 34-41.
[12] W. R. Grove, Philos. Mag., 14 (1839) 127-130.
[13] W. Nernst, Zeitschrift für Elektrochemie, 6 (1899) 41-43.
[14] E. Baur, H. Preis, Zeitschrift für Elektrochemie, 43 (1937) 727-732.
[15] M. C. Williams, Fuel Cells, (2011) 11-27.
[16] K. Kordesch, G. Simader, Fuel Cells and Their Applications, Wiley-VCH, 1996.
[17] D. Y. Wang, A. S. Nowick, J. Electrochem. Soc., 126 (1979) 1155-1165.
[18] B. C. H. Steele, Solid State Ionics, 86-88 (1996) 1223-1234.
[19] S. M. Haile, Acta Mater., 51 (2003) 5981-6000.
[20] N. Q. Minh, J. Am. Ceram. Soc., 76 (1993) 563-588.
[21] S. B. Adler, Chem. Rev., 104 (2004) 4791-4843.
[22] Y. Wang, T. Mori, J. G. Li, J. Drennan, J. Eur. Ceram. Soc., 25 (2005) 949-956.
[23] V. Grover, A. K. Tyagi, Mater. Res. Bull., 39 (2004) 859-866.
[24] S. Bebelis, V. Kournoutis, A. Mai, F. Tietz, Solid State Ionics, 179 (2008) 1080-1084.
[25] H. Inaba, H. Tagawa, Solid State Ionics, 83 (1996) 1-16.
[26] J. A. Kilner, R. J. Brook, Solid State Ionics, 6 (1982) 237-252.
[27] S. P. Jiang, W. Wang, Solid State Ionics, 176 (2005) 1351-1357.
[28] J. Chen, F. Liang, L. Liu, S. Jiang, B. Chi, J. Pu, J. Li, J. Power Sources, 183 (2008) 586-589.
[29] D. Ding, X. Li, S. Y. Lai, K. Gerdes, M. Liu, Energy Environ. Sci., 7 (2014) 552-575.
[30] W. Zhu, D. Ding, C. Xia, Electrochem. Solid-State Lett., 11 (2008) B83-B86.
[31] Z. Jiang, C. Xia, F. Chen, Electrochim. Acta, 55 (2010) 3595-3605.
[32] V. M. Goldschmidt, Naturwissenschaften, 14 (1926) 477-485.
[33] F. D. Bloss, Crystallography and Crystal Chemistry: An Introduction, Holt Rinehart and Winston, 1971.
[34] H. Y. Tu, Y. Takeda, N. Imanishi, O. Yamamoto, Solid State Ionics, 100 (1997) 283-288.
[35] T. C. Yeh, J. L. Routbort, T. O. Mason, Solid State Ionics, 232 (2013) 138-143.
[36] K. Zhang, L. Ge, R. Ran, Z. Shao, S. Liu, Acta Mater., 56 (2008) 4876-4889.
[37] A. A. Taskin, A. N. Lavrov, Y. Ando, Appl. Phys. Lett., 86 (2005) 091910-1-09191-3.
[38] G. Kim, S. Wang, A. J. Jacobson, L. Reimus, P. Brodersen, C. A. Mims, J. Mater. Chem., 17 (2007) 2500-2505.
[39] A. J. Bard, L. R. Faulkener, Electrochemical Methods- Fundamental and Applications, Wiley, 2001.
[40] Y. Guo, D. Chen, H. Shi, R. Ran, Z. Shao, Electrochim. Acta, 56 (2011) 2870-2876.
[41] T. Ishihara, S. Fukui, H. Nishiguchi, Y. Takita, J. Electrochem. Soc., 149 (2002) A823-A828.
[42] Y. P. Fu, C. H. Li, S. H. Hu, J. Electrochem. Soc., 159 (2012) B629-B634.
[43] J. D. Nicholas, L. Wang, A. V. Call, S. A. Barnett, Phys. Chem. Chem. Phys., 14 (2012) 15379-15392.
[44] F. Wang, D. Chen, Z. Shao, J. Power Sources, 216 (2012) 208-215.
[45] H. Zhang, F. Zhao, F. Chen, C. Xia, Solid State Ionics, 192 (2011) 591-594.
[46] F. Zhao, Z. Wang, M. Liu, L. Zhang, C. Xia, F. Chen, J. Power Sources, 185 (2008) 13-18.
[47] S. Mimuro, S. Shibako, Y. Oyama, K. Kobayashi, T. Higuchi, S. Shin, S. Yamaguchi, Solid State Ionics, 178 (2007) 641-647.
[48] H. Hayashi, M. Kanoh, C. J. Quan, H. Inaba, S. Wang, M. Dokiya, H. Tagawa, Solid State Ionics, 132 (2000) 227-233.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code