Responsive image
博碩士論文 etd-0611112-081034 詳細資訊
Title page for etd-0611112-081034
論文名稱
Title
非晶鋯銅金屬玻璃與奈米晶銅多層薄膜之拉伸性質
Tensile Response of Amorphous/Nanocrystalline ZrCu/Cu Multilayered Thin Films
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
223
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-06-06
繳交日期
Date of Submission
2012-06-11
關鍵字
Keywords
非晶質、奈米晶、多層薄膜、濺鍍製程、拉伸測試、混合法則、梯度介面
tensile testing, sputtering processes, multilayered thin films, nanocrystalline, amorphous, rule of mixtures, graded interfaces
統計
Statistics
本論文已被瀏覽 5756 次,被下載 495
The thesis/dissertation has been browsed 5756 times, has been downloaded 495 times.
中文摘要
本篇論文中,擁有各種條件例如不同單層厚度、不同薄膜總厚度以及相異的層與層間介面形式的非晶質鋯銅與奈米晶銅多層薄膜(amorphous/nanocrystalline ZrCu/Cu multilayered thin films),成功的藉由多靶濺鍍製程(multi-guns sputtering processes)而製備完成。為了研究此多層薄膜,各種參數下所製備之多層薄膜被濺鍍於純銅箔(Cu foil)以及聚醯亞胺薄片(polyimide foil)上,而後隨即進行拉伸測試以了解其機械性質。

首先,單層(monolithic)之鋯銅金屬玻璃薄膜與非晶質鋯銅與奈米晶銅之多層薄膜被濺鍍於純銅箔上,並且有系統的分析其拉伸行為。藉由計算而擷取出之總厚度為一微米的多層薄膜之拉伸模數與強度與利用混合法則(ROM, rule of mixtures)所預測之結果相當吻合。雖然總厚度為兩微米之多層薄膜的拉伸模數與拉伸強度數值偏低,但經由校正未受破壞之實際接觸截面積後,其數值仍可接近於利用混合法則所得之拉伸理論數值。此外,實驗結果顯示出,鋯銅與銅多層薄膜之拉伸表現遠優於單層鋯銅金屬玻璃薄膜,這也代表,非晶質與奈米晶多層薄膜的結構,確實能改善單層金屬玻璃薄膜在拉伸測試下的機械性質。

接著,為了進一步研究多層薄膜的拉伸性質,單層膜厚為十奈米至一百奈米之聚醯亞胺薄片支撐的非晶質鋯銅與奈米晶銅多層薄膜亦製備完成,以進行接續的拉伸測試。相對於銅箔的機械性質,聚醯亞胺薄片具有相對軟、平整且可彎曲的特性,以此作為基材,可提供在拉伸測試中足夠的變形能力,降低基材所帶來的影響。分析實驗數據後,實驗值與利用混合法則得出的理論值亦十分接近。在不同單層厚度下,當單層膜厚由一百奈米降低至十奈米時,楊式模數僅有些微波動;然而,在單層膜厚為二十五奈米時,多層薄膜顯示出了相對高的拉伸強度。同時,藉由觀察表面裂縫的分布狀態,較寬的裂縫間距與較低的裂縫密度皆可在單層膜厚為二十五奈米之多層薄膜上所觀察到,亦反應出其高強度的特性。

最後,在非晶質與結晶多層薄膜中,為了避免相鄰的非晶質與結晶薄膜在彈性模數與強度上的差異(mismatch)所造成在應力與應變上的不一致(incompatibility),具有明顯介面(sharp interfaces)與梯度介面(graded interfaces)之濺鍍在銅箔上的非晶質鋯銅與奈米晶銅之多層薄膜被製備出來進行拉伸測試與分析。在測試後,多層薄膜之拉伸性質被擷取出來,同時將這些實驗數值與利用兩相與三相混合法則所計算的理論值所相比較。在具有約五十奈米厚梯度介面的兩層、六層以及八層多層薄膜中,均顯示出相較於擁有明顯介面多層薄膜優秀的拉伸強度與伸長量。在利用梯度介面降低了相鄰的非晶質與結晶薄膜在應力與應變上的不一致後,這些結果是合理並且可被預期與應用的。
Abstract
In this research, the amorphous/nanocrystalline ZrCu/Cu multilayered thin films with various conditions such as individual layer thickness, total layer thickness, and interface type have been successfully fabricated by the multi-gun sputtering processes. To investigate the mechanical properties and deformation behaviors of substrate-supported ZrCu/Cu multilayered thin films, these films deposited on the Cu or polyimide foils were prepared for tensile testing.
Firstly, the tensile behaviors of the monolithic ZrCu thin film metallic glass and the ZrCu/Cu multilayered thin films deposited on the pure Cu foils are systematically examined. The extracted tensile modulus and strength of the 1-μm-thick multilayered thin films are in good agreement with the theoretical iso-strain rule of mixture prediction. The extracted 2-μm-thick multilayered film data are lower, but can be corrected back by considering the actual intact cross-sectional area during the tensile loading. Moreover, the current results reveal that the ZrCu/Cu multilayered coating exhibit much better tensile performance than the monolithic ZrCu coating. It indicates that the amorphous/nanocrystalline multilayered thin film structure can certainly enhance the mechanical properties of monolithic thin film metallic glasses under tension.
Secondly, for the further investigation of tensile response, the polyimide-supported amorphous/nanocrystalline ZrCu/Cu multilayered thin films with various individual layer thicknesses from 10 to 100 nm were prepared. The relatively soft, smooth, and flexible polyimide foils as the substrates in this experiment can undergo sufficient deformation under In this research, the amorphous/nanocrystalline ZrCu/Cu multilayered thin films with various conditions such as individual layer thickness, total layer thickness, and interface type have been successfully fabricated by the multi-gun sputtering processes. To investigate the mechanical properties and deformation behaviors of substrate-supported ZrCu/Cu multilayered thin films, these films deposited on the Cu or polyimide foils were prepared for tensile testing.
Firstly, the tensile behaviors of the monolithic ZrCu thin film metallic glass and the ZrCu/Cu multilayered thin films deposited on the pure Cu foils are systematically examined. The extracted tensile modulus and strength of the 1-μm-thick multilayered thin films are in good agreement with the theoretical iso-strain rule of mixture prediction. The extracted 2-μm-thick multilayered film data are lower, but can be corrected back by considering the actual intact cross-sectional area during the tensile loading. Moreover, the current results reveal that the ZrCu/Cu multilayered coating exhibit much better tensile performance than the monolithic ZrCu coating. It indicates that the amorphous/nanocrystalline multilayered thin film structure can certainly enhance the mechanical properties of monolithic thin film metallic glasses under tension.
Secondly, for the further investigation of tensile response, the polyimide-supported amorphous/nanocrystalline ZrCu/Cu multilayered thin films with various individual layer thicknesses from 10 to 100 nm were prepared. The relatively soft, smooth, and flexible polyimide foils as the substrates in this experiment can undergo sufficient deformation under tension. The modulus and strength of the multilayered thin film are again demonstrated to be consistent with the theoretical iso-strain rule of mixture values. As the individual layer thickness decreases from 100 to 10 nm, the Young’s moduli are only varied slightly. However, the maximum tensile stress exhibits a highest value for the 25 nm layer thickness. The higher crack spacing, or the lower crack density, of this 25 nm multilayer film leads to the highest strength.
Thirdly, to avoid the stress and strain incompatibility owing to the mismatch of elastic modulus and strength levels from the connected amorphous/nanocrystalline layers, the Cu-supported amorphous/nanocrystalline ZrCu/Cu multilayered thin films with sharp and graded interfaces were successfully sputtered and examined by tensile testing. The extracted tensile properties of the multilayered films can be compared with the predicted values based on the two-phase and three-phase iso-strain rule of mixture model. The multilayered films with graded interfaces, each about 50 nm thick, consistently exhibit higher tensile strength and elongation. This can be rationalized by the reduced stress and strain incompatibility along the interfaces.
目次 Table of Contents
Content i
List of Tables v
List of Figures vii
中文摘要 xvi
Abstract xviii
Chapter 1 Introduction 1
1.1 Introduction of amorphous alloys and metallic glasses 1
1.2 Special factors of metallic glasses 3
1.2.1 Supercooled liquid region (SCLR) 3
1.2.2 Glass forming ability (GFA) 5
1.3 Development of metallic glasses 7
Chapter 2 Background and literature review 13
2.1 Thin film metallic glasses 13
2.1.1 Development of thin film metallic glasses 13
2.1.2 Properties of thin film metallic glasses 15
2.1.2.1 Thermal properties 15
2.1.2.2 Mechanical properties 17
2.1.2.3 Deformation mechanisms 22
2.1.3 Development of Zr-based thin film metallic glasses 27
2.1.4 Applications of thin film metallic glasses 29
2.2 Sputtering process of physical vapor deposition technique 30
2.2.1 DC and RF magnetron sputtering processes 30
2.2.2 Growth of as-sputtered thin films 33
2.3 Characterization of micro-mechanical properties 36
2.3.1 Introduction of tensile testing for microscaled thin films 36
2.3.2 Development of tensile testing for the free-standing thin films 36
2.3.3 Development of tensile testing for thin films deposited on substrates 38
2.3.4 Mechanical properties of multilayered thin films 41
2.3.5 Mechanical properties of multilayered thin films with graded interfaces 44
2.4 Motivation 45
Chapter 3 Experimental procedures 48
3.1 Flow chart 48
3.2 Raw materials 49
3.3 Sample preparation 49
3.3.1 Substrate preparation 49
3.3.1.1 Si wafers 49
3.3.1.2 Cu foils 50
3.3.1.3 Polyimide foils 51
3.3.2 Thin film preparation 51
3.3.2.1 Amorphous/nanocrystalline multilayered thin films deposited on Cu foils 51
3.3.2.2 Amorphous/nanocrystalline multilayered thin films deposited on polyimide foils 53
3.3.2.3 Amorphous/nanocrystalline multilayered thin films with graded interfaces deposited on Cu foils 55
3.4 Property measurements and analyses 57
3.4.1 X-ray diffraction (XRD) 57
3.4.2 Qualitative and quantitative alloy composition analyses 57
3.4.3 Microstructure examinations and surface observations 57
3.4.3.1 3D alpha-step profilometer 57
3.4.3.2 Scanning electron microscopy (SEM) 58
3.4.3.3 Transmission electron microscopy (TEM) 58
3.4.4 Mechanical properties 60
3.4.4.1 Nanoindentation test 60
3.4.4.2 Tensile test 61
Chapter 4 Results and discussion 63
4.1 Tensile response of ZrCu/Cu multilayered thin films deposited on Cu foils 63
4.1.1 Analyses of structure and composition for multilayered thin films 63
4.1.2 Theoretical prediction by rule of mixtures (ROM) 64
4.1.3 Extraction of tensile stress for multilayered thin films 65
4.1.4 Dependence of layer thickness 68
4.1.5 Remarks 71
4.2 Tensile response of ZrCu/Cu multilayered thin films deposited on polyimide foils 73
4.2.1 Analyses of structure and composition for multilayered thin films 73
4.2.2 Extraction of tensile stress for multilayered thin films 75
4.2.3 Dependence of layer thickness 76
4.3 Tensile response of amorphous/nanocrystalline ZrCu/Cu multilayered thin films with graded interfaces 78
4.3.1 Analyses of structure and composition for multilayered thin films 79
4.3.2 Microstructure identification of multilayered thin films with graded interfaces 80
4.3.3 Comparison of tensile response for multilayered thin films with graded and sharp interfaces 81
Chapter 5 Conclusions 85
References 88
Tables 99
Figures 114
參考文獻 References
[1] B.G. Bagley, H.S. Chen, and D. Turnbull, Mat. Res. Bull. 3 (1968) 159-168.
[2] A.L. Greer, Science 267 (1995) 1947-1953.
[3] W.L. Johnson, MRS Bull. 24 (1999) 42-56.
[4] A. Inoue, Acta Mater. 48 (2000) 279-306.
[5] W.H. Wang, C. Dong, and C.H. Shek, Mater. Sci. Eng. R 44 (2004) 45-89.
[6] D. Turnbull, Metall. Mater. Trans. B 12 (1981) 695-708.
[7] S. Mader, Thin Solid Films 35 (1976) 195-200.
[8] S. Mader, J. Vac. Sci. Technol. 2 (1965) 35-41.
[9] S.M. Prokes and F. Spaepen, App. Phys. Lett. 47 (1985) 234.
[10] K. Holloway and R. Sinclair, J. Appl. Phys. 61 (1987) 1359.
[11] J. Zarzycki, Glasses and Amorphous Materials, (1991), New York: VCH Publishers Inc.
[12] S.H. Yang and W.J. Lee, Solid State Commun. 53 (1985) 993-995.
[13] H.N. Yang, Y.P. Zhao, G.C. Wang, and T.M. Lu, Phys. Rev. Lett. 76 (1996) 3774-3777.
[14] A. Inoue, B.L. Shen, H. Koshiba, H. Kato, and A.R. Yavari, Nature Mater. 2 (2003) 661-663.
[15] J. Schroers, Q. Pham, and A. Desai, J. Microelectromech. Syst. 16 (2007) 240-247.
[16] G.Y. Wang, P.K. Liaw, W.H. Peter, B. Yang, M. Freels, Y. Yokoyama, M.L. Benson, B.A. Green, T.A. Saleh, R.L. McDaniels, R.V. Steward, R.A. Buchanan, C.T. Liu, and C.R. Brooks, Intermetallics 12 (2003) 1219-1227.
[17] A. Inoue, Sci. Rep. Res. Inst. Tohoku Univ. A 42 (1996) 1-11.
[18] A. Inoue, B. Shen, and A. Takeuchi, Mater. Trans. JIM 47 (2006) 1275-1285.
[19] J.P. Chu, J.C. Huang, and J.S.C. Jang, JOM 62 (2010) 19-24.
[20] H.S. Chen, J. Chem. Phys. 48 (1968) 2560.
[21] Y.D. Liu, S. Hata, K. Wada, and A. Shimokohbe, Jpn. J. Appl. Phys. 40 (2001) 5382-5388.
[22] S. Wang, D. Sun, S. Hata, J. Sakurai, and A. Shimokohbe, Sens. Actuators A 153 (2009) 120-126.
[23] A. Inoue, N. Matsumoto, and T. Masumoto, Mater. Trans. JIM 31 (1990) 493-500.
[24] S. Hata, J. Sakurai, and A. Shimokohbe, Thin film metallic glasses as new mems materials, in 18th IEEE International Conference on Micro Electro Mechanical Systems (MEMS), (2005) Miami Beach, FL.
[25] A. Inoue, T. Shimizu, S.-i. Yamaura, Y. Fujita, S. Takagi, and H. Kimura, Mater. Trans. 46 (2005) 1706-1710.
[26] A. Inoue, H. Horikiri, A. Kato, and T. Masumoto, Mater. Trans. JIM 35 (1994) 79-82.
[27] Y. Saotome, K. Imai, S. Shioda, S. Shimizu, T. Zhang, and A. Inoue, Intermetallics 10 (2002) 1241-1247.
[28] M. Ishida, H. Takeda, D. Watanabe, K. Amiya, N. Nishiyama, K. Kita, Y. Saotome, and A. Inoue, Mater. Trans. JIM 45 (2004) 1239-1244.
[29] N. Nishiyama, K. Amiya, and A. Inoue, Mater. Trans. JIM 45 (2004) 1245-1250.
[30] I.R. Lu, G. Wilde, G.P. Gorler, and R. Willnecker, J. Non-Cryst. Solids 250–252, Part 2 (1999) 577-581.
[31] A. Inoue, Mater. Trans. JIM 36 (1995) 866-875.
[32] A. Inoue, Mater. Sci. Eng. A 226–228 (1997) 357-363.
[33] L.Q. Ma, L.M. Wang, T. Zhang, and A. Inoue, J. Mater. Sci. Lett. 17 (1998) 1893-1895.
[34] C. Suryanarayana and A. Inoue, Chapter 3 Glass-Forming Ability of Alloys, in Bulk Metallic Glasses, (2010) 49-144. CRC Press: Boca Raton.
[35] Z.P. Lu and C.T. Liu, Acta Mater. 50 (2002) 3501-3512.
[36] D.E. Polk, Acta Metall. 20 (1972) 485-491.
[37] S.R. Nagel and J. Tauc, Phys. Rev. Lett. 35 (1975) 380-383.
[38] H.S. Chen and B.K. Park, Acta Metall. 21 (1973) 395-400.
[39] K.S. Dubey and P. Ramachandrarao, Int. J. Rapid Solidif. 5 (1990) 127-135.
[40] S.H. Whang, Mater. Sci. Eng. 57 (1983) 87-95.
[41] T. Egami and Y. Waseda, J. Non-Cryst. Solids 64 (1984) 113-134.
[42] Z.P. Lu and C.T. Liu, Phys. Rev. Lett. 91 (2003) 115505.
[43] Z.P. Lu and C.T. Liu, Intermetallics 12 (2004) 1035-1043.
[44] X.H. Du, J.C. Huang, K.C. Hsieh, Y.H. Lai, H.M. Chen, J.S.C. Jang, and P.K. Liaw, Appl. Phys. Lett. 91 (2007) 131901.
[45] Z.P. Lu, Y. Liu, and C.T. Liu, Evalution of glass-forming ability, in Bulk Metallic Glasses, (2008) 87-108. Springer Science+Business Media, LLC: New York.
[46] W. Klement, R.H. Willens, and P. Duwez, Nature 187 (1960) 869-870.
[47] H.S. Chen and D. Turnbull, Acta Metall. 17 (1969) 1021-1031.
[48] H.S. Chen and C.E. Miller, Rev. Sci. Instrum. 41 (1970) 1237-1238.
[49] H.S. Chen, Acta Metall. 22 (1974) 1505-1511.
[50] M.C. Lee, J.M. Kendall, and W.L. Johnson, App. Phys. Lett. 40 (1982) 382-384.
[51] A.J. Drehman, A.L. Greer, and D. Turnbull, Appl. Phys. Lett. 41 (1982) 716-717.
[52] H.W. Kui, A.L. Greer, and D. Turnbull, App. Phys. Lett. 45 (1984) 615-616.
[53] H.W. Kui and D. Turnbull, App. Phys. Lett. 47 (1985) 796-797.
[54] A. Inoue and A. Takeuchi, Mater. Trans. JIM 43 (2002) 1892-1906.
[55] D. Turnbull, Contemp. Phys. 10 (1969) 473-488.
[56] C. Suryanarayana and A. Inoue, Chapter 2 Metallic Glasses, in Bulk Metallic Glasses, (2010) 11-47. CRC Press: Boca Raton.
[57] T. Egami, Atomistic theory of metallic liquids and glasses, in Bulk Metallic Glasses, (2008) 27-52. Springer Science+Business Media, LLC: New York.
[58] A. Takeuchi and A. Inoue, Mater. Trans. JIM 46 (2005) 2817-2829.
[59] A. Inoue, T. Zhang, and T. Masumoto, J. Non-Cryst. Solids 156–158, Part 2 (1993) 473-480.
[60] A. Inoue, N. Nishiyama, and H. Kimura, Mater. Trans. JIM 38 (1997) 179-183.
[61] M. Telford, Mater. Today 7 (2004) 36-43.
[62] J.F. Loffler, Intermetallics 11 (2003) 529-540.
[63] Z.F. Zhang, F.F. Wu, G. He, and J. Eckert, J. Mater. Sci. Technol. 23 (2007) 747-767.
[64] C. Liu, L. Heatherly, J. Horton, D. Easton, C. Carmichael, J. Wright, J. Schneibel, M. Yoo, C. Chen, and A. Inoue, Metall. Mater. Trans. A 29 (1998) 1811-1820.
[65] C.C. Hays, C.P. Kim, and W.L. Johnson, Phys. Rev. Lett. 84 (2000) 2901-2904.
[66] L.Q. Xing, Y. Li, K.T. Ramesh, J. Li, and T.C. Hufnagel, Phys. Rev. B 64 (2001) 18201(R).
[67] J. Schroers and W.L. Johnson, Phys. Rev. Lett. 93 (2004) 255506.
[68] J. Das, M.B. Tang, K.B. Kim, R. Theissmann, F. Baier, W.H. Wang, and J. Eckert, Phys. Rev. Lett. 94 (2005) 205501.
[69] K.F. Yao, F. Ruan, Y.Q. Yang, and N. Chen, App. Phys. Lett. 88 (2006) 122106.
[70] Y.H. Liu, G. Wang, R.J. Wang, D.Q. Zhao, M.X. Pan, and W.H. Wang, Science 315 (2007) 1385-1388.
[71] W. Buckel, Z. Phys. 138 (1954) 136-150.
[72] S. Mader, H. Widmer, F.M. Dheurle, and A.S. Nowick, Appl. Phys. Lett. 3 (1963) 201-203.
[73] S. Mader and A.S. Nowick, App. Phys. Lett. 7 (1965) 57-59.
[74] P. Chaudhari, J.J. Cuomo, and R.J. Gambino, IBM J. Res. Dev. 17 (1973) 66-68.
[75] H.J. Leamy and A.G. Dirks, J. Phys. D: Appl. Phys. 10 (1977) L95.
[76] Y.G. Chen and B.X. Liu, J. Phys. D: Appl. Phys. 30 (1997) 1729-1733.
[77] R.B. Schwarz and W.L. Johnson, Phys. Rev. Lett. 51 (1983) 415-418.
[78] H.S. Chou, J.C. Huang, Y.H. Lai, L.W. Chang, X.H. Du, J.P. Chu, and T.G. Nieh, J. Alloys Compd. 483 (2009) 341-345.
[79] Y.D. Liu, S. Hata, K. Wada, and A. Shimokohbe, Thin film metallic glasses: Fabrication and property test, in 14th IEEE International Conference on Micro Electro Mechanical Systems (MEMS 2001), (2001) Interlaken, Switzerland.
[80] Y. Pauleau, Vacuum 61 (2001) 175-181.
[81] C.L. Chiang, J.P. Chu, F.X. Liu, P.K. Liaw, and R.A. Buchanan, Appl. Phys. Lett. 88 (2006) 131902.
[82] F.X. Liu, P.K. Liaw, W.H. Jiang, C.L. Chiang, Y.F. Gao, Y.F. Guan, J.P. Chu, and P.D. Rack, Mater. Sci. Eng. A 468-470 (2007) 246-252.
[83] T. Masumoto and R. Maddin, Acta Metall. 19 (1971) 725-741.
[84] C.A. Schuh, T.C. Hufnagel, and U. Ramamurty, Acta Mater. 55 (2007) 4067-4109.
[85] M.W. Chen, Mechanical behavior of metallic glasses: Microscopic understanding of strength and ductility, in Annual Review of Materials Research, (2008) 445-469. Annual Reviews: Palo Alto.
[86] H.S. Chen, J. Appl. Phys. 49 (1978) 3289-3291.
[87] A. Katsuya and A. Inoue, Mater. Res. Soc. Sym. Proc. 554 (1999) 107-111.
[88] M. Chinmulgund, R.B. Inturi, and J.A. Barnard, Thin Solid Films 270 (1995) 260-263.
[89] A.L. Greer, A. Castellero, S.V. Madge, I.T. Walker, and J.R. Wilde, Mater. Sci. Eng. A 375 (2004) 1182-1185.
[90] Y.P. Deng, Y.F. Guan, J.D. Fowlkes, S.Q. Wen, F.X. Liu, G.M. Pharr, P.K. Liaw, C.T. Liu, and P.D. Rack, Intermetallics 15 (2007) 1208-1216.
[91] M.C. Liu, J.C. Huang, H.S. Chou, Y.H. Lai, C.J. Lee, and T.G. Nieh, Scripta Mater. 61 (2009) 840-843.
[92] Y.H. Lai, C.J. Lee, Y.T. Cheng, H.S. Chou, H.M. Chen, X.H. Du, C.I. Chang, J.C. Huang, S.R. Jian, J.S.C. Jang, and T.G. Nieh, Scripta Mater. 58 (2008) 890-893.
[93] C.J. Lee, Y.H. Lai, C.W. Tang, J.C. Huang, and J.S.C. Jang, Mater. Trans. 50 (2009) 2795-2800.
[94] D. Turnbull and M.H. Cohen, J. Chem. Phys. 34 (1961) 120-125.
[95] D. Turnbull and M.H. Cohen, J. Chem. Phys. 52 (1970) 3038-3041.
[96] F. Spaepen, Acta Metall. 25 (1977) 407-415.
[97] A.S. Argon, Acta Metall. 27 (1979) 47-58.
[98] A.S. Argon and H.Y. Kuo, Mater. Sci. Eng. 39 (1979) 101-109.
[99] M.L. Falk, Phys. Rev. B 60 (1999) 7062-7070.
[100] V.V. Bulatov and A.S. Argon, Modell. Simul. Mater. Sci. Eng. 2 (1994) 185-202.
[101] T.G. Nieh and J. Wadsworth, Intermetallics 16 (2008) 1156-1159.
[102] T.C. Hufnagel, C. Fan, R.T. Ott, J. Li, and S. Brennan, Intermetallics 10 (2002) 1163-1166.
[103] F.X. Liu, Y.F. Gao, and P.K. Liaw, Metall. Mater. Trans. A 39A (2008) 1862-1867.
[104] E. Brandstetter, C. Mitterer, and R. Ebner, Thin Solid Films 201 (1991) 123-135.
[105] J. Dudonis, R. Brucas, and A. Miniotas, Thin Solid Films 275 (1996) 164-167.
[106] Y. Shigesato, S. Takaki, and T. Haranoh, J. Appl. Phys. 71 (1992) 3364.
[107] J. Feinleib and S.R. Ovshinsky, J. Non-Cryst. Solids 4 (1970) 564-572.
[108] J.P. Chu, C.T. Liu, T. Mahalingam, S.F. Wang, M.J. O'Keefe, B. Johnson, and C.H. Kuo, Phys. Rev. B 69 (2004) 113410.
[109] J. Sakurai, S. Hata, and A. Shimokohbe, Jpn. J. Appl. Phys. 48 (2009)
[110] H. Kakiuchi, A. Inoue, M. Onuki, Y. Takano, and T. Yamaguchi, Mater. Trans. 42 (2001) 678-681.
[111] M. Ishida, H. Takeda, N. Nishiyama, K. Kita, Y. Shimizu, Y. Saotome, and A. Inoue, Mater. Sci. Eng. A 449–451 (2007) 149-154.
[112] J. Schroers, T. Nguyen, S. O'Keeffe, and A. Desai, Mater. Sci. Eng. A 449 (2007) 898-902.
[113] M. Ishida, H. Takeda, N. Nishiyama, K. Kita, Y. Shimizu, Y. Saotome, and A. Inoue, Mater. Sci. Eng. A 449 (2007) 149-154.
[114] J. Eckert, A. Kubler, and L. Schultz, J. Appl. Phys. 85 (1999) 7112-7119.
[115] S. Swann, Vacuum 38 (1988) 791-794.
[116] S. Swann, Phys. Technol. 19 (1988) 67-75.
[117] M. Ohring, Materials Science of Thin Films, (2002), New Jersey: Academic Press.
[118] J.B. Malherbe, Crit. Rev. Solid State Mater. Sci. 19 (1994) 55-127.
[119] J.A. Thornton, J. Vac. Sci. Technol. 11 (1974) 666-670.
[120] J.A. Thornton, Annu. Rev. Mater. Sci. 7 (1977) 239-260.
[121] J.A. Thornton, J. Vac. Sci. Technol. A 4 (1986) 3059-3065.
[122] J.A. Thornton, J. Vac. Sci. Technol. 12 (1975) 830-835.
[123] K.N. Tu, J.W. Mayer, and L.C. Feldman, Electronic thin film science: for electrical engineers and materials scientists, (1992), New York: Maxwell Macmillan International.
[124] G.M. Pharr and W.C. Oliver, MRS Bull. 17 (1992) 28-33.
[125] F.R. Brotzen, Int. Mater. Rev. 39 (1994) 24-45.
[126] T.G. Nieh, T.W. Barbee, and J. Wadsworth, Scripta Mater. 41 (1999) 929-935.
[127] O. Kraft and C.A. Volkert, Adv. Eng. Mater. 3 (2001) 99-110.
[128] D.T. Read, Y.W. Cheng, R.R. Keller, and J.D. McColskey, Scripta Mater. 45 (2001) 583-589.
[129] H. Hosokawa, A.V. Desai, and M.A. Haque, Thin Solid Films 516 (2008) 6444-6447.
[130] J.S. Bae, C.S. Oh, J.E. Nam, J.K. Lee, and H.J. Lee, Curr. Appl Phys. 9 (2009) S107-S109.
[131] M.A. Haque and M.T.A. Saif, Exp. Mech. 42 (2002) 123-128.
[132] M.A. Haque and M.T.A. Saif, PNAS 101 (2004) 6335-6340.
[133] H. Guo, P.F. Yan, Y.B. Wang, J. Tan, Z.F. Zhang, M.L. Sui, and E. Ma, Nat. Mater. 6 (2007) 735-739.
[134] J.Y. Kim, D.C. Jang, and J.R. Greer, Adv. Func. Mater. 21 (2011) 4550-4554.
[135] W.D. Nix, Metall. Mater. Trans. A 20 (1989) 2217-2245.
[136] F. Faupel, C.H. Yang, S.T. Chen, and P.S. Ho, J. Appl. Phys. 65 (1989) 1911-1917.
[137] F. Macionczyk and W. Bruckner, J. Appl. Phys. 86 (1999) 4922-4929.
[138] D.Y.W. Yu and F. Spaepen, J. Appl. Phys. 95 (2004) 2991-2997.
[139] Y. Xiang, T. Li, Z.G. Suo, and J.J. Vlassak, Appl. Phys. Lett. 87 (2005) 161910.
[140] M.J. Cordill, JOM 62 (2010) 9-14.
[141] Y.M. Wang, M.W. Chen, F.H. Zhou, and E. Ma, Nature 419 (2002) 912-915.
[142] D.C. Hofmann, J.Y. Suh, A. Wiest, G. Duan, M.L. Lind, M.D. Demetriou, and W.L. Johnson, Nature 451 (2008) 1085-1089.
[143] J.S.C. Jang, J.Y. Ciou, T.H. Hung, J.C. Huang, and X.H. Du, Appl. Phys. Lett. 92 (2008) 011930.
[144] A. Donohue, F. Spaepen, R.G. Hoagland, and A. Misra, Appl. Phys. Lett. 91 (2007) 241905.
[145] Y.M. Wang, J. Li, A.V. Hamza, and T.W. Barbee, PNAS 104 (2007) 11155-11160.
[146] B. Abeles and T. Tiedje, Phys. Rev. Lett. 51 (1983) 2003-2006.
[147] M.C. Liu, X.H. Du, I.C. Lin, H.J. Pei, and J.C. Huang, Intermetallics (2012), doi: 10.1016/j.intermet.2012.03.037.
[148] C.J. Lee, H.K. Lin, J.C. Huang, and S.Y. Kuan, Scripta Mater. 65 (2011) 695-698.
[149] A. Inoue, T. Yamaguchi, B.G. Kim, K. Nosaki, and T. Masumoto, J. Appl. Phys. 71 (1992) 3278-3282.
[150] K. Kurihara, K. Sasaki, M. Kawarada, and Y. Goto, Thin Solid Films 212 (1992) 164-168.
[151] A.A. Voevodin, M.A. Capano, S.J.P. Laube, M.S. Donley, and J.S. Zabinski, Thin Solid Films 298 (1997) 107-115.
[152] M. Grujicic and H. Zhao, Mater. Sci. Eng. A 252 (1998) 117-132.
[153] C.S. Lee, L.C. De Jonghe, and G. Thomas, Acta Mater. 49 (2001) 3767-3773.
[154] M.H. Kim, Y.G. Do, H.C. Kang, D.Y. Noh, and S.J. Park, App. Phys. Lett. 79 (2001) 2713-2715.
[155] J.G. Huang, I. Ichinose, T. Kunitake, and A. Nakao, Nano Lett. 2 (2002) 669-672.
[156] J.Q. Li, X.R. Zeng, J.N. Tang, and P. Xiao, J. Eur. Ceram. Soc. 23 (2003) 1847-1853.
[157] S. Raghavan and J. Redwing, J. Appl. Phys. 98 (2005) 023514.
[158] T.H. Fang, W.L. Li, N.R. Tao, and K. Lu, Science 331 (2011) 1587-1590.
[159] DuPontR, Available from: http://www2.dupont.com/Kapton/en_US/products/FPC/index.html.
[160] R.M. Langford and A.K. Petford-Long, J. Vac. Sci. Technol. 19 (2001) 2186-2193.
[161] A.C. Fischer-Cripps, Vacuum 58 (2000) 569-585.
[162] M. Raible, S.J. Linz, and P. Hanggi, Phys. Rev. E 64 (2001) 031506.
[163] G.W. Nieman, J.R. Weertman, and R.W. Siegel, J. Mater. Res. 6 (1991) 1012-1027.
[164] N. Mattern, J. Bednarcik, S. Pauly, G. Wang, J. Das, and J. Eckert, Acta Mater. 57 (2009) 4133-4139.
[165] J.Y. Zhang, G. Liu, X. Zhang, G.J. Zhang, J. Sun, and E. Ma, Scripta Mater. 62 (2010) 333-336.
[166] H.D. Espinosa, B.C. Prorok, and B. Peng, J. Mech. Phys. Solids 52 (2004) 667-689.
[167] M.C. Liu, C.J. Lee, Y.H. Lai, and J.C. Huang, Thin Solid Films 518 (2010) 7295-7299.
[168] Y.P. Li and G.P. Zhang, Acta Mater. 58 (2010) 3877-3887.
[169] Y. Zhang and A.L. Greer, App. Phys. Lett. 89 (2006) 071907.
[170] A. Misra, M.J. Demkowicz, and J. Wang, JOM 60 (2008) 39-42.
[171] W.C. Oliver and G.M. Pharr, J. Mater. Res. 7 (1992) 1564-1583.
[172] W.C. Oliver and G.M. Pharr, J. Mater. Res. 19 (2004) 3-20.
[173] P.M. Anderson and C. Li, Nanostruct. Mater. 5 (1995) 349-362.
[174] A.A. Volinsky, J. Vella, I.S. Adhihetty, V. Sarihan, L. Mercado, B.H. Yeung, and W.W. Gerberich, Mat. Res. Soc. Symp. 649 (2001) Q5.3.1-5.3.6.
[175] L. Lu, Y.F. Shen, X.H. Chen, L.H. Qian, and K. Lu, Science 304 (2004) 422-426.
[176] D.H. Xu, B. Lohwongwatana, G. Duan, W.L. Johnson, and C. Garland, Acta Mater. 52 (2004) 2621-2624.
[177] A. Inoue, W. Zhang, T. Tsurui, A.R. Yavari, and A.L. Greer, Philos. Mag. Lett. 85 (2005) 221-229.
[178] D.C. Hofmann, G. Duan, and W.L. Johnson, Scripta Mater. 54 (2006) 1117-1122.
[179] S.W. Lee, M.Y. Huh, E. Fleury, and J.C. Lee, Acta Mater. 54 (2006) 349-355.
[180] Z.W. Zhu, H.F. Zhang, W.S. Sun, B.Z. Ding, and Z.Q. Hu, Scripta Mater. 54 (2006) 1145-1149.
[181] K.W. Park, C.M. Lee, M. Wakeda, Y. Shibutani, M.L. Falk, and J.C. Lee, Acta Mater. 56 (2008) 5440-5450.
[182] J.S.C. Jang, J.Y. Ciou, T.H. Li, J.C. Huang, and T.G. Nieh, Intermetallics 18 (2010) 451-458.
[183] J.B. Li, J.S.C. Jang, S.R. Jian, K.W. Chen, J.F. Lin, and J.C. Huang, Mater. Sci. Eng. A 528 (2011) 8244-8248.
[184] 吳學陞, 工業材料 149 (1999) 154-165.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code