Responsive image
博碩士論文 etd-0611113-150746 詳細資訊
Title page for etd-0611113-150746
論文名稱
Title
降昇壓型電池電源模組串並聯平衡放電
Balanced Discharging of Buck-Boost Type Battery Power Modules with Series-Parallel Connection
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
68
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-06-21
繳交日期
Date of Submission
2013-07-11
關鍵字
Keywords
平衡、降升壓型轉換器、容錯機制、串聯、電池電源模組、串並聯
Buck-boost converter, fault tolerance, balanced discharging, battery power module (BPM)
統計
Statistics
本論文已被瀏覽 5699 次,被下載 664
The thesis/dissertation has been browsed 5699 times, has been downloaded 664 times.
中文摘要
本論文探討電池組與降昇壓型轉換器(Buck-Boost Converter) 配置成之電池電源模組(Battery Power Module, BPM)的串並聯放電操作特性。多組BPM之輸出端串聯或並聯,雖受相同輸出電流和電壓之牽制,但仍可個別運作,根據電池電量(State-of-Charge, SOC)、負載需求以及轉換器操作模式,規劃電池之放電電流。本研究針對降昇壓型BPM串聯以及串/並聯兩種架構,分析轉換器操作在連續導通及不連續導通模式時之操作特性,推導電池電流之分配方程式,據以擬訂之放電策略,並進行實驗。實驗結果顯示,降昇壓型BPM串並聯操作,具有很好的電量平衡能力。此外,更可設計容錯機制,不需外加輔助電路即可隔離已損壞或電量耗盡之模組,有助於電池電源模組的維護與管理。
Abstract
The operation of a battery power bank with buck-boost type battery power modules (BPMs) connected in series and parallel is studied. All BPMs in the power bank are collaboratively to cope with the load requirements under the restraints of a same output current for serial configuration and a same output voltage for parallel configuration. However, the BPMs can substantially be operated individually to schedule the discharged currents from batteries can be in accordance with their state-of-charges (SOCs) and the operating mode of the converters. The operations of BPMs with series and series-parallel configurations are analyzed to derive the current- distribution equations and then to figure out the discharging strategy accordingly. Experimental results demonstrate that excellent performance on discharge equalization can be achieved during the discharging processes. In addition, a fault-tolerance mechanism can be included to isolate those completely exhausted or damaged batteries. These features are helpful to maintenance and management of a battery power system.
目次 Table of Contents
論文審定書 i
誌謝 ii
中文摘要 iii
英文摘要 iv
目錄 v
圖表目錄 vii
第一章 緒論 1
1-1 研究背景 1
1-2 研究動機與目的 2
1-3 論文大綱 3
第二章 電池應用概述 4
2-1 電池串並聯應用 4
2-2 電池電源模組概念 5
2-3 電源內阻與電路寄生元件之影響 6
2-4 電池電量量測 9
第三章 降昇壓型電源模組串並聯架構 11
3-1 降昇壓型電池電源模組串聯運轉 12
3-1-1 降昇壓型轉換器 12
3-1-2 串聯模組連續導通模式 15
3-1-3 串聯模組不連續導通模式 17
3-1-4 串聯模組連續與不連續導通混合模式 20
3-1-5 模組輸出串聯限制 20
3-2 降昇壓型電池電源模組串並聯運轉 22
3-2-1 串並聯模組連續導通模式 22
3-2-2 串並聯模組不連續導通模式 24
3-2-3 模組輸出串並聯限制 25
3-3 均等相位移控制 25
第四章 平衡放電策略 27
4-1 電池電壓偵測 27
4-2 串聯平衡放電策略 28
4-3 串並聯平衡放電策略 33
4-4 控制電路 35
4-5 軟體規劃 38
第五章 電池電源模組放電量測 39
5-1 系統參數設定 40
5-2 放電實驗 41
第六章 結論與未來展望 54
參考文獻 56
參考文獻 References
[1] C. C. Chan and K. T. Chau, “An overview of electric vehicles-challenges and opportunities,” in Proc. IECON, Vol. 1, pp. 1-6, August 1996.
[2] H. Oman, “Battery developments that will make electric vehicles practical,” IEEE Aerospace and Electronic Systems Magazine, Vol. 15, No. 8, pp.11-21, August 2000.
[3] H. Oman, “Making batteries last longer,” IEEE Aerospace and Electronic Systems Magazine, Vol. 14, No. 9, pp.19-21, September 1999.
[4] T. B. Gage, “Lead-acid batteries: key to electric vehicle commercialization; Experience with design, manufacture, and use of EVs,” in Proc. BCAA, pp. 217-222, January 2000.
[5] N. H. Kutkut and D. M. Divan, “Dynamic equalization techniques for series battery stacks,” in Proc. INTLEC, pp. 514-521, October 1996.
[6] N. H. Kutkut, D. M. Divan, and D. W. Novotny “Charge equalization for series battery strings,” IEEE Trans. Ind. Applications, Vol. 31, No. 3, pp. 562-568. May/June 1995.
[7] N. H. Kutkut, H. L. N. Wiegman, D. M. Divan, and D. W. Novotny “Charge equalization for an electric vehicle battery system,” IEEE Transactions on Aerospace and Electronic Systems, Vol. 34, No. 1, pp.235-246, January 1998.
[8] Y. C. Hsieh, S. P. Chou, and C. S. Moo, “Balance discharge for series-connected batteries,” in Proc. PESC., Vol. 4, pp. 2697-2702, June 2004.
[9] A. Affanni, A. Bellini, G. Franceschini, P. Guglielmi, and C. Tassoni, “Battery choice and management for new generation electric vehicles,” IEEE Trans. Ind. Electron., Vol. 52, No. 5, pp. 1343-1349, October 2005.
[10] E. Karden, S. Ploumen, B. Fricke, T. Miller, and K. Snyder, “Energy storage devices for future hybrid electric vehicles,” J. Power Sources, Vol. 168, pp. 2-11, May 2007.
[11] H. Oman, “Battery developments that will make electric vehicles practical,” IEEE Aerosp. Electron. Syst. Mag., Vol. 15, No. 8, pp. 11-21, August 2000.
[12] W. G. Hurley, Y. S. Wong, and W. H. Wolfle, “Self-equalization of cell voltages to prolong the life of VRLA batteries in standby applications,” IEEE Trans. Ind. Electron., Vol. 56, No. 6, pp. 2115-2120, June 2009.
[13] S. Luo, “A review of distributed power systems part I: dc distributed power system,” IEEE Aerosp. Electro. Syst. Mag., Vol. 20, No, 8, pp. 5-16, August 2005.
[14] C. S. Moo, K. S. Ng, and Y. C. Hsieh, “Parallel operation of battery power modules,” IEEE Trans. Energy Conversion, Vol. 23, No 2, pp. 701-707, June 2008.

[15] 簡振宇,“串聯降昇壓式電池電源模組充電策略”,國立中山大學電機工程研究所碩士論文,中華民國一零二年四月。
[16] Y. S. Lee and M. W. Cheng, “Intelligent control battery equalization for series connected lithium-ion battery strings,” IEEE Trans. Ind. Electron., Vol. 52, No. 5, pp. 1297-1307, October 2005.
[17] L. Palma and P. Enjeti, “A modular fuel cell, modular dc-dc converter concept for high performance and enhanced reliability,” in Proc. PESC, pp. 2633-2638, June 2007.
[18] 胡錦欣,“電池電源模組之輸出串聯運轉”,國立中山大學電機工程研究所碩士論文,中華民國九十八年七月。
[19] L. Shiguo, Y. Zhihong, L. L. Ray, and F. C. Lee, “A classification and evaluation of paralleling methods for power supply modules,” in Proc. PESC, Vol. 2, pp. 901-908, July 1999.
[20] Y. Huang and C. K. Tse, “Circuit theoretic classification of parallel connected dc-dc converters,” IEEE Trans. Circuits and Syst., Vol. 54, No. 5, pp. 1099-1108, May 2007.
[21] L. Balogh, “Paralleling power choosing and applying the best technique for load sharing,” Texas Instruments Seminar, 2003.
[22] J. S. Glaser and A. F. Witulski, “Output plane analysis of load-sharing in multiple module converter systems,” IEEE Trans. Power Electron., Vol. 9, No. 1, pp. 43-50, January 1994.
[23] B. T. Irving and M. M. Jovanovic, “Analysis, design, and performance evaluation of droop current-sharing method,” in Proc. APEC, pp. 253-241, February. 2000.
[24] J. W. Kim, H. S Choi, and B. H. Cho, “A novel droop method for converter parallel operation,” IEEE Trans. Power Electron, Vol. 17, No. 1, pp. 25-32, January 2002.
[25] D. Linda and T. B. Reddy, “Handbook of batteries,” The 3rd edition, McGraw-Hall Companies, Inc., 2001.
[26] C. C. Chan, “The state of the art of electric and hybrid vehicles,” Proceedings of the IEEE, Vol. 90, No. 2, pp. 247-275, February 2002.
[27] V. Wouk, “The second century of electric and hybrid vehicles,” in Proc. VTC, Vol. 34, pp. 183-190, May 1984.
[28] 楊模樺,“電動車輛用鋰電池發展趨勢”,電動車輛產業資訊專刊,2008年11月。
[29] “二次電池比較表”,台灣立凱電能科技股分有限公司,2009年。
[30] 詹家福,“陣列式生壓型電池電源模組之架構與分析”,國立中山大學電機工程研究所碩士論文,中華民國九十九年七月。

[31] S. Piller, M. Perrin, and A. Jossen, “Methods for state-of-charge determination and their applications,” Journal of Power Sources, Vol. 96, No. 1, pp. 113-120, June 2001.
[32] J. H. Aylor, A. Thieme, and B. W. Johnso, “A battery state-of-charge indicator for electric wheelchairs,” IEEE Trans. Ind. Electronics, Vol. 39, No. 5, pp. 398-409, October 1992.
[33] S. Pang, J. Farrell, D. Jie, and M. Barth, “Battery state-of-charge estimation,” in Proc. ACC, Vol. 2, pp. 1644-1649, June 2001.
[34] V. Pop, H. J. Bergveld, P. H. L. Notten, and P. P. L. Regtien, “State-of-charge indication in portable applications,” in Proc. ISIE, Vol. 3, pp. 1007-1012, June 2005.
[35] I. Kurisawa and M. Iwata, “Internal resistance and deterioration of VRLA battery-analysis of internal resistance obtained by direct current measurement and its application to VRLA battery monitoring technique,” in Proc. INTELEC, pp. 687-694, October 1997.
[36] A. Kawamura and T. Yanagihara, “State of charge estimation of sealed lead-acid batteries used for electric vehicles,” in Proc. PESC, Vol. 1, pp. 583-587, May 1998.
[37] 陳怡萍,“鉛酸與鋰離子蓄電池之電量估測”,國立中山大學電機工程研究所碩士論文,中華民國九十六年六月。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code